A Guideto ECTC
Serial Data
'Communications

A comprehensive guide to the use of computer communications
capabilities in Series 2200/2400/2800 Controllers

© 1985,1986,1988 Control Technology Corporation, Hopkinton, Massachusetts

Table of Contents

1. The Role of Data Communications in the Factory
2. A Practical Communications Hierarchy

3. Selection and Use of the CTC Protocols

4. The CTC ASCII Computer Protocol

5. The CTC ASCII Terminal Protocol

6. Commands for the ASCII Protocols

7. The CTC Binary Protocol

8. Commands for the Binary Protocol

9. Network Communications and the CTC Protocols

10. Communications Examples

Glossary of Terms

CTC Serial Data Communications

I

15

17

19

25

55

57

69

Page 3

The Role of Data Communications in the Factory

Theincreasing levels of automation being used in factories, coupled with
a greater degree of sophistication required in the functions of Production
Control, Quality Assurance and Maintenance, have brought about the
need for unprecedented levels of data communications within the
factory. Some of the goals for these communications efforts include:

© Providing design and/or process data (i.e.; dimensions, times/tem-
peratures, product types, etc.) from a central engineering data base to
a specific machine which must implement that design.

© Providing production data, including batch quantities desired, to a
specific machine and, perhaps, coordinating the efforts of that machine
with others.

© Gathering production data, including cumulative production quan-
tities and relative efficiencies, from a number of machines.

© Tracking quality levels on machines capable of making qualitative
measurements, monitoring reject rates or quality trends to allow timely
action to be taken.

© Monitoring machine performance (cycle times, temperatures, etc.) to
detect imminent failures and/or inefficiencies and aid in preventative
maintenance.

© Monitoring machines and/or processes to detect faults, jams, etc.,
and provide timely information to Maintenance to effect a repair and
minimize downtime.

As you can see, the role of data communications is quite broad, and will
only increase in importance in the future. CTC has addressed the need
for effective data communications with an approach which provides a
great amount of flexibility to the designer, while allowing the machine
control program to be developed independently of any computer-based
monitoring or control program.

This booklet describes the three CTC Protocols for data communications
which are an integral part of each CTC Automation Controller:

The CTC ASCII Computer Protocol
The CTC ASCII Terminal Protocol
The CTC Binary Protocol

A selection guide and overview description of these protocols are pro-
vided in section 3, and detailed information, as well as applications ex-
amples, are provided in subsequent sections.

CTC Serial Data Communications Page 5

A Practical Communications Hierarchy

In many instances, a computer is simply connected to a single control-
ler and used to perform some data processing, operator interface or
reporting task beyond the normal capabilities of the controller. Often,
however, a controller's communications capabilities are used to create
an information network, with one computer connected to a number of
controllers. The goal in such a situation is usually more aggressive, with
the computer being used to gather production information, provide
manufacturing data, coordinate a number of different operations, etc.

In the past, many configurations have been tried in establishing com-
munications among automated machines. All extremes from fully
independent, unconnected machine controllers to total centralized
control by a mainframe computer have been explored by those attempt-
ing to find the optimum approach to handling data communications in
the plant environment.

Prior to establishing such an information network, two fundamental
issues should be explored to insure that the installation will meet the
long-term needs of all those concerned:

1. What are the primary initial goals of the comunications network?
Is a computer to be used to monitor one or more machines, gather
production data, provide parametric information (dimensions, tempera-
tures, etc.), coordinate operations of different machines?

2. What ultimate goals are planned for the network? Will the instal-
lation eventually lead to a plant-wide information network to commu-
nicate engineering data, production and materials requirements data
and plant status information?

These needs often point to the use of a "work-cell" hierarchy, shown in
the accompanying diagram.

The Organization of a Workcell
A workcell hierarchy typically consists of three levels of control:

1. At the local machine level, an automation controller is used to
control all "real time" functions of each machine. This controller con-
tains a program for operating the machine and, typically, is capable of
completely independent operation, allowing the machine to be run even
in the event of a computer or network malfunction.

2. Machines performing related functions are then grouped into a
"workcell"; for example, an injection molding machine, robotic trans-
fer arm, deflashing machine and a milling machine used for secondary
machining might constitute a workcell. The automation controllers for
all machines in the workcell are connected via a common data network
(called a "local area network") to a "workcell controller". which might
consist of a Personal Computer (perhaps an industrial version).

The function of the workcell controller is to coordinate the operations of
the various machines, as well as to perform such additional functions
as data gathering, fault monitoring and local storage and dissemination
of design (parametric) data.

3. Although such workcells are often initially set up as independent
“islands"” (and may exist in that state for years), the ultimate step in

CTC Serial Data Communications Page 7

integrated communications is to link each workcell controller into a
plant-wide data nmetwork. This is perhaps the most critical step:
especially if the network is to play a major role in determining workflow
and resource allocation on a fully-automated basis. Tasks which were
formerly dependent on human judgement are suddenly at the mercy of
a central computer system; this can result either in greatly increased
efficiencies, or a nightmare of unanticipated problems, depending on
the care exercised in the original planning of the system.

Of course, if the plant-wide network is to be used only for monitoring and
information-gathering purposes, such dangers are not present. Often,
a hybrid approach is advisable, where information is gathered by the
network, analyzed by Production Control personnel, and used by them
to command workflows via the network.

Implementing Workcells with Series 2400iE/2800iE Controllers

CTC controllers with the "E"-type (80186-based) CPU board are
equipped with two integral serial communications channels. One of
these channels(channel B) is fixed in an RS-232 configuration and may
be used for programming and for computer communications using a
point-to-point (2-party) communications link. It is also possible to
establish a "ring network" using this channel (refer to section 9).

A ring network allows information to be transmitted from system to
system around a network connected as a "ring" until the information
reaches the intended destination. The CTC Protocols support the use
of the RS-232 ports in a ring network, and this represents an inexpen-

Production Scheduling
Materials Requirements Plan
Resource Allocation
Plantwide Process Monitoring

Plant-wide Network

\

Interface to surrounding workcells and
to mainframe

Coordination of tasks within workcell

Local routing and fault monitoring

Local-Area Network

Control over individual actuators on machine tools,
automated transfer stations, inspection stations,
assembly stations, etc.

Page 8 CTC Serial Data Communications

Transmit] -- Receive
T

A "RING" NETWORK
[I [I
Receive Transmit Receive Transmit Receive Transmit
RS-232 Port RS-232 Port RS-232 Port
2400/2800 Controller 2400/2800 Controller 2400/2800 Controller

sive means of configuring a local area network.

The other communications channel (channel A) is available as a second
RS-232 port, identical in function to channel B, or, optionally, as a
connection point for a "multi-drop" local area network. CTC will soon
support an SDLC multi-drop network, based on technology developed
by CTC for several custom networks, where several advantages over a
ring network are present:

1. ’I‘fanémission/ response times are faster, due to the fact that repeti-
tive receive/transmit cycles are not necessary to complete a transmis-
sion, as they are with a ring network.

2. The network is more hardy; if a given controller is powered-down, it
will not affect the ability of other controllers to communicate.

3. Wiring is simpler, as is the addition of more controllers to the network
as required.

Note that in the ring network configuration, the computer is connected
directly into the network as an additional node. In the multi-drop
configuration, however, the computer is typically not outfitted with the

racave| 1
Raceive | HHHIIMLH

|

Isolation {solation Isolation
Transformer Transformer Transformer
Receive Transmit| Transceive Transceive Transceive
RS-232 Port
2400/2800 Controller 2400/2800 Controller 2400/2800 Controller

A "Multi-Drop™" Network

The RS-232 communications channel of the first controller may be used as a
"gateway" for an external computer into the multi-drop network

CTC Serial Data Communications Page 9

necessary specialized hardware to connect directly to the network. The
CTC Protocols will allow the “channel B" (RS-232) port of any of the
controllers in the network to serve as a "gateway" into the network for
a computer.

Thus, the computer may transmit commands to the RS-232 port of one
controller, and that controller will retransmit each command over the
multi-drop network, at which point the addressed controller will re-
spond to the command. This response will also be reflected back to the
computer by the controller acting as a gateway.

Once a local area network is established, using either methodology, the
workcell controller (computer) may then be connected to a plant-wide
network, if desired. This may be accomplished using MAP interface
boards available for many microcomputers, or through an alterative
interface (Ethernet, etc.) as appropriate. The computer is then. pro-
grammed to act as a data accumulator/translator, as well as, perhaps,
a local operator's control station, for the workcell.

Handling Information within the Hierarchy

The word "hierarchy" implies a division of the tasks to be performed
among the various layers of a plant communications network, such that
each successive layer is handling tasks at a higher level. One way of
thinking about this is to imagine the Automation Controllers handling
detailed tasks (i.e.; controlling a machine's actuators) on a second-to-
second basis, while the Workcell Controller is performing supervisory
functions on a minute-to-minute or hour-to-hour basis, while the
Central Computer is coordinating plant operations on a day-to-day,
week-to-week or even month-to-month basis.

With the increasing levels of power and capability which are available at
the Automation Controller level, it is often practical (and usually advis-
able) to perform all real-time machine control functions at this level
(unless the additional computational or storage capabilities of the
Workcell Controller are required for these functions). This distribution
of control down to the machine level allows the machine to be designed
and to function on a stand-alone basis, resulting in greater simplicity
and modularity.

With much of the machine control responsibility being carried by the
Automation Controller, the role of the Workcell Controller can become
relatively minor. The Workcell Controller may be used to coordinate
operations of the various machines in the workcell (e.g.; telling the robot
controller whena -new workpiece is needed in the assembly machine,
etc.), to monitor the various controllers in the workcell for detected fault
conditions and to receive production data from the Central Computer
and "translate" this data to the Automation Controllers. In addition, the
Workcell Controller is often programmed to provide status information
at the "local" level for Production Supervisors on the plant floor.

The plant's Central Computer will be mainly concemed with Production
Control. product configuration and fault management matters. It is
usually a serious mistake to have moment-by-moment manufacturing
operations controlled directly from the Central Computer, due to the
resultant absolute reliance on that system's functionality. By distrib-
uting control to a number of independent systems, the risk of downtime
is typically also distributed (there are, of course, exceptions where a
single, centralized system is indicated; but, if you put all of your eggs in
one basket, watch that basket!).

Page 10 CTC Serial Data Communications

Selection and Use of the CTC Protocols

The serial communications channels of the models 2400iE and 2800iE
are supplied with a built-in protocol for the transfer of information into
and out of the controller. This protocol functions in the background of
the machine control program running in the controller, and no addi-
tional provision is required within the machine control program to
accomplish serial communications.

The communications protocol is driven entirely from commands sent by
an external computer (or other intelligent device) to the model 2400iE/
2800iE controller. The controller responds to these commands by
effecting a data transfer to or from the controller.

There are actually three protocols which may be used for communica-
tions with these controllers:

1. The CTC ASCII Computer Protocol

This protocol is most frequently used in instances where a computer
program must interact with the operation of the controller, either pro-
viding parametric information for the controller's program to use, or re-
questing data (production quantities, machine status, etc.) from the
controller. This protocol uses ASCII characters to carry information
between the computer and controller, and terminates each message
with a "carriage return” character (ASCII 13).

2. The CTC ASCII Terminal Protocol

Often, it is desirable to use a portable "dumb terminal” as a trou-
bleshooting/diagnostic aid in setting up a new system. A battery-
operated "lap-top" computer (e.g.; Radio Shack model 100, etc.) in
terminal emulation mode is often used for this purpose. The CTC AS-
CII Terminal Protocol accomodates the use of a terminal by responding
to messages with a "line feed" character (ASCII 10), avoiding the prob-
lem of characters piling on top of one another on the screen of the
terminal. This protocol is otherwise virtually identical to the Computer
Protocol above.

3. The CTC Binary Protocoi

When data integrity, response time and processing time are major
criteria, the CTC Binary Protocol supports the transfer of data packets
in binary form, with checksumming and error reporting. This allows
each transmission to be checked for data errors, and also eliminates the
processor time required to perform a binary-to-ASCII conversion on the
transmitted data. Recommended for more experienced programmers,
this protocol is somewhat more complex to use.

This section will deal solely with the protocol (informational) aspects of
communications with CTC controllers. For information relating to the
physical connection of the external host to the controller's serial com-
munications port, please refer to the controller's installation guide.

Communicating with the DSP™ Program

Although the communications protocol allows the direct reading of the
controller’'s inputs, as well as the reading and forcing of the controller's
outputs, a far more common usage of the serial communications capa-
bilities is to transfer information to and from the controller's Numeric

CTC Serial Data Communications Page 11

Registers. This allows a computer to provide numeric parameters for
use by the controller's program, or to monitor numeric parameters to
which the controller has access.

Some of the applications for these capabilities include:
© Computer determination of motor position coordinates.

© Computer control of motor motion parameters (speed, accel/decel
rates, servo filter parameters, etc.).

© Remote reading of productiori data (batch counts, good part/bad part
counts, parametric deviation).

© Monitoring of process variables (temperature, pressure, position,
level, etc.).

The controller must simply be programmed to store the required data (or
to derive the incoming data) to or from one or more of its Numeric
Registers. The computer then communicates, in effect, directly with
these registers.

Data Table Transfer

Frequently, DSP™ programs for machine control are written to derive
numeric parameters from a Data Table, stored in non-volatile memory
alc 3 with the controller's program. This Data Table may represent
infurmation such as motor coord-inates or temperature or other proc-
ess setpoints. The serial communications protocol allows these Data
Tables to be transferred to or from a remote computer, allowing the
computer to "configure" the machine according to immediate produc-
tion requirements.

Initializing the Computer's Serial Port

Before any communications may take place, however, the serial port of
the computer being used must be initialized to the serial data format
used by the controller. This is typically accomplished by a statement in
the language being used (BASIC, etc.), setting the parameters governing
the operation of the port. Although the specific command required
varies among different computers, the critical parameters required are
given below: :

Baud Rate: 9600 (may be set to an alternate baud rate, except on
model 2200)

Parity: None .

Character width: 8 bits

Number of Stop Bits: 1

For example, to initialize the first serial port on an IBM-PC computer to
the above requirements, the following statement would be executed:

OPEN "COM1:9600,N,8,1,CS,DS" AS #1
Setting the Controller's Protocol

Series 2400/2800 Controllers are initialized into the CTC ASCII Terni-
nal Protocol upon power-up. To change to the CTC ASCIl Computer
Protocol, a command is send to the controller's serial port establishing
the new protocol:

P C <carriage return>

Page 12 CTC Serial Data Communications

The "P" command sets the protocol, where "C" establishes the Computer
Protocol and "T" establishes the Terminal Protocol. The carriage return
which follows signals the end of the command. The controller responds
to the above command with the message:

P C @ <carriage return>

This acknowledges the change to the Computer Protocol. Note that the
response is consistent with the Computer Protocol, in that is it termin-
ated with a carriage return.

To return to the CTC ASCII Terminal Protocol, the following command
is sent to the controller:

P T <carriage return> ,
The controller will then respond with the following acknowledgement:
<line feed> P T <carriage return> <line feed>

This response is consistent with the Terminal Protocol in that the
command is immediately acknowledged with a line feed, and the
response is terminated with both a carriage return and a line feed,
creating a readable display on the terminal.

CTC Serial Data Communications Page 13

Page 14 CTC Serial Data Communications

The CTC ASCII Computer Protocol

As mentioned earlier, serial communications is accomplished by using
an external computer to send commands to the controller. These com-
mands are in the form of simple "ASCII" messages (ASCIl is a commonly-
used form of coding for transmitting text information between comput-
ers). Most computer languages have provision for easily sending such
ASCII messages to a serial communications port.

For example, to force a number into one of the controller's Numeric
Registers (in this example, forcing "1200" into Register #10), the com-
mand would read "R10=1200". This command must be concluded with
the code for a "carriage return" command (ASCII 13), signalling to the
controller that the command is complete. The following "BASIC"-
language statement would accomplish this transmission:

PRINT #1, "R10=1200"

This assumes-that a serial communications channel on the computer
had been previously "opened"” and defined as output port #1 (computers
and versions of BASIC vary as to how this is accomplished: refer to
manufacturer's published data). Most versions of BASIC will automat-
ically add the required carriage retun at the end of the transmission.

When operating in the CTC ASCII Computer Protocol, the controller will
respond with a "carriage return” command, acknowledging the receipt
of the message. This should be received and tested by the computer,
because if a transmission error occured, the controller will instead
respond with an error message. This "test" may be accomplished with
the following statements:

LINE INPUT #1,R$
IF R$<>"" THEN GOTO 100

The first statement will receive the controller's response (assuming the
same serial port had been previously defined as input port #1), and
assign the response to character string "R$". In most versions of BASIC,
a response consisting of only a carriage return (with no characters
preceding it) will be received as a "null string” (i.e.; an empty message).
The second statement then tests the response; if the controller's re-
sponse is not equal to a null string (<>""), then a transmission error has
occured, and the BASIC language program will jump to line #100 to
react to that fact.

It is important that the controller's response is "taken in" by the
computer's program; otherwise, it will remain in the computer’'s
communications buffer and effect the ability to receive future mes-
sages.

To meet the special requirements of certain languages and computer
systems, the ASCII protocol may be modified to transmit a line feed
automatically after the carriage retumn in the controller's response.

To select this option, the protocol selection command would read:
PCL <cb.rriage return>
The controller will respond with:

P C L <carriage return> <line feed>

CTC Serial Data Communications - Page 15

The CTC ASCII Terminal Protocol

Sometimes it is desirable to use a "dumb” terminal or a computer
running a terminal emulation program to communicate with a control-
ler. For example, a portable terminal may be used for diagnostic or
debugging purposes, forcing outputs on or off, reading or forcing
numeric registers, etc. (Of course, Quickstep™ or a model 2000A Pro-
gramming Terminal may be used for the same purpose.)

The CTC ASCII Computer Protocol, however, is not ideally suited to this
task. This protocol has been optimized for use in communicating with
arunning computer program; each response is terminated in a carriage
return, signalling the completion of the message.

When using a terminal to directly view the response of the controller, the
carriage return will return the terminal’s cursor to the beginning of the
same line; subsequent activity will just overwrite previous messages
and responses.

The CTC ASCII Terminal Protocol solves this problem by responding to
commands from a terminal (or computer) with an instantaneous "line
feed", moving the terminal to the next line on its screen. The controller
then transmits its response, if any, followed by a carriage return and a
line feed. The resultant exchange is then recorded on the terminal's
screen on successive lines.

The CTC ASCII Terminal Protocol is selected using the "P" (protocol)
command:

P T <carriage return>

(refer to "Selection and Use of the CTC Protocols"). Of course, the
terminal's transmission parameters must be set to agree with the
controller's data format (i.e.; 9600 baud, no parity, 8 bit character width,
1 stop bit). Refer to the terminal's instructions to accomplish this; some
terminals use DIP switches to establish these parameters, others are
determined in software.

Aside from the use of line feeds, the Terminal Protocol is otherwise
identical to the Computer Protocol. The section "Commands for the
ASCII Protocols" illustrates the available commands and the responses
provided in each of these two protocols.

CTC Serial Data Communications Page 17

Commands for the ASCII Protocols

The terminal or computer can access any of the following data within the
controller: digital inputs and outputs, analog inputs and outputs,
registers, counters, data table and flags. In addition, the controller can
be commanded to START, STOP or RESET. In the following command
descriptions, <cr> stands for carriage return (ASCII 13) and <1f> stands
for line feed (ASCII 10). Digital input and output values use the number
O for off and 1 for on. Flag values use the number O for clear and 1 for
set. The responses are shown first for computer mode protocol and then
for terminal mode protocol.

To examine a digital output:
command: O (letter "O", not zero) <output number> <cr>
response: computer mode: <output value> <cr>
terminal mode: <lfS <output value> <cr> <lf>
To change a digital output:
command: O <output number> = <new value> <cr>
response: computer mode: <cr>
terminal mode: <lf>
To examine a digital input:
command: I <input number> <cr>
response: computer mode: <input value> <cr>
terminal mode: <Uf> <input value> <cr> <Ulf>
To examiné an analog output:
command: A O <output number> <cr>
response: computer mode: <output value> <cr>
terminal mode: <Uf> <output value> <cr> <lf>
To change an analog output:
command: A O <output number> = <new value> <cr>
response: computer mode: <cr>
terminal mode: <lf>
To examine an analog input:
command: A I <input number> <cr>
response: computer mode: <input value> <cr>
terminal mode: <Ilf> <input value> <cr> <Uf>
To examine a counter or register:
command: R <counter/register number> <cr>
response: computer mode: <counter/register value> <cr>
termninal mode: <lf> <counter/register value> <cr>

<lf>

CTC Serial Data Communications Page 19

To change a counter or register:
command: R <counter/register number> = <new value> <cr>
response: computer mode: <cr>
terminal mode: <Uf>
To examine a flag:
command: F <flag number> <cr>
response: computer mode: <flag value> <cr>
terminal mode: <Uf> <flag value> <cr> <lf>
To change a flag:
command: F <flag number> = <new value> <cr>
response: compgter mode: <cr>
terminal mode: <lf>
To examine a data table location:
command: D <row number> , <column number> <cr>
response: computer mode: <table value> <cr>
terminal mode: <lf> <table value> <cr> <Uf>
To change a data table entry:
command: D <row number> , <column number> = <new value> <cr>
response: computer mode: <cr>
terminal mode: <If>
To START the controller:
command: + <cr>
response: computer mode: <cr>
terminal mode: <If>
To STOP the controller:
command: - <cr>
response: computer mode: <cr>
terminal mode: <Ulf>
To PESET the controller:

command: * <cr>
response: computer mode: <cr>
terminal mode: <Uf>

To examine the input and output complement of the control rack:

command: C <cr>
response: computer mode:

I=<i> O=<0> A=<a> M=<m> C=<c> T=<t> D=<d> P=<p> <cr>

Page 20 CTC Serial Data Communications

terminal mode:
<lf> I=<i> O=<0> A=<a> M=<m> C=<c> T=<t> D=<d> P=<p> <cr> <If>
where: <i> is the number of digital inputs
<0> is the number of digital outputs

<a> is the number of analog inputs and the number of
analog outputs

<m> is the number of stepping motors
<c> is the number of 2811 communication boards
<t> is the number of thumbwheels
<d> is the number of displays
<p> is the number of prototype boards
Error Messages

When the controller receives an illegal command, it sends back an error
message. The error message consists of a character to indicate the type
of error, followed by a BELL character (ASCII 7). The types of errors are
listed below. As in the command listing, the response is shown first for
computer protocol, and then for terminal protocol:

Number too small:

If an input, output, retgister. or flag number is specified as zero, then the
controller sends the following error message:

response: computer mode: < <bell> <cr>
terninal mode: <lf> < <bell> <cr> <Ilf>
Number too large:

If an input, output, re%lster. or flag number is too large (output number
greater than the number of outputs, flag number greater than 32, etc.)
then the controller sends the following error message:

response: computer mode: > <bell> <cr>
terminal mode: <lf> > <bell> <cr> <If>

Protocol error:

If a "P" command -(protocol) is not in the correct format, then the
controller sends the following error message:

response: computer mode: P <bell> <cr>
terminal mode: <lf> P <bell> <cr> <Ilf>
Syntax error:

If the controller cannot make any sense of the command, then it sends
the following error message:

response: computer mode: ? <bell> <cr>

terminal mode: <lfS ? <bell> <cr> <If>

CTC Serial Data Communications Page 21

The CTC Binary Protocol

Although the standard CTC ASCII Protocol is most frequently used when
communicating between a computer and a CTC controller, there is an
additional binary communications protocol which may be used in more
demanding applications.

This CTC Binary Protocol, although somewhat more difficult to use, can
significantly reduce the time required to transfer large blocks of data be-
tween a computer and the controller. The reason for this efficiency is
twofold:

1. Because both the commands and data are represented in binary form
(instead of ASCII), the information density is higher and, for large data
transfc.s, fewer characters must be transmitted.

2. Perhaps more importantly, the data received by the controller does not
first have to be converted from ASCII to binary before it may be used,
resulting in much shorter execution times. In addition, there may be
significant time savings in the execution of the computer program, as
data need not be converted to ASCII prior to transmission (this time
savings may vary among different languages).

Selecting the CTC Binary Protocol

-As with the standard CTC ASCII Protocol, communications in the CTC
Binary Protocol are initiated from a host system (i.e.; computer or other
intelligent device) outside the controller, by sending a command to one
of the controller's serial inputs. To select the CTC Binary Protocol, the
first character of such a command must be binary 1 (31H). The rest of
the command will then be interpreted by the controller according to the
CTC Binary Protocol.

General Format of the CTC Binary Protocol

Communications from a host system to the controller using this
protocol will follow the general format shown below:

<P1H> Signifies CTC Binary Protocol

<P2H> to <3FH> Specifies packet length to follow (defined as n data
bytes + 2)

<data (n bytes)> Consists of function code(s) plus relevant data

<checksum> Complement of the modulo-256 sum of data bytes

<FFH> Last byte of packet must be 9FFH

The following example will help to clarify the usage of the above format.
To set Flag #4 in a controller, the following packet may be sent:

¢1H,0$5H,13H,03H,FFH,EAH ,FFH

In the above packet, the first byte (J1H) identifies the packet as using
the CTC Binary Protocol. The second byte, @5H, represents the length
of the packet to follow, expressed in bytes (note that this length includes
the checksum byte and the termination byte).

The third byte, 13H, is the code for a "Change Flag" command, as
described below (see "Command for the Binary Protocol”). It is followed
by the number of the flag to be aflected, where flags 1 through 32 are

CTC Serial Data Communications Page 23

represented by @@H through 1FH. Therefore, Flag #4 is represented by
@3H. The data for this flag is carried by the fifth byte; flags may possess
‘one of two possible states, "SET", represented by JFFH, or "CLEAR",
represented by 9GH.

The sixth byte of the packet is a checksum which, when added to the
modulo-256 sum of the data packet bytes will equal GFFH. In this
instance, the data packet consists of the third byte through the fifth
byte, and their sum is 15H; therefore the checksum will equal GEAH.
(Note that the checksum may be easily calcuated by adding the data
packet bytes and complementing the resultant sum.)

The last byte of the packet must always be JFFH. The controller, upon
receiving the packet, will count out the number of bytes specified by the
"packet length" byte and, if the last byte is not @FFH, will return an error
message.

Responses from the Controller

Communications back from the controller follow the same general
format shown above, with one exception: The controller will not trans-
mit a leading (J1H) byte, because the host is assumed to know that the
original message to the controller was transmitted in the CTC Binary
Protocol. '

If the command to the controller does not require a data response (i.e.;
register information is not being requested, etc.), the controller will
respond with an acknowledgement message in the form shown below:

<@P3H> Packet length

<64H> "Acknowledge" code (=decimal 100)
<9BH> Checksum of above byte

<FFH> Last byte of packet

If, however, the original packet is not received properly by the control-
ler (for example, the checksum does not calculate correctly, or the last
byte of the packet is not @FFH), the controller will transmit a "NOT
ACKNOWLEDGE" code, 65H, in place of 64H in the message above. The
checksum will therefore be 9AH in the controller's response.

Other error codes are possible if the format of the message is correct; but
the controller is otherwise unable to execute the command. This might
occur, for example; if:a-register number is specified which is out of the
range of existing-registers-within-the controller: These error messages
are explained in the "Commands" section, below.

Data Transmission Specifications

As with the CTC ASCII Protocol, the following specifications must be
observed for the data transmissions to the controller:

Baud Rate: 9600 (may be changed to an altemative baud rate, except
in model 2200)

Data byte length: 8 bits

Number of Stop Bits: 1

Parity: None

Most languages/systems have provision for setting these parameters.

Page 24 CTC Serial Data Communications

Commands for the Binary Protocol

This section documents the commands available via the CTC binary
protocol as of this printing. Note that, due to controller resource
limitations, some of these commands are not supported by all CTC
Automation Controllers (as noted below, and within the individual
command specifications), and that older versions of controller firmware
may not support all of the commands listed. Contact CTC if you have
questions regarding command availability, or if you have difficulty
implementing any specific command.

Cmd.# Description Page # Compat.
Register/Flag Access Commands:
9 Read a Numeric Register 26 All
11 Change a Numeric Register 27 Al
17 Read a Flag 28 All
19 Change a Flag 29 Al
Input/Output Access Comunands: .
15 Read a Bank of 8 Inputs 30 Al
21 Read a Bank of 8 Outputs 31 Al
25 Selectively Modify First 128 Outputs 32 Al
40 Selectively Modify a Group of 128 Outputs 33 -iEA only
29 Read an Analog Input 34 Al
31 Read an Analog Output 35 Allex. 2200
33 Change an Analog Output 36 Al
Servo Access Comumands:
23 Read a Servo Position 37 Allex. 2200
47 Read Servo Error 38 Allex. 2200
27 Read a Servo's Auxiliary Inputs 39 Allex. 2200
Data Table Access Commands:
49 Read Data Table Dimensions 40 Al
51 Change Data Table Dimensions 41 Allex.2200
53 Read a Data Table Location 42 Al
-55 Change a Data Table Location 43 All
57 -Read a Data Table Row 44 Al
59 Change a Data Table Row 45 Al
System/Status Commands:
61 Read Controller Status Byte 46 Allex.2200
63 Change Controller Status 47 Allex. 2200
65 Read System Configuration 48 Allex. 2200
67 Change System Configuration 49 Allex. 2200
13 Read Counts of Inputs, Outputs, etc. 50 Al
69 Read Counts of Misc. I/0O 51 Allex. 2200
35 Read Controller Step Status 52 All
Binary Protocol Error Responses 54

Compatibility information:

Those commands marked "All ex. 2200" above are not available in Series
2200 Controllers at present. The command marked "iEA only” above is
only available in model 2400iEA and 2800iEA ("Expanded Architec-
ture”) Controllers.

CTC Serial Data Communications Page 25

Command 9: Read a Numeric Register

Send to Controller:

O1H Signifies CTC Binary Protocol

O5H Packet Length

?9H "Read Register" Function Code

LSB Number of register to be read, 399 1H to OFFFFH,
MSB specified with least significant byte first

checksum Complement of modulo-256 sum of previous 3 bytes
FFH Last byte of packet

Response from Controller:

O7H Packet Length

OAH _ “Register Contents" Function Code

LSB Four-byte representation of register data,

3SB expressed in 2's complement binary, with

2SB the least significant byte transmitted first

MSB :

checksum Complement of modulo-256 sum of previous 5 bytes
FFH Last byte of packet

Note convention for expressing register number:

PID1H through GFFFFH correspond to Registers #1 through
#65535, therefore, Register #10 is expressed as @P@AH, and so on.

Some of the registers in this range perform special functions, others
do not exist on certain models and revision levels; consult your pro-
gramming manual for specific information:regarding register func-
tions. :

Page 26 CTC Serial Data Communications

Send to Controller:
O1H
O5H
4DH

LSB
MSB

checksum
FFH

Signifies CTC Binary Protocol

Packet Length

“Register Group (16) Request” Function Code

First register to be read (JQQIH - @3D9H allowed)

Complement of modulo-256 sum of previous 3 bytes

Last byte of packet

Response from Controller:

45H
4EH

LSB
MSB

LSB
3SB
2SB
MSB

LSB
3SB
2SB
MSB

checksum

FFH

CTC Extended-Packet Serial Data Communications

Packet Length
“Register Group Values” Function Code
First register to follow (GOIIH - G3DH allowed)

Value of first register in group (e.g., reg#1)

Value of second register in group (e.g., reg#i)

(...etc. for 16 registers total...)

Complement of modulo-256 sum of previous 67 bytes

Last byte of packet

Page 26A

Send to Controller:
O1H

O4H

4BH

bank

checksum

FFH

CTC Binary Protocol

Request 50 Register Values

Signifies CTC Binary Protocol

Packet Length

“Register Group Request” Function Code

Bank of 50 registers to be read (JQH - 13H allowed)
Complement of modulo-256 sum of previous 2 bytes

Last byte of packet

Response from Controller:

CCH
4CH
bank

LSB
3SB
- 2SB
MSB

LSB
3SB
2SB
MSB

checksum

FFH

Packet Length

“Register Group Values” Function Code

Bank of 50 registers to follow (JJH - 13H allowed)
Value of first register in group (e.g., reg#1)

Value of second register in group (e.g., reg#2)

(...etc. for 50 registeré total...)
Complement of modulo-256 sum of previous 202 bytes

Last byte of packet

Important Note: Model 2800iEA controllers allow access to all general purpose registers
with this packet. For model 2800iE controllers, however, only banks 0 through 9 may be

requested — for access to non-volatile registers (banks 10 through 19) with these control-
lers, use command 77 (4DH).

CTC Extended-Packet Serial Data Communications Page 26B

Command 11: Change a Numeric Register

Send to Controller:

O1H
P9H
OBH

LSB
MSB

LSB

3SB

2SB

MSB
checksum

FFH

Signifies CTC Binary Protocol
Packet Length
"Change Register" Function Code

Number of register to be set, 39J1H to SFFFFH,
specified with least significant byte first

Four-byte representation of register data,
expressed in 2's complement binary, with
the least significant byte transmitted first

Complement of modulo-256 sum of previous 7 bytes

Last byte of packet

Response from Controller:

O3H
64H
9BH

FFH

Packet Length
"Acknowledge" code (decimal 100)
Checksum (i.e.; complement) of above byte

Last byte of packet

Note convention for expressing register number:

PO 1H through GFFFFH correspond to Registers #1 through
#65535, thercfore, Register #10 is expressed as 9@DAH, and so on.

Some of the registers in this range perform special functions, others
do not exist on certain models and revision levels; consult your pro-
gramming manual-for-specific information regarding register func-

tions.

CTC Serial Data Communications Page 27

Command 17: Read a Flag

Send to Controller:

O1H Signifies CTC Binary Protocol
?4H Packet Length
11H "Read Flag" Function Code

flag number Number of flag to be read, 99H to 1FH
checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

Response from Controller:

?4H Packet Length

12H "Flag Contents" Function Code

OOH Flag status, equal to @JH if flag is clear,

or least significant bit = 1 indicates flag is set,
non-zero other results indeterminant

checksum Complement of modulo-256 sum of previous 2 bytes
FFH Last byte of packet

Note convention for expressing flag number:

@YH through 1FH correspond to Flags #1 through #32, therefore,
Flag #1 is expressed as 99H, and so on.

Page 28 CTC Serial Data Communications

Command 19: Change a Flag

Send to Controller:

?O1H Signifies CTC Binary Protocol
O5H Packet Length
13H "Change Flag" Function Code

flag number Number of flag to be changed, @@H to 1FH

OOH Data for specified flag, must be 3JH to "CLEAR" flag,
or FFH to "SET" flag; other values are indeterminant
FFH

checksum Complement of modulo-256 sum of previous 3 bytes
FFH Last byte of packet

Response from Controller:

?3H Packet Length

64H "Acknowledge" code (decimal 100)
checksum Checksum (i.e.; complement) of above byte
FFH Last byte of packet

Note convention for expressing flag number:

@JH through 1FH correspond to Flags #1 through #32, therefore,
Flag #1 is expressed as 9@H, and so on.

CTC Serial Data Communications Page 29

Command 15: Read a Bank of 8 Inputs

Send to Controller:

O1H Signifies CTC Binary Protocol
?4H Packet Length
OFH "Read Inputs" Function Code

input bank Number of input bank, @9H to 7FH (see note)
checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

Response from Controller:

?4H Packet Length

19H "Input Data" Function Code

110)3 1 Data for eight inputs, with the lowest input number
to represented by the least significant bit. A "1" repre-
FFH sents an "on" (grounded) input

checksum Complement of modulo-256 sum of previous 2 bytes
FFH Last byte of packet

Note convention for expressing input bank number:
Input bank @JH is a representation of the first eight inputs in the

controller (designated inputs #1 through #8 in the DSP™ program).
Input bank @1H represents inputs #9 through #16.

Page 30 CTC Serial Data Communications

CTC Binary Protocol
Request 128 Input Values

Send to Controller:

J1H Signifies CTC Binary Protocol

Q4H Packet Length

4FH “Input (128) Request” Function Code

bank . Input bank to be read (OQH - O7H allowed)
checksum Complement of modulo-256 sum of previous 2 bytes
FFH Last byte of packet

Response from Controller:

14H Packet Length

50H “Input Values” Function Code

bank Input bank to follow (JJH - G7H)

inps1-8 Data for first 8 inputs in bank, with the lowest number input

represented by the least significant bit. A “1” represents an
“on” (grounded) input.

inps9-16

(...etc. for 128 inputs total...)
checksum Complement of modulo-256 sum of previoué 18 bytes
FFH Last byte of packet

Note: Non-existent inputs within bank will be reported as “off” (i.e., value = 0).

CTC Extended-Packet Serial Data Communications Page 30A

Command 21: Read a Bank of 8 Outputs

Sengl to Controller:

O1H Signifies CTC Binary Protocol

O4H Packet Length

15H "Read Outputs” Function Code

output bank Number of output bank to be read, @JH to 7FH (see
_ note) .

checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

Response from Controller:

?O4H Packet Length

16H "Output Status” Function Code

OOH An eight-bit representation of the output states of the

to selected bank, with the least significant bit indicating

FFH the status of the lowest-numbered output (“1" = ON),
etc.

checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

Note convention for expressing output bank number:
Output bank FFH is a representation of the first eight outputs in the

controller (designated outputs #1 through #8 by the DSP™ program).
Output bank @1H represents outputs #9 through #16, etc.

CTC Serial Data Communications Page 31

Send to Controller:
' O1H

J4H

51H

bank

checksum

FFH

CTC Binary Protocol

passessssssss

B D R R A e Ry L L e R o o Lo e R P o e, ORI N Sa0R

Requesf 128 Output Values

Signifies CTC Binary Protocol

Packet Length

“Output (128) Request” Function Code

Output bank to be read (JJH - O7H allowed)
Complement of modulo-256 sum of previous 2 bytes

Last byte of packet

Response from Controller:

14H
52H
bank
outs1-8

outs9-16

checksum

FFH

Packet Length
“Output-Values” Function Code
Output bank to follow (JDH - O7H)

Data for first 8 outputs in bank, with the lowest number output
represented by the least significant bit. A “1” represents an
“on” output.

(...etc. for 128 outputs total...)

Complement of modulo-256 sum of previous 18 bytes

Last byte of packet

Note: Non-existent outputs within bank will be reported as “off” (i.e., value = 0).

CTC Extended-Packet Serial Data Communications Page 31A

Command 25: Selectively Modify first 128 Outputs

Send to Controller:

O1H
23H
19H
off-mask-@

through
oﬂ'-r_nask- 15

on-mask-¢
through
on-mask-15

checksum

FFH

Signifies CTC Binary Protocol
Packet Length
"Modify Outputs” Function Code

A series of 16 eight-bit masks used to selectively tum
OFF any or all of the controller's outputs. The masks
are applied to successive banks of 8 outputs, with
the least significant bit of the mask being applied to
the lowest-numbered output in the bank. A mask
value of "@" will turn the-associated output OFF; a
mask value of "1" will leave that output unaffected by
this mask (it may still be affected by the "on-masks")

A series of 16 eight-bit masks used to selectively tum
ON any or all of the controller's outputs. The masks
are applied to successive banks of 8 outputs, with
the least significant bit of the mask being applied to
the lowest-numbered output in the bank. A mask
value of "1" will turm the associated output ON; a
mask value of "@" will leave that output unaffected
by this mask

Complement of modulo-256 sum of previous 33 bytes

Last byte of packet

Response from Controller:

?3H
64H
9BH

FFH

Note:

Packet Length
"Acknowledge" code (decimal 100)
Checksum (i.e.; complement) of above byte

Last byté of packet

Separate off-masks and on-masks are used in the above instruction
to allow selected outputs to be affected, while leaving other outputs
undisturbed (i.e.; in their previous state).

- As an example of their use, an “off-mask-@" of @6H (3303 J110
binary) would turn OFF outputs #1, and #4 through #8. Outputs #2
and #3 would remain in their previous state.

A subsequent “on-mask-@" of COH (1199 @BDD binary) would tum
ON outputs #7 and #8.

Page 32

CTC Serial Data Communications

Command 40: Selectively Modify a Group of 128 Outputs

SUPPORTED BY -iEA VERSIONS ONLY!!

Send to Controller:

O1H
24H
28H

bank

off-mask-@
through
off-mask-15

on-mask-Q
through
on-mask-15

checksum

FFH

Signifies CTC Binary Protocol
Packet Length
"Modify Outputs" Function Code

Bank of 128 outputs to be modified (d9H to @7H),
where @OH represents outputs 1 to 128, 91H
represents outputs 129 to 256, etc.

A series of 16 eight-bit masks used to selectively tum
OFF ‘any or all of the bank's outputs. The masks

are applied to successive groups of 8 outputs, with
the least significant bit of the mask being applied to
the lowest-numbered output in the group. A mask
value of "@" will turn the associated output OFF; a
mask value of "1" will leave that output unaffected by
this mask (it may still be affected by the "on-masks")

A series of 16 eight-bit masks used to selectively tum
ON any or all of the group's outputs. The masks

are applied to successive groups of 8 outputs, with
the least significant bit of the mask being applied to
the lowest-numbered output in the group. A mask
value of "1" will turmm the associated output ON: a
mask value of "@" will leave that output unalflected
by this mask

Complement of modulo-256 sum of previous 34 bytes

Last byte of packet

Response from Controller:

?3H
64H
9BH
FFH

Note:

Packet Length

"Acknowledge" code (decimal 100)
Checksum (i.e.; complement) of above byte
Last byte of packet

Separate off-masks and on-masks are used in the above instruction
to allow selected outputs to be affected, while leaving other outputs
undisturbed (i.e.; in their previous state).

As an example of their use, an "off-mask-@" of @6H (G333 D110
binary) would turn OFF outputs #1, and #4 through #8. Outputs #2
and #3 would remain in their previous state. A subsequent "on-
mask-@" of COH (1180 @DDD binary) would turn ON outputs #7

and #8.

CTC Serial Data Communications

Page 33

Command 29: Read an Analog Input

Send to Controller:

?91H
@4H
1DH

analog input

checksum

FFH

Signifies CTC Binary Protocol
Packet Length
"Read Analog Input" Function Code

Number of analog input to be read, @@H to 3FH (see
note)

Complement of modulo-256 sum of previous 2 bytes

Last byte of packet

Response from Controller:

O5H
1EH

LSB
MSB

checksum

FFH

Packet Length

“Analog Input Value" Function Code

Two-byte representation of analog value, expressed
as a number in the range O - 10,000 decimal
(BDBDH - 271@H), with the least significant byte
transmitted first

Complement of modulo-256 sum of previous 3 bytes

Last byte of packet

Note convention for expressing analog input number:

@@H through 3FH correspond to Analog Inputs #1 through #64,
therefore, Analog Input #1 is expressed as @@H, and so on.

Page 34

CTC Serial Data Communications

Command 31: Read an Analog Output

Send to Controller:

?1H Signifies CTC Binary Protocol

O4H Packet Length

1FH "Read Analog Output"” Function Code

analog output Number of analog output to be read, @JH to 3FH
(see note)

checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

Response from Controller:

O5H Packet Length

20H "Analog Output Value" Function Code

LSB Two-byte representation of analog value, expressed
MSB as a number in the range 0 - 10,000 decimal

(PPDBH - 2710H), with the least significant byte
transmitted first ’

checksum Complement of modulo-256 sum of previous 3 bytes

FFH Last byte of packet

Note convention for expressing analog output number:

@@H through 3FH correspond to Analog Outputs #1 through #64,
therefore, Analog Output #1 is expressed as 9PH, and so on.

IMPORTANT: This command is not currently supported by the
model 2200.

CTC Serial Data Communications Page 35

Command 33: Change an Analog Output

Send to Controller:

?1H Signifies CTC Binary Protocol

O6H Packet Length

21H “Change Analog Output” Function Code

analog output Number of analog output to be changed, 9JH to 3FH
(see note)

LSB Two-byte representation of analog value, expressed

MSB as a number in the range O - 10,000 decimal

(29DDH - 2710H), with the least significant byte
transmitted first

checksum Complement of modulo-256 sum of previous 4 bytes

FFH Last byte of packet

Response from Controller:

?3H Packet Length

64H "Acknowledge" code (decimal 100)

9BH Checksum (i.e.; complement) of above byte
FFH Last byte of packet

Note convention for expressing analog output number:

@@H through 3FH correspond to Analog Outputs #1 through #64,
therefore, Analog Output #1 is expressed as @9H, and so on.

Page 36 CTC Serial Data Communications

Ccommand 23: Read a Servo Position

Send to Controller:

O1H
O4H
17H

servo number

checksum

FFH

Signifies CTC Binary Protocol
Packet Length

“"Read Servo Position" Function Code

Number of servo axis to be read, @JH to OFH (see

note)

Complement of modulo-256 sum of previous 2 bytes

Last byte of packet

Response from Controller:

O7H

18H

LSB

3SB

2SB

MSB
checksum

FFH

Packet Length

"Servo Position" Function Code

Four-byte representation of servo position,

expressed in 2's complement binary, with
the least significant byte transmitted first

Complement of modulo-256 sum of previous 5 bytes

Last byte of packet

Note convention for expressing servo axis number:

@@H through @FH correspond to Servos #1 through #16, therefore,
Servo #1 is expressed as ¥OH, and so on.

IMPORTANT: This command is not éurrently supported by the

model 2200.

CTC Serial Data Communications

Page 37

Command 47: Read Servo Error

Send to Controller:

@1H Signifies CTC Binary Protocol
O4H Packet Length
2FH "Read Servo Error" Function Code
servo number Number of servo axis to be read, @9@H to OFH (see
note)
checksum Complement of modulo-256 sum of previous 2 bytes
FFH Last byte of packet

Response from Controller:

O7H Packet Length

39PH "Servo Error" Function Code

LSB Four-byte representation of servo error,

3SB expressed in 2's complement binary, with

2SB the least significant byte transmitted first

MSB

checksum Complement of modulo-256 sum of previous 5 bytes
FFH Last byte of packet

Note convention for expressing servo axis number:

@@H through @FH correspond to Servos #1 through #16, therefore,
Servo #1 is expressed as ¥@H, and so on.

IMPORTANT: This command is not currently supported by the
model 2200.

Page 38 CTC Serial Data Communications

Command 27: Read a Servo's Auxiliary Inputs

Send to Controller;

?1H Signifies CTC Binary Protocol
?4H Packet Length
1BH ' "Read Servo Inputs" Function Code
servo number Number of servo axis to be read, 99H to OFH (see
: note)
checksum Complement of modulo-256 sum of previous 2 bytes
FFH Last byte of packet

Response from Controller:

04H Packet Length
1CH "Servo Input Status” Function Code
status A one-byte representation of the control inputs for

the referenced servo axis; the bit representations are
shown below

checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

Note convention for expressing servo axis number:

@JH through OFH correspond to Servos #1 through #16, therefore,
Servo #1 is expressed as 9PH, and so on.

The servo input "status" byte representé the following information
(bit @ is Isb):

bit @: indeterminate

bit 1: "HOME" input

bit 2: "START" input

bit 3: "LOCAL/REMOTE" input
bit 4: "REVERSE LIMIT" input
bit 5: "FORWARD LIMIT" input
bit 6: indeterminate

bit 7: indcterminate

The associated bit is a "@" if an input is active (grounded).

IMPORTANT: This command is not currently supported by the
model 2200.

CTC Serial Data Communications Paae 39

Command 49: Read Data Table Dimensions

Send to Controller:

O1H
?3H
31H
CEH

FFH

Signifies CTC Binary Protocol

Packet Length

"Read Data Table Dimensions" Function Code
Checksum of above byte

Last byte of packet

Response from Controller:

O6H
32H

LSB
MSB

cols

checksum

FFH

Page 40

Packet Length
"Data Table Dimensions" Function Code

Number of Data Table rows in current program

Number of Data Table columns (JJH - 20H)
Complement of modulo-256 sum of previous 4 bytes

Last byte of packet

CTC Serial Data Communications

Command 51: Change Data Table Dimensions

Send to Controller:

¢1H Signifies CTC Binary Protocol

P6H Packet Length

33H "Change Data Table Dimensions” Function Code
LSB Desired number of Data Table rows

MSB

columns Desired number of Data Table columns

checksum Complement of modulo-256 sum of previous 4 bytes
FFH Last byte of paéket

Response from Controller:

?3H Packet Length

64H “Acknowledge” code (decimal 100)

9BH Checksum (i.e.; complement) of above byte
FFH Last byte of packet

Note: an error code will be returned by the controller in the following
circumstances:

1. If the requested Data Table size is too large for the controller.

2. If the requested Data Table size will not fit in memory, in combina-
tion with the existing DSP™ program.

3. If a Data Table column count greater than 32 is requested.

IMPORTANT: This command is not currently supported by the
model 2200.

CTC Serial Data Communications Page 41

Command 53: Read a Data Table Location

Send to Controller:

O1H Signifies CTC Binary Protocol

P6H Packet Length

35H "Read a Data Table Location” Function Code

LSB Data Table element desired — row number

MSB

columns Data Table element desired — column number
checksum Complement of modulo-256 sum of previous 4 bytes

FFH Last byte of packet

Response from Controller:

O5H Packet Length

36H "Data Table Data" Function Code

LSB Data from specified location, expressed as a positive
MSB integer, in the range O to 65,535 (decimal)
checksum Complement of modulo-256 sum of previous 3 bytes
FFH Last byte of packet

Note: an error code will be returned by the controller if a non-exis-
tent Data Table location is specified.

Page 42 CTC Serial Data Communications

Command 55: Change a Data Table Location

Send to Controller:

91H Signifies CTC Binary Protocol

?O8H Packet Length

37H “Change Data Table Location" Function Code

LSB Target Data Table location — row number

MSB

column Target Data Table location — column number

LSB New value for specified Data Table location,

MSB expressed as a positive integer, range 0 to 65,535.
checksum Complement of modulo-256 sum of previous 6 bytes
FFH Last byte of packet

Response from Controller:

?3H Packet Length

64H "Acknowledge" code (decimal 100)

9BH Checksum (i.e.; complement) of above byte
FFH Last byte of packet

Note: an error code will be returned by the controller if the specified
Data Table location does not exist.

CTC Serial Data Communications Page 43

Commmand 57: Read a Data Table Row

Send to Controller:

O1H Signifies CTC Binary Protocol

O7H Packet Length

39H "Read a Data Table Row" Function Code

LSB Data Table row desired

MSB

first col Data Table column at which to start reading
quantity Number of columns to read ('n’); <= 27 columns
checksum Complement of modulo-256 sum of previous 5 bytes
FFH Last byte of packet

Response from Controller:

length Packet Length = (n*2) + 4, where n = number of col-
umns read

3AH * "Data Table Row Data" Function Code

quant Number of columns read ('n'); <= 27 columns

For each of 'n’ locations:

LSB Data from specified location, expressed as a positive
MSB integer, in the range 0 to 65,535 (decimal)
End of location data.
checksum Complement of modulo-256 sum of previous (n*2)+1
bytes
FFH Last byte of packet

Note: an error code will be returned by the controller if a non-exis-
" tent Data Table row is specified. '

If the quantity of Data Table columns specified extends beyond the

actual number of columns, the response will contain only existent
data (i.e.; the response will be shorter than expected).

Page 44 CTC Serial Data Communications

Command 59: Change a Data Table Row

Send to Controller:

O1H

length

3AH

LSB
MSB

first col

quantity

LSB
MSB

checksum

FFH

Signifies CTC Binary Protocol

Packet Length = (n*2)+7, where n = number of col-
umns to be changed

"Change a Data Table Row" Function Code

Data Table row to be changed

Data Table column at which to start changing
Number of columns to change ('n’); <= 27 columns
For each of 'n’ locations:

Data for specified location, expressed as a positive
integer, in the range O to 65, 535 (decimal)

End of location data.

Complement of modulo-256 sum of previous (n*2)+5
bytes

Last byte of packet

Response from Controller:

P3H
64H
9BH

FFH

Packet Length
"Acknowledge" code (decimal 100)
Checksum (i.e.; complement) of above byte

Last byte of packet

Note: an error code will be returned by the controller if a non-exis-
tent Data Table row is specified or if the quantity of Data Table col-
umns specified extends beyond the actual number of columns.

CTC Serial Data Communications Page 45

Command 61: Read Controller Status Byte

Send to Controller:

P1H Signifies CTC Binary Protocol
?3H Packet Length

3DH “Read Status Byte" Function Code
C2H Checksum of above byte

FFH Last byte of packet

Response from Controller:

04H Packet Length
3EH “Status Byte" Function Code
status Status byte, where:

bit @ = '@ if running, '1" if stopped

bit 1 = '@ if normal mode, '1" if programming mode
bit 2 = '@ if status 0.K., '1" if Software Fault

bit 3 = '@' if mid-program, ‘1" if fresh reset

Note: bit @ is least significant bit, bits 4 through 7
are undefined at present.

checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

IMPORTANT: This command is not currently supported by the
model 2200.

Page 46 CTC Serial Data Communications

Command 63: Change Controller Status

Send to Controller:

?O1H
P4H
3FH

status

checksum

FFH

Signifies CTC Binary Protocol

Packet Length

“Change Controller Status” Function Code

New controller status, where:

bit @ = '@' to start controller, '1' to stop controller
bit 3 = '1' to reset controller, otherwise '@’

Note: bit @ is least significant bit, and will always

either start or stop the controller. All unspecified
bits should be set to ‘D"

Complement of modulo-256 sum of previous 2 bytes

Last byte of packet

Response from Controller:

O3H
64H
9BH

FFH

Packet Length
"Acknowledge" code (decimal 100)
Checksum (i.e.; complement) of above byte

Last byte of packet

IMPORTANT: This command is not currently supported by the

model 2200.

CTC Serial Data Communications Page 47

Command 65: Read System Configuration

Send to Controller:

?1H Signifies CTC Binary Protocol

O3H Packet Length

41H "Read System Configuration” Function Code
BEH Checksum of above byte

FFH Last byte of packet

Response from Controller:

?4H Packet Length
42H "System Configuration” Function Code
config System Configuration byte, where:

bit @ = '1' if using input #1 for START function

bit 1 = '1"if using input #2 for STOP function

bit 2 = '1' if using input #3 for RESET function

bit 3 = '1' if using input #4 for STEP function

Note: bit @ is least significant bit, bits 4 through 7
are undefined at present.

checksum Complement of modulo-256 sum of previous 2 bytes

FFH Last byte of packet

IMPORTANT: This command is not currently supported by the
model 2200.

Page 48 CTC Serial Data Communications

Command 67: Change System Configuration

Send to Controller:

?1H
O4H
43H

config

checksum

FFH

Signifies CTC Binary Protocol
Packet Length
"Change System Configuration" Function Code

New system configuration, where:

bit @ = '1" if using input #1 for START function

bit 1 = '1" if using input #2 for STOP function

bit 2 = '1" if using input #3 for RESET function

bit 3 = '1" if using input #4 for STEP function

Note: bit @ is least significant bit, bits 4 through 7
are undefined at present.

Complement of modulo-256 sum of previous 2 bytes

Last byte of packet

Response from Controller:

?P3H
64H
9BH

FFH

Packet Length
"Acknowledge" code (decimal 100)
Checksum (i.e.; complement) of above byte

Last byte of packet

IMPORTANT: This command is not currently supported by the

model 2200.

CTC Serial Data Communications Page 49

Command 13:

Read Counts of Inputs, Outputs, etc.

Send to Controller:

?1H
?3H
ODH
F2H

FFH

Signifies CTC Binary Protocol
Packet Length

"I/O Count Request" Function Code
Checksum of above byte

Last byte of packet

Response from Controller:

OCH
OEH

flags

inputs LSB
inputs MSB
outputs LSB
outputs MSB
stepping mtrs

servos
analog inputs
analog outs

checksum

FFH

Page 50

Packet Length
"I/O Count" Function Code

Number of flags in controller (typically 2@H)

Number of inputs in controller (LSB: J@H to F8H,
MSB: ¢@@H to ¥4H)

Number of outputs in controller (LSB: @H to F8H,
MSB: @@H to ¥4H)

Number of stepping motor axes in controller (3@H to
10H)

Number of servo axes in controller (J@H to 10H)
Number of analog inputs in controller (3@H to FFH)
Number of analog outputs in controller (3@H to FFH)

Complement of modulo-256 sum of previous 10 bytes

Last byte of packet

CTC Serial Data Communications

Command 69: Read Counts of Misc. I/O

Send to Controller:

?1H Signifies CTC Binary Protocol

?@3H Packet Length

45H "Misc. I/O Count Request" Function Code
BAH Checksum of above byte

FFH Last byte of packet

Response from Controller:

O7H Packet Length

46H “I/0 Count" Function Code

protos Number of prototyping boards in controller

h.s.counters Number of high-speed counting channels in control-
ler

twhls Number of thumbwheel arrays (4-digit) connected to
controller

disps Number of numeric displays (4-digit) connected to
controller

checksum Complement of modulo-256 sum of previous 5 bytes

FFH Last byte of packet

IMPORTANT: This command is not currently supported by the
model 2200.

CTC Serial Data Communications Page 51

Command 35: Read Controller Step Status

Send to Controller:

O1H Signifies CTC Binary Protocol
P4H Packet Length
23H "Status Request" Function Code

task range Bank of 8 tasks to be read, 99H to @3H, where:
@@H = Tasks 1 through 8
@1H = Tasks 9 through 16
@2H = Tasks 17 through 24
@3H = Tasks 25 through 32

checksum Complement of modulo-256 sum of previous 2 bytes
FFH Last byte of packet

Response from Controller:

39H Packet Length

24H - 27H "Controller Status" Function Code, for task banks @
to 3, respectively

stopped True ("@FFH") if controller is stopped, otherwise false
("@DH")

fault type Type code for Software Fault, if any are present
(otherwise @@H) - see chart below for fault codes

LSB Step number of Software Fault, if any, where

MSB DOBOH = step #1, SOD1H = step #2, etc.
(unspecified if no Software Fault is present)

LSB Data relating to Software Fault, if any (otherwise

3SB unspecified)

2SB

MSB

48 Bytes follow, providing the following data for each of the
eight tasks being reported:

LSB Step number currently being executed by this task,
MSB where GOPOH = step #1, QDD 1H = step #2, etc.
LSB 32-bit mask, indicating with a '1' or a '@’ for each of
3SB the 32 possible tasks whether this task is waiting for
2SB the completion of each task or not. Lowest-order bit
MSB of LSB represents task #1, etc.

(end of task data)
checksum Complement of modulo-256 sum of previous 55 bytes

FFH Last byte of packet

Page 52 CTC Serial Data Communications

Command 35, continued...

Usage Notes:

This is the command which Quickstep uses to gather step information
for reporting "Program Status”. When executed four times, once for each
group of eight possible tasks, all of the information necessary to
reconstruct the hierarchy and status of the controller's tasks is pro-
vided. In addition, if a software fault has halted execution of your
program, the controller's response will indicate the nature of the fault,
as well as the step where the fault occured and any relevant parametric
data.

As each new task is started by your DSP™ program, the task is assigned
a task number from 1 to 32. The main program (i.e.; the program being
executed prior to the commencement of multi-tasking) is always
assigned to task number 1.

Each of the 32 tasks, whether they are currently being used or not, will
report back a step number, along with a 32-bit "mask” word. If the task
is being used by your program, the mask will show whether the task is
currently suspended, waiting for one or more subsidiary tasks to be
"done”. This is shown by a '1" bit in the bit position of the mask word
corresponding to the task for which the current task is waiting. For
instance, if the main program (task #1) called up three subsidiary tasks
(tasks #2, #3 and #4), the mask word for task #1 would be as follows:

DODODOOD PODODDDD OIOBOOPD POPB 111D
MSB LSB

The mask word for tasks 2 through 4 would all be @@PBIDDIBH,
indicating that these tasks have no subsidiary tasks being executed.

To extract the hierarchy of tasks being executed, therefore, start with
task #1 and read its mask word to determine its subsidiary tasks, ifany.
Then, read the mask word of each subsidiary task; these will indicate if
any tasks are being executed at the next level down in the hierarchy, and
so on. As you follow the hierarchy of tasks under execution, you may
determine the current step being executed by each via the step number
data provided (remembering that the step numbers are oflset by -1).

Do not assume that the task numbers will be allocated in the order of
task hierarchy; the starting and stopping of various tasks.in a complex
program may result in a scattering of active tasks throughout the 32
possible task numbers — the only way to determine the active tasks is
to follow the task hierarchy as outlined above!

List of Software Fault Codes:

1 - Illegal Function 14 No Such Data Table Column
2 Bad/Corrupt Program Data 15 No Such Data Table Row

3 Destination step is Empty 16 No Such Prototyping Board
4 Bad Thumbwheel Data 17 Illegal Sample Time

5 Step #1 is Empty Step 18 No Such Analog Input

6 Too Many Tasks 19 No Such Analog Output

7 No Such Stepping Motor 20 No Such Display Exists

8 Motor Not Ready 21 No Such Input Exists

9 Motor Unprofiled 22 No Such Output Exists

10 No Such Servo Exists 23 No Such Thumbwheel Exists
11 Servo Not Ready 24 Illegal Data Table Value

12 Servo Error 25 Message Transmitling Busy
13 No Such Register Exists 26 Divide-by-zero Error

27 Data Out Of Range

CTC Serial Data Communications Page 53

Binary Protocol Error Responses

In the event that the data transmission from the host computer can-
not be executed by the controller, the controller will respond with an
error code indicating the nature of the fault. The error code will be
transmitted in the following format:

?O3H Packet Length

error code Error code (see below)

checksum Checksum (i.e.; complement) of above byte
FFH Last byte of packet

Possible error codes:

64H No error (acknowledgement of transmission)

65H Checksum error, or end of packet <> FFH

66H [llegal register number specified

68H Value out of range (e.g.: input number not present in
controller)

Page 54 CTC Serial Data Communications

Network Communications and the CTC Protocols

When setting up a Local Area Network, one of two possible categories of
interchange may exist within the network: “peer-to-peer" or "host/
slave". At this time, all networking approaches supported by CTC are
of the host/slave type; this configuration more closely reflects the
hierarchy of a typical factory information management scheme. This
section will describe both categories, however, for informmational pur-
poses.

Peer-to-Peer Networks

As you may guess, the peer-to-peer network treats each system con-
nected to the network as an equal. This is typically accomplished in the
format of a multi-drop network, where each system is connected to a
single transmission line which constitutes the network. Networks of
this type work in one of two ways:

In a "collision-detection” network, any system on the network is allowed
to asynchronously transmit a message. If two systems happen to
simultaneously transmit, causing the message to be garbled, this is
detected and a retransmission is initiated some random amount of time
later.

On the other hand, a "token-passing" network allows each member of
the network an opportunity to transmit a message. This is accomp-
lished by passing a "token" (the token is actually a message which
constitutes permission to transmit) from one system to the next in some
predefined order.

The trade-off between these two implementations is largely a matter of
transmission time. The collision-detect network will typically have the
fastest average transmission time, because any system on the network
may instantaneously transmit a message (assuming the network is not
currently busy; an important assumption!). However, the worst-case
transmission time may be very long in a collision-detect network, due
to the fact that some random chance exists that repeated transmission
trys will be unsuccessful.

In a token-passing network, the maximum transmission time may be
controlled and determined by establishing the number of systems in the
network and the allowable packet length for each transmission. A
certainty then exists that, within a given maximum period of time, the
transmission will be allowed. The average time involved will be longer,
because the network is additionally occupied by the token-passing
activity, and each system must wait its turmn to effect a transmission.

Host/Slave Networks

Host/slave networks, which may be implemented with either a multi-
drop or a ring-network topology, involve the use of a "host", or master,
computer, which controls all transactions on the network. The CTC
Protocols described in this manual are all host/slave networks, with a
computer acting as a host, issuing commands on the network which are
responded to by the individual controllers.

CTC Series 2400/2800 controllers support host/slave networks in a
ring configuration and,. in the near future, a multi-drop configuration.
The protocol implications of these networks are explored further below.

CTC Serial Data Communications Page 55

The Ring Network (host/slave)

As shown in section 2 ("A Practical Communications Hierarchy"), data
in a ring network is retransmitted from system to system until it reaches
the intended “target” recipient. Therefore, there must be some means
. of determining for which system the data is intended.

In the CTC Series 2400/2800 Controllers, this is accomplished through
an addition to the CTC ASCII Protocols. When a command is transmit-
ted from the host system (i.e.; personal computer, etc.), it is prefaced
with the letter "N" (standing for a "Network" transaction), followed by a
number indicating the controller for which the command is destined.
For example, in a non-network connection, the following command
would result in the number “1200" being stored in the controller's
Register #10:

R10 = 1200 <cr>

If, however, the command is to be transmitted to a ring network,
destined for the fourth controller around the ring, the following com-
mand would be transmitted instead:

N4R10 = 1200 <cr>

Note the prefix "N" in the above command, followed by the desired
controller number. The response which will be transmitted back to the
computer is identical to that specified for the CTC ASCII Protocols,
except that the response will be prefaced with "N@" (zero, not the letter
0). Because the above command would normally generate a carriage
return as the only response (in the Computer Protocol), the following
response would be received from the ring network by the computer:

N@ <cr>
How the Ring Network Works

When the first controller in the ring network receives the command
"N4R10 = 1200 <cr>", the "N" prefix indicates to the controller that the
command is a network transaction, and the "4" indicatcs that the
command is dcstined for a later controller. The first controller will
subtractone fromthe controller number, and retransmit the command as:

N3R10 = 1200 <cr>

- The second controller, upon receiving this command, will once again
retransmit the command as "N2R10 = 1200 <cr>", and so on. When the
fourth controller finally receives the command as "N1R10 = 1200 <cr>",
the "N1" indicates that the command is intended for that controller; it
processes the command, and sends its acknowledgement ("N@ <cr>") on
around the ring, back to the computer. Each remaining controller, as
it receives the response prefaced with "N@", simply retransmits the
response intact.

Note that the ring network configuration is sensitive to the order of
connection of the various controllers. If this order is changed, the com-
mands to be transmitted to affect specific controllers must be changed
as well.

Page 56 CTC Serial Data Communications

Communications Examples

Note: The program examples shown herein are for illustrative purposes
only. In actual application, additional data checking and qualification
may be indicated. Further, although these examples are given in BASIC,
many versions of BASIC exist, with substantive differences in syntax
and protocol.

CTC Serial Data Communications Page 57

Communications Example #1:

Computer Determines "Motor Position",
Send Coordinates to Controller

T --

In applications where extremely complex tasks are being performed (i.e.;
vision processing, sophisticated process control functions, etc.), a
computer may be needed as an active participant in the control task.

For example, if a vision system, connected to the computer, is able to
determine the position and orientation of a workpiece, the computer
may then be required to send that data to the controller. The control-
ler is then able to position an actuator to grasp the part.

This can be accomplished with the CTC ASCII Computer Protocol by
programming the compu-ter to force the position data into the control-
ler's Numeric Registers. The motor commands to be executed by the
controller will then derive their position data from these registers.

A Flag within the controller may be used for "hand-shaking”, to tell the
controller that a new set of position coordinates have been loaded, and
to tell the computer when those coordinates have been used by the
controller.

Considerations for Programming the Controller

The impact on the controller's DSP™ program will be minimal. First, the
"hand-shaking" flag being used (Flag #1) must be initially CLEARed,
preferably in Step #1 of the program. When the computer sees that this
flag is clear, it will load coordinate information into Numeric Registers
#10 and #11, and then SET the same flag, indicating that data is ready
for use by the controller.

Just prior to the step of the DSP program where the controller will make
use of the data, the instruction "MONITOR FLAG 1 SET GO NEXT"
should be programmed-to-insure that new data has been loaded by the
computer.

Then, the following instructions may be programmed at the next step:
turn motor#1 to reg#l10
turn motor#2 to reg#ll
clear flag#1
monitor (and motor#l:stopped motor#2:stopped) goto next

These instructions make use of the computer-loaded data as motor
coordinates, clear the hand-shaking flag to signal the computer that the
data has been used, and wait for the motor motions to finish before
proceeding with the program. ,

Note that, if desired, math instructions could be inserted before the
TURN MOTOR instructions to scale the position data prior to use. This
would allow the transmitted data to be in the form of meaningful (i.e.;
engineering units) information.

Page 58 CTC Serial Data Communications

1@ OPEN "COM1:9600,N,8,1,CS,DS"AS #1 :REM - initializes com. port on computer

20 PRINT #1,"PC"
30 LINE INPUT #1,R$

49 IF R$ <> "PCO" GOTO 200

50 X = 15000

60 Y =2150

7@ PRINT #1,"F1°

80 LINE INPUT #1,R$

990 IF R$ <> "@" GOTO 70

100 PRINT #1,"R10="X

119 LINE INPUT #1,R$

120 IF R$ <> " GOTO 209
130 PRINT #1,"R11="Y

140 LINE INPUT #1,R$

150 IF R$ <> " GOTO 200

160 PRINT #1,"F1=1"

170 LINE INPUT #1,R$

180 IF R$ < ™ GOTO 200

199 GOTO 59

:REM - sets 2800 to "Computer Protocol®
:REM - get controller's response

:REM - if comm. not successful, jump out
:REM - motor #1 position

:REM - motor #2 position

:REM - request status of flag #1 from 2800
‘REM - reads controller's response

:REM - if 2800 not ready, try again

‘REM - transmit motor #1 pos. to REG-10
:REM - accept controller's response
:REM - if an error message, jump out
:REM - transmit motor #2 pos. to REG-11
:REM - accept controller's response
:REM - if an error message, jump out
:REM - signal 2800 that data is ready
:REM - accept controller's response
:REM - if an error message, jump out
‘REM - do again

200 PRINT “Communications Error:GOTO 20@ :REM - error trap

CTC Serial Data Communications

Page 59

Communications Example #2:

Computer Stores Parameters for Many Products,
Downloads Appropriate Data Prior to Producing Batch

53
3

An increasingly-used technique for creating “flexible” machines is to
store relevant production data (dimensions, time durations, etc.) for a
number of products to be produced in a central computer system. .Here
the data may be modified, reviewed, etc., and the machine time may be
scheduled by Production Control and coordinated with sales-driven
requirements.

Then, when production is required for a given product, the data for that
product is downloaded to the machine's controller (perhaps along with
the desired production quantity).

Although the controller's Numeric Registers may certainly be used for
this purpose, often the amount of data involved (along with a require-
ment for organizing the data in columns and rows) points to the use of
the controller's Data Table. In addition to modification from your DSP™
program or by using Quickstep™, this Data Table may be accessed
directly through the CTC ASCII Computer Protacol.

Along with this Data Table information, a desired production quantity
may also be transferred into one of the controller's registers and, if the
machine is to be completely automatic and unmanned (and suitable
safety precautions have been taken), a flag may even be used to start the
machine automatically. This flag may later be used by the controller to
signal the completion of the batch.

Considerations for Programming the Controller

* The program within the controller is written normally, with any variable
production data (motor coordinates which establish dimensions, criti-
cal time delays, etc.) drawn from the controller's Data Table (see
instructions for related programming information). In this instance,
however, the Data Table will be down-loaded from a computer in each
instance.

If the batch quantity is also to be down-loaded into one of the control-
ler's registers, this register may then be decremented after each
machine cycle with the instruction "store reg#10 — 1 to reg#10", and
tested for completion with the instruction "if reg#10 <= 0, goto [1]'.
(This assumes that step #1 is an initialization step which will result in
stopping the machine.)

If a Flag is to be used to automatically start the machine, this Flag may
be tested with the instruction "monitor flag#1:set, goto next’, prior to
the beginning of the machine's cycle. After the production batch is
complete, the program should clear the flag ("clear flag#1").

Page 60 CTC Serial Data Communications

1@ DIM N(6,4) :REM - establish array of parameters
20 DATA 1002,1500, 382, 12 :
30 DATA 1850, 300,1200,1550

40 DATA 128, 550,210, 950

50 DATA 999,1250,1000@, 48

60 DATA 1990,1009,1500, 990

70 DATA 1100, 400,8250, 50

80 FORR=1TO6 :REM - read data into array

99 FORC=1TO 4

10@ READ N(R,C)

110 NEXTC

120 NEXTR -

130 Q=1500 ‘REM - this represents desired quantity
140 OPEN "COM1:9600,N,8,1,CS,DS" AS #1 :REM - initializes com. port on computer
15@ PRINT #1,"PC" :REM - sets 2800 to "Computer Protocol
169 LINE INPUT #1,R$:REM - gets controller's response

170 IF R$ <> "PC@" GOTO 350 :REM - if com. not successful, jump out
180 FORR=1TO6 ‘REM - row by row. . .

199 FORC=1TO 4 ‘REM - column by column. ..

200 PRINT #1,"D";R;",",.C;"=",N(R,C) :REM - send data to 2800's Data Table
210 LINE INPUT #1,R$:REM - accept controller's response

220 IF R$ <> ™ GOTO 350 :REM - check for error

230 NEXTC

240 NEXTR

250 Q=STR$(Q) :REM - convert quantity to char. string

260 IF MID$(Q$,1,1)=""THEN Q$=MID$(Q$,2,10)
270 REM - this BASIC adds a leading space during ‘STR$' if number is positive

280 PRINT #1,"R190=",Q% :REM - send desired production quantity
290 LINE INPUT #1,R$:REM - accept controller's response
300 IFR$ <> " GOTO 350 :REM - check for error

310 PRINT #1,"F1=1" :REM - set flag in controller

320 LINE INPUT #1,R$ ‘REM - accept controller's response
330 IFR$ <> " GOTO 350 :REM - check for error

340 END

350 PRINT R$,"- Communications Error":GOTO 35@

CTC Serial Data Communications Page 61

Communications Example #3:

Computer "Monitors" Production Data
(Batch Counts, AQL info, etc.)

B
T --

It is unfortunate that Production Control and Quality Assurance
functions must often be performed on an "historical” basis, reacting to
problems long after they have surfaced. The effective use of the CTC
Protocols for data communications can provide current information to
these functions, especially if their use is well integrated into the initial
design of an automated machine.

The most basic of information which may be transferred is a cumulative
production count (for the week, day, shift, etc.) which, if maintained in
a non-volatile register within the controller (refer to programming
information for the controller being used), will not be lost if power is
removed from the machine.

If the machine has defect detection (and perhaps automatic bad-part
rejection), separate “"good-part / bad-part” counts may be kept by the
controller, and an attached computer may then be used to track long-
term trends in defect ratios.

Better still, if the machine has the ability to make qualitative measure-
ments, either of the workpiece in process or of the machine's own
performance (actuator reaction times, cycle times, critical tempera-
tures, etc.), trends may be spotted by computer analysis of the resultant
data, often long before defects start occuring.

The result can be greater uptime, better use of scheduled maintenance
efforts and, in many instances, higher average product quality and
improved rejectlon rates.

Considerations for Programming the Controller

Typically, production counts are kept in one of the controller's Numeric:
Registers. At the end of each machine cycle, an instruction such as
“store reg#10 + 1 to reg#10" is used to increment the register.
Additional registers may be used in a like fashion to maintain counts of
bad workpieces detected by the machine.

For most applications, the coordination of the reading of production
data by the computer is not a major issue. This is particularly true if the
computer is passively reading a cumulative count.

In instances where qualitative data is being periodically read, it may be
desirable to have the computer reset the controller's accumulated
counts to zero after having read the data. If the information is critical
in nature, it is necessary to insure that the controller will not try to
change any of the counts between the time the computer reads the data
intheregisters and the time the computer resets the registers (otherwise
the count(s) added by the controller will be lost).

Page 62 CTC Serial Data Communications

AFlag may be used for this purpose, by having the computer set the Flag
prior to reading information, and then clear the Flag only after the regis-
ters have been reset to zero. The controller's program should be written
to check this Flag prior to modifying the registers, proceeding only if the
Flag is clear ("monitor flag#1:clear, goto next").

10 OPEN "COM1:9609,N,8,1,CS,DS"AS #1 :REM - initializes com. port on computer

2@ PRINT #1,"PC" :REM - sets 2800 to "Computer Protocol”
3@ LINE INPUT #1,R$:REM - gets controller's response

40 IF R$ <> "PCO" GOTO 210 :REM - if com. not successful, jump out

50 CLS ‘REM - clear the CRT screen

6@ LOCATE 10,5 :REM - position the cursor for 1st message
79 PRINT “The current count of ‘good parts is”

80 LOCATE 14,5 :REM - position the cursor for 2nd message
9@ PRINT "The current count of bad parts is"

190 PRINT #1,"R10" :REM - request 1st value from controller
110 LINE INPUT #1,A$:REM - get controller's response

120 IF MID$(AS$,2,1)=CHR$(7) GOTO 210 :REM - check response for error (ASCII bell)
13@ PRINT #1,"R11" :REM - request 2nd value from controller
149 LINE INPUT #1,B$:REM - get controller's response

150 IF MID$(B$,2,1)=CHR$(7) GOTO 21@ :REM - check response for error
160 LOCATE 19,40 :REM - position cursor after 1st message

17@ PRINT A$;")

175 REM - Print 1st value, plus ten spaces to erase any previous, longer response
180 LOCATE 14,40

19@ PRINT B$;" . :REM - print 2nd value

200 GOTO 199 :REM - go back, get another update

210 PRINT "Communications Error":GOTO 210 :REM - error trap

CTC Serial Data Communications Page 63

Communications Example #4:
Compute:r Monitors for Fault Condition,

Signals Operator if Present

iy --

The fact that serial communications, in CTC Controllers, is completely
asynchronous to the operation of the controller's machine control
program (written in DSP™), allows machine or process monitoring to be
easily implemented.

The CTC Protocols allow rapid access to any of a controller's Numeric
Registers, Inputs, Outputs, Analog I/0 and Flags. If you write the
controller's DSP program to insure that continuously-updated informa-
tion is present in one of these resources, an attached computer is then
free to continuously monitor and report on the status of that informa-
tion. '

Once this has been accomplished, any of the reporting resources
available to the computer (which may include its CRT, printer, modem,
etc.) may be used for alarm, logging or monitoring purposes.

Considerations for Programming the Controller

Several factors must be considered in properly writing a program to
monitor a machine's operation. Perhaps the most important of these is
to insure that the resource being monitored always has current infor-
mation.

For example, il an operating pressure is being monitored by an analog
input, and this data is mathematically converted by the controller to

units of PSIG, with the resultant pressure stored in reg#10, the informa-
~ tioninreg#10 will only be as current as thelast time the math operations
were performed. Aseparate, continuously-running task may be used to
constantly update this information if desired. (An altemative would be
to have the:.computer read the analog input directly and independently
convert the data to PSIG.)

Another consideration in using data which the controller first manipu-
lates is the impact of the controller's dedicated STOP and RESET func-
tions, and the "cancel other tasks" instruction. Remember that these

. functions affect ALL of the controller's tasks, including any tasks which
have been set up to convert data.

As in any instance where human safety is at stake, proper design
practices point to the use of independent systems to detect critical
conditions and effect emergency shutdowns.

Paqge 64 CTC Serial Data Communications

10 OPEN "COM1:969@,N,8,1,CS,DS"AS #1 :REM - initializes com port on computer

20 PRINT #1,"PC" ‘REM - sets 2800 to "Computer Protocol”
3@ LINE INPUT #1,R$:REM - gets controller's response

40 IF R$ <> "PCO" GOTO 210 :REM - if com. not successful, jump out
50 CLS) :REM - clear the CRT screen

60 PRINT #1,"AI3" :REM - request data from Analog Input #3
70 LINE INPUT #1,R$:REM - accept controller's response

80 IF MID$(R$,2,1)=CHR$(7) GOTO 210 :REM - check for error (ASCII bell)
99 IF VAL(R$) < 350@ GOTO 6@ :REM - is analog value below limit?

100 LOCATE 10,20 :REM - position cursor for warning message

110 PRINT "WARNING - Temperature Limit exceeded!!":BEEP :REM - print warning and
beep

120 END

210 PRINT "Communications Error:-BEEP:GOTO 210 :REM - error trap

CTC Serial Data Communications Page 65

Communications Example #5:

Using a Portable "Lap-Top™ Computer for
Start-up and Diagnostics

=

\

J

The widespread availability of small, inexpensive, battery-operated
computers has made available a potentially valuable tool to the Machine
Designer or Maintenance Technician. Computers such as the Radio
Shack Series 100, when used in conjunction with the CTC Protocols,
allow instantancous access to virtually all of the controller's resources.
This provides an important source of information for both initial setup
of a machine and for diagnostic/troubleshooting purposes. A portable
computer may also be used for data gathering, in instances where a
permanent connection between a computer and the controller may be
impractical.

There are two possible approaches to the use of portable computers with
the CTC Protocols:

1. For the initial setup of a machine, the computer may be used as a
“"dumb terminal”, allowing the Machine Designer to communicate
directly with the controller's Numeric Registers, inputs, outputs, analog
I/0, etc. In this manner, parameters determining stepping motor or
servo characleristics may be quickly tuned, time durations may be
varied to determine optimum performance, etc.

2. For maintenance or data gathering purposes, specific application
programs may be written (typically in BASIC) for the computer. This
allows an extremely "friendly” user interface to be created, with menus,
prompting and on-screen identification of parameters.

"Dumb Terminal" Operation

The model 100 computer is supplied with a telecommunications pro-
gram (called "TELCOM") which allows it to act like a terminal. When this
program is started, it enters a command mode, at which time you must
insure that the proper communications parameters have been set.

Set-up with the Radio Shack model 100

TELCOM will display its existing communications parameters when {t
is first started, in the form of a 5-character code (for example, "M7I1E").
This must be changed to agree with the requirements of the CTC
Protocols, which require the code (for the model 100 only!) to be "88N1D"
(this will set the baud rate to 9600, the word length to 8 bits, no parity,
1 stop bitand thclincstatus to disable). The significance of cach of these
parameters is described more fully in the computer's operating manual.

The parameter code may be changed by pressing the "F3" function key
(labelled "STAT"), followed by the characters "88N1D" (without the
quotation marks and using the number "1", not the letter "I", in the four
position!). Then press the "ENTER" key. The new parameters may be

Page 66 CTC Serial Data Communications

confirmed by pressing the “F3" key again and, without entering new
parameters, pressing the "ENTER" key. The computer will respond by
displaying the currently-active communications parameters.

At this point you may enter the "terminal” mode, by pressing the "F4"
function key (labelled "TERM"). Once in the terminal mode, the "F4"
function key is used to toggle the terminal between the "half-duplex” and
“full-duplex" modes of operation (the key will alterately be labelled
"HALF" or "FULL"). The label for this key should read "HALF"; if it reads
"FULL", press the "F4" key and it will change to "HALF". This will cause
commands that you enter on the keyboard to be "echocd” (displayed) on
the computer's screen.

Entering the CTC ASCIH Terminal Protocol

Once the computer is properly initialized as a terminal (and assuming
it is properly connected to the controller!), communications with the
controller may begin. Start by setting the controller's communication
protocol: type the characters "PT", followed by the "ENTER" key. The
controller should respond with a line feed, the characters "PT". followed
by another line feed. If this does not occur, a wiring problem is likely and
the controller's Installation Guide should be consulted.

Assuming the protocol has been set properly, you may now enter
commands into the computer, according to the ASCII Prolocol described
in this booklet. For example, entering the characters "R10" will cause
the controller to respond with the current value stored in Numeric -
Register #10; entering the characters "R10=1000" will cause the control-
ler to force the number "1000" into Numeric Register #10.

Writing an Applications Program

Just as an applications program may be written as part of a permanent
installation, this technique may also be used with a portable computer.
The model 100, along with most other portables, comes supplied with
a built-in BASIC interpreter. This allows programs to be written and
stored in the computer for execution.

The previous examples illustrate some of the techniques for accomplish-
ing this, although minor differences in the versions of BASIC may
require program modifications for proper execution. One area in which
this is particularly true is in the initialization of the communications
port; the model 100 will require the commands OPEN "COM:88N1D"
FOR OUTPUT AS #1 and OPEN "COM:88N1D" FOR INPUT AS #2 to
initialize the comm port.

Further differences in the versions of BASIC may be discovered upon
careful reading of the manuals supplied with the specific computer you
are using. The example below, written for the modcl 100, illustrates the
use of Radio Shack's version.

CTC Serial Data Communications Page 67

1 REM - This program displays the status of 16 inputs, 16 outputs and two registers

5 CLS

10 MAXFILES=2 ‘REM - sets maximum num. of files on comp.

20 OPEN "COM:88N1D" FOR OUTPUT AS #1 :REM - comm. port is opened and initialized
30 OPEN "COM:88N1D" FOR INPUT AS #2

40 PRINT #1,"PCL" :REM - CTC Computer protocol is used,

50 INPUT #2,R$:REM - with "line feed" option

60 IF R$<>"PCOL" THEN PRINT "COMM. ERROR":GOTO 40

70 PRINT @ 10,"CTC Diagnostics Demo" :REM - Note screen formatting "@ XXX"

80 PRINT @ 80,"Inputs 1-16:"

90 C=92 . :REM - Cursor position marker
120 FORX=1TO 16 :REM - Loop to get and display 16 inputs
130 PRINT #1,"1":X :REM - Get an input stalus

140 INPUT #2,R$

150 IF R$="1"THEN PRINT @ (C+X),"X" ELSE PRINT @ (C+X),"-"

151 REM -.Above line prints an "X" if input is active, otherwise prints a "—"
155 IF X/4=INT(X/4) THEN C=C+1

156 REM - Above line will skip a space every fourth input for a clearer display
160 NEXT X

165 PRINT @ 160,"Outputs 1-16:"

170 C=172:REM - Cursor position marker

175 FOR X=1TO 16 :‘REM - Loop to get and display 16 outputs
180 PRINT #1,"0"X

190 INPUT #2,R$

191 IF R$="1" THEN PRINT @ (C+X),"X" ELSE PRINT @ (C+X),"-"

200 IF X/4=INT(X/4) THEN C=C+1

210 NEXT X

220 PRINT #1,"R10" :REM - Get value of Register #10
230 INPUT #2,A%

233 PRINT #1,"R11" :REM - Get value of Register #11

236 INPUT #2,B%

240 PRINT @ 240,"Registers 10,11:" :REM - Display register values
250 PRINT @ 257,A%;", ";B$

260 GOTO 90 :REM - Go back for another update

Page 68 CTC Serial Data Communications

Glossary of Terms

ASCII - An industry-standard binary code for representing alphabetic
and numeric characters, where a 7-bit binary code is assigned to each
of the letters A to Z, the numerals O to 9, as well as a number of special
control characters (carriage return, line feed, bell, etc.). The ASCII code
is a common method of interchanging data between dissimilar systems.

Hierarchy - A structured array of systems (or of information) where
systems at the lower level handle lower-level, immediate transactions,
while systems at higher levels handle supervisory or higher-level
functions.

LAN (Local Area Network) - Although “local” is a relative term, a Local
Area Network is typically used to link together systems performing
related functions which are in close proximity to one another (on the
scale of several hundred feect).

MAP (Manufacturing Automation Protocol) - A standard proposed by
General Motors for the communication of manufacturing data -
plantwide, MAP encompasses definitions of both electrical signal char-
acteristics and informational content. MAP may possibly become a
widely used standard for plant-wide networks.

Multi-Drop - A type of data network where a common communications
link is used for all systems. Systems connected to a multi-drop network
are typically coordinated so that only one system will be transmitting on
the link at any given time, to avoid "contention" (two transmitters
“fighting" each other for control over the line). The primary benefits of
a multi-drop network configuration are that the loss of any one system
typically will not disturb the network, and that communications speeds
are often higher due to the use of a direct data route (without retrans-
missions).

Parallel - A method of data transmission employing a number of data
lines (typically eight), whereby a full 8-bit byte of data is presented on
the data lines and a separate control line is strobed to allow a receiving
system to latch the data. Although this method is typically faster than
serial communications, it is seldom employed for tranmissions over any
great distance, due to the number of conductors necessary in the
transmission cable.

Protocol - A definition of the data format and interchange necessary to
complete a communication with a given system.

Ring Network - A type of network where a number of systems are
interconnected in a "ring" configuration, where the "transmit" line from
one system is connectled to the receive line of the next, whose transmit
line is, in turn, connected to the receive line of the next, etc. During a
data transmission, each successive system receives the data, deter-
mines if the data is destined for that system and, if not, re-transmits the
data to the next system. Responses, if required, are transmitted from
the target system on around the ring, back to the originating system.
Although a convenient and inexpensive means of creating a Local Area
Network, ring networks suffer from the disadvantage of requiring all
systems in the network to be powered and functioning to complete a
transmission.

RS-232 - An electrical standard which defines the signal levels and

CTC Serial Data Communications Page 69

characteristics for data transmission. Note that "RS-232" does riot in
any way define the "protocol” or informational content of a transmission
and that, therefore, "RS-232-compatible” means little in ascertaining
system compatibilities.

Serial - A method of data transmission employing, typically, one
transmit and one receive line, where all data is converted to a series of
pulses transmitted serially. This is a commonly-used means of trans-
mitting digital information, due to the fact that data may be transmitted
with minimal cabling and transmission hardware.

Workcell - In an aulomated factory, a group of machines performing
related functions, typically linked by a local area network to a common
“Workecell Controller”. For example, a workcell may consist of a milling
machine, assembly station, video inspection station and a robotic arm
to transfer workpieces among the stations.

Page 70 CTC Serial Data Communications

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

