Cgro. Quickstep™ Language and

Technology
Corporation

Programming Guide

Doc. No. MAN-1010A

Copyright © 1985-1996, 2000 Control Technology Corporation
All Rights Reserved
Printed in USA

Theinformation in this document is subject to change without notice. The software described in this document is
provided under license agreement and may be used or copied only in accordance with the terms of the license
agreement.

Theinformation, drawings, and illustrations contained herein are the property of Control Technology Corporation.
No part of this manual may be reproduced or distributed by any means, electronic or mechanical, for any purpose
other than the purchaser’s personal use, without the express written consent of the Control Technology Corporation:

The following are trademarks of Control Technology Corporation:

* Quickstep
e CTC Monitor
e CTC Utilities

The American Advantage is aregistered trademarks of Control Technology Corporation. MS-DOS and Windows
are trademarks of Microsoft Corporation. DeviceNet is atrademark of Allen-Bradley Company.

i Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Contents

NOTES TO REAUEGIS ... e e e e e ettt e e e e e e e e eeeeeannnes IX
1 Introduction

INEFOAUCTION . 1-2
WAL IS 8 SEEP 7 .t ie ettt e et e e e e s e et e e e e e e e e e e e e e e e 1-4
HOW @ Simple SEEP WOTKS ..o 1-4
Multiple INSrUCHIONS IN 8 SEEP ..oeeiiiiiiieeiie e 1-5
MONItOriNG @ FAUIT SENSONciiiiiiiiii e 1-5
USING CONLrol INSTIUCTIONSeviiiiiieeeii it e e r e e e e e 1-6
The IMPOortanCe Of OFAENueiiiiiiiii e 1-7
Selective Execution Of INSIIUCTIONSuueeiiiiiiiiiiiiiiiiiiiiiiiiieiieiieeieeeeeeeeeeeeeeeeeeeeneennnennes 1-9
S o g1 aTo Y V1 o o] L md doTo = 4 £ P 1-10
MUIL-TASKING oo, 1-11
Using Multi-Tasking to Execute Several Tasksccoovvvviiiiieiiieiieeeiieeeeeieevvesvenieens 1-11
Format of a Multi-tasking Programcccccvviiiieeeeee e, 1-12
Sz Tt o TR LT = TS 2 PP 1-12
ENdiNG the TasKSccoooiii i 1-13
Counting the Number of Taskscoooeeiiiiiii 1-13
The Problem Of RECUISIONooiiiiiiiiiiiiiiiie e 1-13
AVOIAING RECUISION ... annasnnennnsnnnes 1-14
0Ly T T 1Y/ [o [0] F=T gl = £ o | = Ta 0 F- S 1-14
= LU] 1Yo a1y (o T T o P 1-15
Rules for Writing Multi-tasking Programscooiiiiiiiiiiieeeeeeeieieeee e 1-16
Sensing MURIPIE FAUILSooooiiii e 1-16
Running Several Machines with One Controller ... 1-17

2 Quickstep Instructions
INEFOAUCTION . 2-2
Using Symbolic Names in QUICKStEP INSLIUCLIONSuuuiiiiiiiiiiiiee e 2-3
Delay INSITUCHIONS ...cooeeeieieee e 2-4
MONILOr INSEIUCLIONS ... 2-5
MONITOTING INPUES ...ttt e e e e e e e e e s e e e e e e e e nannes 2-5
MONITOTING FIAGS ...ttt e e e e e e 2-5
Monitoring Stepping MOtOrs and SEIVOSccuviiiiiiieeeiiaii e 2-6
Monitoring Boolean StatemENTSuiiiiiiiiiiiiiie e 2-6
SEOFE INSTIUCTIONS ..ottt eesenen s 2-7
Storing data to the Data Table ... 2-8
FIAG INSIIUCTIONS ...t e e e e et e e e e e e e e e e e e 2-9
IF INSITUCTIONS ...ttt e et e e e e e s s bbb et e e e e e s nnebbeneeeenanns 2-10
(€0 (o 105511 101110 £ PP EPPPR 2-11
Contents iii

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Contents

MUlti-tasking INSIIUCHIONScooiieei e 2-12
Counter CoNtrol INSLIUCTIONSiiiiiieiieeiiiiieieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeneeeeeeseneenneennnes 2-13
SEOP INSIIUCTIONS ...t e e e e e e e e e s r e e e e e e e e nnnnnees 2-14
Stepping MOOr INSIFUCTIONSeiiiiiiiiiiiitie et e e e 2-15
Profile MOtOr INSTIUCTIONvveiiiiiie et e e e e e 2-15
Zero Motor and Search and Zero INStrUCHIONSoocvviiiiiiiiie e 2-16
TUMN MOEOT INSTIUCTION ...ttt e e e e e s e e e e e e e e anees 2-17
StOP MOLOF INSIIUCTION ... e 2-17
SErVO MOLOI INSITUCTIONS ...t e e e e e e e e e e s nnneees 2-18
Profile SErvo INSIIUCTIONuiiiiiii e 2-18
ZIEIO SEIVO ..ututietiietieetieetaeeeeeee ittt ettt ettt ettt ettt ettt ettt ettt e et e e e e e e e et e aaaaaaaaaaaaaaaaaaaaas 2-19
SEAICH @NU ZEIO SEIVO ...uueiiiiiii ittt e e e e e e e aabeee s 2-19
TUIM SEIVO INSTFUCTION ...ttt e e e e e e s bbb e e e e e e e e annnee 2-19
StOP SEIVO INSTIUCTIONeeiiiiiiie ettt 2-20

3 Using the Quickstep Programming Language
[T 0o [8ox 1o o PO PP PPRRTRPP 3-2
(07010 0] (=] £ PP PPPPPPRTPP 3-3
Programming COUNLEIScccevvviiiiiiiiiiiiiee ettt a e e e 3-3
9 7= Lo 10] o T o RSP 3-4
COUNLING SPEEAS ...ttt e e e e e e e e e s et e e e e e e e eee s 3-4
EXAMIPIE e e e 3-4
Flags and Shift REQISIEISciii it a e 3-6
MONITOTING FIAGS ...ttt e e e e e e e e 3-6
Using Monitor Boolean INStrUCHIONSuviiiiiieeiiiiiiiieee e 3-6
USING SNift REGISTEISeiiiiiiiiiiiiei e e e e s s e e e e e e aans 3-6
Using Multiple Shift REQISIEISuuiiiiiiiiiiiie e 3-8
Rotating Flags in @ Shift REQISIETcuuiiiiiiie e 3-8
Avoiding Mechanical CONtENTIONuiiiiiiiie e 3-8
EXAMIPIE e e e 3-9
NUMEIIC REQISTEIS ...ttt e e e e e e e e e e e e e e e e e e e nanb b eeeeeeeenaan 3-11
Using Numeric Registers in Quickstep Programscccccciiiiiiiiecceeeeeeee, 3-11
NONVOIALIE REQISIEISoeveeeiiiieiieeeeeeeeee e 3-11
L LS T To T =T 1] (= £ 3-12
= 1 1]][RP SPPPEPRR 3-12
The Pointer and Phantom REQISIENSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiriieirren .- 3-14
Accessing Digital Inputs and QULPULSoooiiiiiiiiiee e, 3-15
= 1 1] [PPSR 3-15
Programming HintS ..., 3-16
Tracking MUItiple RESOUICEScooi i, 3-16
USING SLEPPING MOLOIS ...ccoveeiiiieiieieieee et 3-17
Programming Stepping MOLOIScovviiiiiiiiiiiiieieeeeeeee ettt e e eeaeaeeaaeeeees 3-17
EXAMPIE oo 3-17
Reading Stepping MOtOr POSITIONuuiiiiiiieiiiiiiie e 3-18
Establishing & HOME POSItIONoooiiiiiiiiciieeee e 3-18
Programming CONCEPLSueviiiiiiieeeiiiiiii et e e e e s e r e e e e e e e 3-19
USING SEIVO IMOLOTS ..ottt ettt e e e e e e et e e e e e e e e e e e e e e s eeeaeas 3-20
Programming and Initiating SErvo MOtIONSouiiiiiiiiiiiiiiee e 3-20
EXAMIPIE oo 3-21
iv Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Programming NOTES ..o e 3-21

TUNING 8 SEIVO .ttt e e e e e e e e e e e 3-22

Using the P Parameteroooiiiiiiiiiieiiieeieeeeeeeeeeeeee et 3-22

USING the | PArameteroeeiiiiiiiiiii e 3-23

UsiNg the D Parameter.........coovivviiiiiieiiieieceeee ettt 3-23

Using the Servo Position and Error Parameterseevvvveeeiiiiiiiiiiieiieeeeeeeeeeeenn 3-23
Establishing a Home POSItIONcoooviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 3-24
THe Data TaDIEcoco e 3-25
Accessing the Data Table Using the Row Pointercccoeeieiiiee 3-26
EXAMPIE oo 3-26
Storing Data Using the ROW POINLETuuviiiiiiiiiiiiiiiiiiiiiiiiieriirniennenieeneenneennennnnnes 3-26
Using ROW and Column POINIEIScovvviiiiiiiiiiiieiieeeeeeeeeeeeeeeeee e eeeeeeeseeeeeeeeeeeaeeeeeeeeeees 3-26
Example - Using the Data Table in Quickstep Programs.........cccccvvvvvvvvvvvviinnninnnns 3-27

Using Analog INputs and OULPULScceviiiiiiiiiieceece e 3-28
Representing Analog Signals in QUICKStEPccooviiiiiiii 3-28

LW LYo To AN g =1 (oo TN LT o]0 | I | = 3-28
USING ANAIOG OULPULS ...oeeeeiiiiiiie ittt e e e e e e e e e e e e e 3-29
Programming HINESooioiiiiiiiiii e e e e e e 3-29
USING If INSEIUCTIONS ...t e e 3-29

Using a Delay INSTIUCTIONooiiiiiiiiiiiiieiee e 3-30

Using Special-PurpoSe REQISIEISuuiiiiiiiiiiiiiiiiiie e 3-30
Using Thumbwheel Arrays and NUMETIC DISPIAYScuuviriiieriiiiiiiiiieeeee e 3-31
Prescaling Values AUtOMALtICAIlYoooiiiiiiiiiiiiiiice e 3-31
Accessing Four-digit Displays Using Special Purpose RegiSterscccccoevviiinnnee. 3-32
Using Eight-digit TRUMDBWHEEIScceiiiiiie e 3-32
Using Eight-digit DISPIAYSeeieiieiiiiiiiiiiii it e e 3-32
Setting @ DeCIMal POINT.......oooiiiiiiii e 3-32
UsINg DediCated INPULScooeviiiiiiieeieeee et 3-34
Start INPUt FUNCLIONS ..., 3-34
StOP INPUL FUNCLIONS ... 3-34
RESEL INPUL FUNCLIONS ...uuiiiiiiiiiiiiiiiieiiesiiesteesseesssesssassssssssssssssesssssssssssssssssssssreesseeesaeeeees 3-35
SteP INPUL FUNCLIONS ... 3-35
Using High Speed Counting Modules ..., 3-37
Counting FUNCLIONS SUPPOIEAuuuuuniiiieiiiiiii s 3-37

L C=To (UL Loy YA @00 [o] 1] o P 3-37

8-, 16-, or 32-bit Access to Input/Output PoINtS............coooviiiiiiiieeeeeeeeeeee, 3-38
8-, 16-, OF 32-Dit OULPUL ACCESS ..vvvvrriiniiieiiiiriiiiiiiiiiaia e 3-38

8-, 16-, OF 32-Dit INPUL ACCESS ... 3-39
MaSKING UNUSEA BISuvuuiiiiiiiiiiiiiiiiiiiiiiieisieeseeeseseseseseessasssessesssssesssseseesseeseesseereesereeees 3-39
Performing Boolean Operations on Binary NUMDErSccccooiiiiiiiiieeeen 3-40
Performing Boolean Operation on Binary NUMDErSccceeviiiiiiiiiiiieeeeee e 3-40

Y] SRRSO 3-40

INAND L.ttt e e e e e e e e et e e e e e e e r e e e e e e e e ann—rrraaaeeeeannrrees 3-41

L SRR 3-41

N[SRR 3-42

DO] PR SSUUPRERR 3-42

INDXOR Lttt e ettt e e e e e e s bt et e e e e e e e nste e e e e e aeeeeannnnrearaaaeeeeannnnnnes 3-43

Y N N USSP 3-43

Using Bit-wise Boolean Algebra in Your Quickstep Program..........ccccccccevvvinnnee. 3-44
Contents v

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Contents

Appendix A - Sample Programs

INEFOTUCTION . A-2
Program to Control a Simple Machineooeoiiiiiii e A-3
Using Registers - CYCle COUNTING ...ccooeeie oo A-6
L0 L= To [N @0 18] 1= ¢ T A-8
USING MUI-TASKING e A-9
Using Thumbwheels and DISPIAYScuiiiiiiiiiiiiiiiee e A-12
Using Analog INputs and OULPULSccoiiiiiiiiiec e A-14
Programming HiNtScooooiiiiiiii e A-18
Using Stepping Motor INSIUCLIONScoooeiiii e, A-19
Using Servo Motor INSTUCHIONScoooeieieee e, A-20
Programming @ SEIVOuuuuueeiieiiieiiieiieeeeeeeeeeeeeeeeeeeeeeseesaeeseeeeseeeeeeeseereeerreerrrrrerrrrereeen A-20
VeloCity MOAE EXAMPIE c...coooiiiiiiieeeeeeeeeeeeeee ettt A-22
ULy [o R g To T D= U= T = o] = PP A-24
Data in Data TADIEueeiiiiieii e A-25
Using the Phantom ReQISIENoovviiiiiiiii A-27
Using the Phantom Register to Create a Circular Buffer..................ccccoo A-27
Using the Phantom Register to Access multiple I/O Points ..., A-30
Using a Multi-station Indexing Table ... A-33
Appendix B - Default Symbolic Names
[0 o [8ox 1o} o PRSP PPPPPPRPP B-2
Default Symbolic Names for Controller RESOUICESc.cevvvvvvieeeiiieeiieirieevieeeiessierarennnnnnnnn. B-3
Default Names for REQISIEISccoiiiiiiiiiiicee e B-3
Default Names for COUNEISoooiiiiiieeeeee e B-4
Default Names for Data Table COlUMNS ... B-4
Default Names fOr FIAOSuviiiiiiiiiii e B-5
Default Symbolic Names for NUMDEISoooiiiiiiiie e B-6
Default Symbolic Names fOr SEPScvveiiiiiiiiiiie e B-7
Default Symbolic Names for Inputs and OULPULSueiiiieiiiiiiiiiiieiee e B-8
Default Names for INPULSoeiiiiii e B-8
Default Names fOr OUIPULSoooiiiiiiiiiiiii e B-8
Default Symbolic Names for Specialized I/O DEVICESccccuuviiiiiiieeeiiiiiiiiiieeeee e B-9
Default Names for DISPIAYSccoiiiiiiiiiiiii e e e B-9
Default Names for ThUMDBWANEEISooiiiiiiiiii e B-9
Default Names for Analog INPULS ..o, B-9
Default Names for Digital QUIPULSccooveiiiiiii e, B-9
Default Symbolic Names for Motion Control DEVICESuuueuiiiiiiieiiiei e B-10
Default Names for Stepping MOLOISooovviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e B-10
Default Names for SErvo MOTOISuuuiiiiiiiiiiiiiiiiee e B-10
Default Symbolic Names for Special REQISIEISuuvuuuiiuiiiiirree e B-11
Glossary
CONLrOlIEr RESOUICTESuvieiiiiiiiiiiiiiiiii e senseanesnnnnnnsnnnes Glossary-2
L7010 1= £ Glossary-2
(= U= T =1 o] = PP Glossary-2
[D7=To [Tor=1e=To [N | 0] 01U] ¢ Glossary-2
[= T 1 P Glossary-2
MUIL-ASKING .ooeeeeeieeeeee e Glossary-2

vi

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

NN T3 1] o P Glossary-2

NUMENC REQISEIS ..ottt Glossary-2
Parameter EQITOroooiiiiiiiieeeeee e Glossary-2
RECUISION e e e Glossary-2
Specialized I/QO DEVICESuvvvviuiiiiiiiiiiiiiiiiiiiiiiiiiiierin .. Glossary-3
Specialized Motion Control DEVICEScevvvevvvveeveeiiiiiivieviieiiiieininnninnnn. Glossary-3
SO oo —————————————————————— Glossary-3
SYMDOI BIOWSETuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieees e Glossary-3
SYMDOIC NAMES ...vviiiiiiiiiii e Glossary-3

Index

Contents vii

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Notes To Readers

The Quickstep™ Language and Programming Guide provides the following
information:

Related Documents

A description of the Quickstep programming language
How to write multi-tasking programs
A language reference describing Quickstep instructions

How to write Quickstep programs that effectively use controller resources
and specialized I/0O and motion control

Sample Quickstep programs for avariety of applications
Thelist of default symbol names available with the Quickstep editor

The following documents contain additional information

For information on Quickstep, refer to the Quickstep™ User Guide.

For information on general purpose and special registers, refer to the Regis-
ter Reference Guide.

For atutorial using Quickstep, refer to the Quickstep™ for Windows™
Tutorial.

For information on your controller and its modules, refer to the appropriate
Installation and Applications Guide.

For information on Microsoft Windows or your PC, refer to the manuals
provided by the vendor.

Notes to Readers

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Notes to Readers

Book conventions

The following conventions are used in this book:

ALL CAPSBOLDFACE

Identifies file names and fields on the Quickstep Editor user
interface. It also identifies DOS, Windows, installation program
file names.

Boldface Indicates information you must enter, an action you must perform,
or a selection you can make on adialog box or menu.
Italics Indicates aword requiring an appropriate substitution. For ex-

ample, replace filename with an actual file name. It can aso
indicate amanual, book, or chapter title.

Text_Connected With_Underlines

Indicates symbol names used in Quickstep programs. Step names
areALL_CAPITALS. Other symbol names can be Initial_Capitals
or lower_case.

SMALL CAPS

I dentifies the names of Quickstep instructionsin text.

Courier font

Identifies step names, comment, output changes, and Quickstep
instructions appearing in the Quickstep editor window or program

steps

ArtCode — DN-24

Identifies the file name of a particular graphic image.

How to Contact Control Technology Corporation

Control Technology Corporation is located in Massachusetts, and wer are open
from 8:30 a.m. to 5:00 p.m. eastern time. Contact us at 508 435-9595 and 800
282-5008 or Fax 508 435-2373

See us on the web at www.ctc-control.com.

Your Comments

We welcome your suggestions and comments about this or any other Control
Tech document. Comment forms are in the file called BUGRPT.WRI, which was
installed in your QSWIN directory during your Quickstep installation. you can
also email comments to techpubs@ctc-control.com.

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Introduction

Contents

Tntroduction 1-2
What is a Step? 1-4
:Storing Multiple Programs 1-10
Muiii-Tasking; 111

Introduction 1-1

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Introduction

Multi-tasking
Programs written in
Quickstep can also
match the modular
nature of many
machines, since it
gives you the ability
to write multi-tasking
programs. Multi-
tasking executes
multiple program
modules
simultaneously; each
module can control a
separate sequence of
events. For more
information on multi-
tasking, see the
section on Multi-
tasking.

Quickstep™, Control Technology Corporation’s (CTC) programming language,
is used to program our automation controllers. The overall format of a Quick-
step program consists of a sequence of events, described as a series of program
steps. Each step is a collection of instructions that determines the state of an
automated machine or system for an interval of time. A step can contain both
instructions which initiate motions and instructions that monitor various sensors.
Steps can also contain specific high-level instructions for functions such as
stepping motor and servo control.

The sequentia format of Quickstep isvery similar to the thought processes that
originally enter into the design of a new machine. New machines are usually
designed to perform a specific task or series of tasks. The task can be an assem-
bly operation, a series of machining operations, or a chemical process consisting
of a sequence of etching, depositions, and/or reactions. Machine designers take
thistask and break it down into a number of discrete operations. These discrete
operations possess a natural sequence or order and must occur in that sequence.

Machine designers often plan the sequence of tasks in advance and record them
on paper in one of the following formats:

e Written narrative description
* Flow chart
e Timing diagram

Each of these approaches describes the machine’s operation in asimilar man-
ner—as a series of states through which the machine proceeds as it accomplishes
itstask. Quickstep mirrors the states that a machine proceeds through, while
also allowing you to program parallel, asynchronous functions.

By describing a machine’s operation as a series of states, a Quickstep program
maintains a one-to-one correspondence with the functions of the machine you
are programming.

Sequence of Events Expressed as a Narrative Description
Extend load cylinder. Wait for limit switch to be hit before proceeding.
Extend Clamps. Allow 0.3 second for clamps to be fully extended.

Once clamps have extended, retract load cylinder. Allow 0.5 second
for load cylinder to retract.

Actuate stamping ram. Wait for a limit switch.

Retract stamping ram. Allow 0.5 second for ram to retract.
Actuate ejection cylinder. Allow 0.3 second for part to be ejected.
Retract ejection cylinder.

© N o o &

Increment parts counter.

1-2

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Sequence of Events Shown in a Flow Chart

T

{

Sequence of Events Shown as a Timing Diagram

Laad Crglinclar
Clamp Cylindar
Slamping Ram

Ejeci Cylindar

I
— L

-

Time -

Introduction

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

1-3

What is a Step?

A Quickstep program uses steps to define each new state of amachine. A
complete program is made up of a series of steps executed in a defined pattern.
Steps are made up of the following two elements:

* One or more instructions changing the controller’s outputs by turning them
on or off or an instruction maintaining their current state. Turning one of the
outputs on or off usually creates one or more motions on a machine and can
establish the machine’s new state.

* Oneor moreinstructions for leaving the step. These instructions establish
the duration of that state.

Since you can program more than one instruction in a step, there can be several
possible paths for leaving a step. The path taken by the controller would depend
on the conditions sensed when the step is executed. The controller can monitor
one or more conditions on the machine (limit switches, sensors) and only
proceed to the next step once a condition is met. Another option isto program a
time delay and have the controller move to a new step after a specified amount
of time.

You can aso program specialized motion control instructions, such as specifying
the velocity of a stepping or servo motor, or program instructions for various
internal controller functions, like counters, flags, and math instructions.

How a Simple Step Works

Symbolic Names
In many of the
examples shown in
this manual the
inputs, outputs,
stepping motors, etc.

have symbolic names.

Starting with
Quickstep 2.0 you
can give resources
like these symbolic
names that can
identify their
function,. For
example, an output
that turnson a
pneumatic cylinder
for a stamping press
can be called
Stamp_Press_On.
For more information
on symbolic names,
see Using Symbolic
Names in Quickstep
Instructionsin
Chapter 2.

The following example shows asimple step. This step extends a pneumatic
cylinder and waits for it to strike a limit switch at the end of its travel before
proceeding to the next step.

momitar Limit Switch gokc —ext

Waits for input signal

T el Slap

There must be two devices on the machine connected to the controller to accom-
plish this task.

1. A solenoid valve which directs compressed air to the appropriate cylinder
port. The solenoid is controlled by one of the controller’s outputs, labeled
Clamp_Part_Onin theillustration.

2. A limit switch positioned so that the pneumatic cylinder strikes the limit
switch at the end of itstravel. The limit switch is connected to one of the
controller’sinputs (labeled Limit_Switch in the illustration). The limit
switch sends a signal to the controller’s input.

When the controller executes the step, it first executes the output instruction. In
this case, it turns on Clamp_Part_On. Next, it executes any remaining instruc-
tionsin order. This step only has one additional instruction, noni t or
Limit_Sw tch goto next. When the controller receivesthe input signal, it
proceeds to the next step.

1-4

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multiple Instructions in a Step

Steps can contain multiple instructions. This example adds a fault-monitoring
function to the simple step discussed previously. The following example makes
use of two of the rules of Quickstep program execution:

1. You can program more than one instruction in a step.

2. Instructions with a destination are executed repeatedly, in the order pro-
grammed, for the duration of the step.

Using these two features we can expand the simple step example. Init, the limit
switch is used to detect the completion of a pneumatic cylinder’s stroke. If the
cylinder jammed in mid-stroke, the controller would never receive the signal
from the limit switch. 1t would remain in its current step forever, waiting for the
[imit switch signal. By estimating the longest possible normal stroke time for
the cylinder, you can have the controller automatically sense ajam condition and
have it take appropriate action. One method of accomplishing thisis to program
a DeLay instruction (time delay) in the same step of the program.

Clarg_PFare_on -Euuuu Limlt_ Ewitch @oro et -
dslay § med @ ms goto JhH DETECTER

When the controller enters the step, it instantly turns on output 1, telling the
cylinder to start extending. Next, it begins executing both the MoniTor and
DeLAy instructions. The instruction that is satisfied first takes the controller out
of the step. If the cylinder reaches the limit switch before the time delay elapses,
the controller continues to the next step, which is the normal operating sequence.
The time delay instruction effectively disappears at this time, because the
controller is no longer executing this step.

If the controller does not receive the signal from the limit switch on time and the
DeLAy instruction times out, the controller proceeds to step JAM_DETECTED.
At step JAM_DETECTED you can program an instruction to shut down the
machine, ring an alarm, or begin an automatic unjam sequence for the machine.

Monitoring a Fault Sensor

Using the same example, we can also program additional fault sensing by
including more MoniTor instructions. To detect an over pressure condition you
can:

Connect a pressure switch to another of the controller’s inputs.
* Add an instruction to monitor this input.

You can program the second MoniTor instruction to send the controller to a
different step. The controller monitors inputs Limit_Switch and
Pressure_Sensor at the same time it istiming the DeLAy instruction. Quickstep
executes al three instructions until one of them is satisfied. This means, when
the machine reaches an over pressure condition, the controller does not wait for
the other instructions before leaving the step. The illustration on the next page
shows this step.

Introduction

1-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

What is a Step?

Clafmp Pase O = peaivor Llelt swicch gots Sesn

dalay 5 sac 0 A POLO JAH_DETECTED

| momitor Pressure_Senscr goto OVER _PFAESSTREE ——

In some cases, you may need to have certain universal monitoring instructions
that are always executed by the controller, for example, an instruction to monitor
an over-temperature switch that must be monitored during an entire sequence of
events. Although you can place a MoniTor instruction in each step of your
program, an easier method of accomplishing thisis by multi-tasking. For
additional information on multi-tasking, see the section on Multi-tasking.

Using Control Instructions

Controller

Resources

CTC controllers

provide the following

internal controller

resources that you

can use when writing

your Quickstep

program:

¢ Counters, for
functions such as
batch counting or
production counting.

® Flags, which are
memory |ocations
used to store yes/no
information.

® General-purpose
numeric registers
used to store
numbers.

® Special purpose
registers, which may
store numbers, but
are also reserved for
special purpose
functions.

* A Data Table, which

stores an array of

numbers to use
within a Quickstep

program.
Controller resources
are described in
Chapter 3.

The previous examples explained the general format of a sequential program,
showed several simple forms of steps, and illustrated the use of MoniTor and
DeLAy instructions to control the flow of a program from one step to another.
Both of these instructions force the controller to a new step when a given event
occurs.

Steps can al so contain two other types of instructions:

* High-level instructions to initiate certain events which can span several
steps. For example, instructions to initiate motion on a stepping motor or
Servo.

¢ [nternal control instructions that affect the status of internal controller
resources, including math instructions.

In this example, an external thumbwheel preset, which allows an operator to dial
in adesired coordinate for alinear motion table, is connected to the controller.
Thetableis driven by a stepping motor. Although the controller moves the table
in units of steps, we want the operator to be able to dial in the coordinate
expressed in thousandths of an inch of travel. The following illustration shows
the setup of the controller, thumbwheel, and linear table.

Controlisr

e il

Q000

s Thusrmibyen hrissd

Exizmal L irezsir
D¥rei Tabda

T kv Figssd
e
Cieplary Board

Slagping Moso

Carnli Baoand

1-6

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Let us assume each step of the stepping motor corresponds to .0005 inch of table
travel. To obtain the appropriate number of steps to move the motor, we know
that we must multiply the coordinate position by afactor of 2. The first instruc-
tion in the program is a math instruction:

store Distance * 2 to Travel Distance

Where:
Distance is the symbolic name for thumbwheel 1
Travel_Distance is the symbolic name for register 10

Thisinstruction takes the current setting of thumbwheel 1 (Distance), multiplies
it by two, and stores the result in one of the controller’s internal numeric regis-
ters (Travel_Distance).

A second instruction takes the value stored in Travel _Distance and instructs the
stepping motor to move to that coordinate:

turn Motor 1 to Travel Distance

Since we want the controller to wait for the motor to reach its new position
before the controller proceeds with its program, a third instruction monitors the
motor:

noni tor Motor_1:stopped goto next

The controller waits until the motor has stopped before going to the next step.

The Importance of Order

Specialized
Motion Control
and 1/O Devices
Quickstep combined
with CTC's controller
hardware allows you
to program:
® Specialized motion
control devices, such
as servo and
stepping motors.
® Data acquisition
and processing for
analog |/0O devices
® Specialized I/O
such as numeric
displaysand
thumbwheels.
Specialized motion
control and 1/0
devices are described
in Chapter 3.

In the previous example the value used for the Turn MoToR instruction was
calculated in the same step as the Turn MoTor instruction. The instruction that
performed the cal culation was programmed before the Turn MoToR instruction.
This works because the controller executes the instructions within a step in the
order in which you program them. The specific rules governing the execution of
Quickstep instructions are as follows:

* When first entering a step, the controller turns on or off any digital outputs
specified.

* The controller then executes any additional instructionsin the step. It does
thisin the order that they are programmed.

* Instructions without a destination, that is, instructions that do not specify
how to leave the step, are executed only once. These instructions include
mathematical calculations, storing avalue to a register, turning a motor or
servo on, and motor or servo PRroFILE instructions.

* Instructions with a destination are executed repetitively, in the order pro-
grammed, for the duration of the step.

* Time DeLav instructions are set up initially and checked repetitively for a
time-out as long as the controller isin the step.

e If aninstruction with adestination is aready satisfied when a controller first
begins to execute a step, the controller leaves the step without executing any
subsequent instructions in that step.

In the following example the value for a pressure transducer is scaled and offset
in the same step. The table below shows that the pressure transducer provides a
signal voltage ranging from 0.5 to 5.5 volts with an applied pressure ranging

Introduction

1-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

What is a Step?

from 0 to 500 PSIG. The analog 1/O board in the controller uses a conversion
factor of 1000 counts per volt and reads this signal as a number from 500 to
5500.

Specification Value

Applied pressure 0 - 500 PSIG
Voltage output 0.5-5.5volts
Analog value 500 - 5500

The following example shows how you can program a series of instructions to
display a correct pressure reading directly in PSIG

Controller Resource Symbolic Name

Analog input 1 Pressure_Trans
Register 10 Pressure_Value
Display 1 Pressure

[31] CALCULATE_PRESSURE

<NO CHANCE I N DI G TAL QUTPUTS>

store Pressure Trans - 500 to Pressure_Val ue
store Pressure Value/ 10 to Pressure_Val ue
store Pressure Value to Pressure

if Pressure_Value >= 150 goto OVER_PRESSURE

In the step shown above, we first remove the offset to derive a numeric value
that corresponds directly to PSIG. The following math instruction takes the
value from the analog input (Pressure_Trans), subtracts 500, and stores the
result in register 10 (Pressure_Value).

store Pressure _Trans - 500 to Pressure_Val ue

The subtraction results in a pressure reading between 0 and 5000. To complete
the ranging of the analog signal, we must divide the number in the
Pressure_Value by 10 as follows:

store Pressure Value / 10 to Pressure_Val ue

The result of the division is stored back in register 10 and takes the place of the
previous value.

The following instruction displays the pressure reading on the numeric display.
store Pressure Value to Pressure

It is possible to take the value calculated by Pressure_Vaue/ 10 and store it
directly into the numeric display. However, by first storing the pressure value in
register 10, we can refer to it later. An example of thisisthe last instruction in
the step. It tests the value for an over pressure condition and jumps to step
OVER_PRESSURE when such a condition is found.

if Pressure_Value >= 150 goto OVER_PRESSURE

1-8

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

NOTE: The controller processes the math calculation and the Store instruction only once when

executing the step. Any subsequent change in pressure will not be registered until the control-
ler re-executes this step.

You can program the step so that the pressure reading will be continuously
updated by adding the following instruction to the end of the step:

[31] CALCULATE_PRESSURE

<NO CHANGE I N DI G TAL QUTPUTS>

store Pressure _Trans - 500 to Pressure_Val ue
store Pressure Value/ 10 to Pressure_Val ue
store Pressure Value to Pressure

if Pressure_Value >= 150 goto OVER_PRESSURE
got o CALCULATE_PRESSURE

where CALCULATE_PRESSURE is the name of the current step. The control-
ler exits the step once it has been executed and jumps to the same step and re-
executes it again repetitively. The controller continues the operation until the IF
instruction causes the controller to jump to step OVER_PRESSURE.

Selective Execution of Instructions

When a controller first executes a step that contains several instructions, it
executes the instructions in the order in which they appear in the step. What
happens when one of the instructions wants to immediately send the controller
to anew step? The following step is an example of this situation.

[1] MONI TOR_AND TALLY

<NO CHANCE I N DI G TAL QUTPUTS>

monitor In_1 On goto next
count up Parts_Produced
got o next

The first instruction monitors input 1 to determine if a sensor switch has closed
theinput. This could indicate that the machine has sensed a bad part. If the
machine senses a bad part, the MoniTor instruction sends the controller to the
next step before the remaining two instructions are executed.

NOTE: The instruction goto next refers to the next step in the sequence, not the next instruction.

The second instruction in this step adds one to the count stored in counter 1
(Parts_Produced). The controller executes thisinstruction only if the previous
MoniTor instruction did not send it to the next step. If the counter istallying the
number of good parts produced, only good parts are counted.

Thelast instruction in the step sends the controller to the next step uncondition-
aly. In either case the controller jumps to the next step, remaining in the
MONITOR_AND_TALLY step only for the time required to execute the appro-
priate instructions.

Introduction

1-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Storing Multiple Programs

You may need to program a machine to accomplish one of several possible tasks.
For example, a machine may be required to fabricate one of three parts, A, B, or
C. Each of these parts requires a different sequence of instructions. You can
program all three of these sequences into the controller and use a manual selec-
tor switch to select the sequence you want. You can program one sequencein a
series of steps, beginning with a step called FABRICATE_PART_A. The second
sequence can be programmed in a series of steps beginning with a step called
FABRICATE_PART_B and the third sequence could begin with a step called
FABRICATE_PART_C.

To have the controller execute the correct sequence, you can connect three of the
controller’s inputs to the various points on the selector switch. Then program
three MoniToRr instructions in the beginning of the program. These instructions
monitor the three inputs on the controller (See table) and jump to the correct

step.

FABFICATE PAFRT & FREE s T FaiEl | FRUMCATE FART_ G

| l

Controller Resource Symbolic Name

Input 11 on Fab _Part A
Input 12 on Fab_Part B
Input 13 on Fab_Part C

[2] MONI TOR _FABRI CATE_PART

<NO CHANGE I N DI G TAL OQUTPUTS>

noni tor Fab_Part A got o FABRI CATE _PART_A
nmoni tor Fab_Part B goto FABRI CATE PART_B
nmoni tor Fab_Part _C got o FABRI CATE _PART_C

1-10 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multi-Tasking

All of the previous examples have one common factor—they each consist of a
single, linear sequence of events. These examples may have shown decision
making or allowed the controller to follow one of several optional pathsin the
program. For many machines this type of program is appropriate. Most ma-
chines possess a hatural sequence of events that must be executed to properly
control them.

However, as machines grow in complexity, there are often multiple mechanisms
on a machine that must be sequenced asynchronously. For example, a machine
may contain the following:

A loading mechanism to feed in a new workpiece
* Anassembly station to perform an assembly operation
* An off-loading mechanism to remove the finished piece

To achieve optimum speed of operation, you may want to overlap a portion of,
or all of, the sequences for the three mechanisms.

A similar situation exists with an index-table based machine. Anindex table has
several workstations arranged around arotary table, each performing specific
operations on aworkpiece as it goes around the table. Each time thetableis
indexed, all of the workstations must be sequenced simultaneously through their
own independent sequence of events.

Machines like these have more of the characteristics of being several indepen-
dent machines rather than one device. It isdifficult to describe their combined
operations as asingle linear sequence. Any attempt to do so would require a
careful analysis of the relative speeds of operation of each actuator on each
mechanism. Such a program would also create inevitable inefficiencies as one
mechanism is required to wait for another to actuate prior to proceeding with its
own sequence.

Using Multi-Tasking to Execute Several Tasks

Using Quickstep, you can program the controller to execute several tasks at
once. Thisis called multi-tasking. In programming a complex machine, multi-
tasking allows you to think of each mechanism as a separate machine. You can
write an independent task to control each mechanism using the standard Quick-
step format. You then write a master program that calls up several of these
independent tasks to operate simultaneously. It is as though the controller had
split into several controllers running at the same time, each controlling one of
the mechanisms.

Depending on the controller model, it can have up to 28 separate tasks running
at the sametime. Refer to the installation guide for your controller for the
number of tasksit can run.

Just as you might take a machine which is mechanically complex and break it
down into modules for the sake of simplification, multi-tasking allows you to
break your program into individual tasks—each task controlling one portion of
the overall machine. Breaking down the program into tasks has the following
advantages:

* Simplifies and shortens your programming efforts
* Increasesthe program’s reliability (i.e., reduces the possibility of bugs)
* Makes each program easier to modify at alater date

Introduction

1-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multi-Tasking

Format of a Multi-tasking Program

Nesting

Any task in amulti-
tasking program can
contain other tasks
inside of it. Tasks
contained within a
task are called nested
tasks. Nested tasks
must start and end
during the execution
of its parent task and
follow the rules for
multiple tasks.

The following diagram illustrates the format of a multi-tasking program. It
shows each step of the program as a simplified block. In this instance the
machine being controlled has aloading mechanism to load a new workpiece into
position and an unloading mechanism to remove the workpiece completed on the
previous cycle. Theloading and unloading mechanisms are run simultaneously,
because we assume that no mechanical conflict exists between them.

[smRr | Baginning main program

Ihis fask controls NEGIM TASKS ey |EBOLOAR OFFROADLD QOLd Al

e machine's
an-laadivg 1
mechanism | A | I |
- 1 This lesl conioks
| | I | lha rachiregs

oft-loading

| EHD_O8ILOWD |ﬂ=r\rl- mezhamnism

METHE

You can how write a separate program for each mechanism or task.

First write the program (task) to control the machine’s loading mechanism. In
this example, the task for the loading mechanism is only three stepslong. When
writing the loading task, you only need to be concerned with the operation of the
loading mechanism, unless the possibility of mechanical interference with
another part of the machine exists. At the end of the task, a DonE instruction
indicates that it is completed.

Next, write the task to control the machine's off-loading mechanism, placing
another DonE instruction at the end of this task.

NOTE: All controller resources and specialized motion control and I/O devices are globally accessible.

Starting the Tasks

The main program for the machine begins like a normal Quickstep program, asa
sequence of events. In the third step of the main program, we program the
instruction, do (ONLOAD OFFLOAD) got o next . Thisinstruction causes the
main program to suspend operation at its current step and starts two separate
tasks running; one starting at step ONLOAD and one at step OFFLOAD.

The two tasks run independently as two separate programs. The effect is similar
to having two separate controllers running the two portions of the machine. The

1-12

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Ending the Tasks

tasks operate asynchronously, one task may run through its steps quickly (based
on the instructions contained in the steps) and the other task may wait for along
DeLAy instruction to time out.

Individual tasks do not necessarily have to follow a sequential series of steps,
although doing so improves program clarity. A task may jump around through
any combination of stepsin the program. A task may even contain subtasks
(nested tasks) by incorporating Do instructions within the task itself.

Each of the tasks continues until it reaches a Done instruction. When one of the
tasks executes a DonE instruction, it ceases operation and signals the original Do
instruction in the main program that the task is complete. Once all of the tasks
originally started by the Do instruction are complete, the main program contin-
ues. Sincethe Do instruction readsdo (ONLOAD OFFLOAD) got o next , the
main program will continue with its next step.

Counting the Number of Tasks

The task limit that a controller is capable of executing is an important limit.
Violating the task limit for a controller results in a software fault, and the
controller ceases operation. Inthe ONLOAD/OFFLOAD program example the
controller was executing three tasks. Thefirst task started at step 1, START.
The Do instruction at step three started two more tasks. Thisisatotal of three
tasks. If the ONLOAD task contained additional Do instructions, those tasks
would be added to the total number of tasks the controller was running.

The Problem of Recursion

Normally, programs are written to avoid violating the controller task limit. Itis
possible to write a program improperly and violate the task limit unintentionally.

The following diagram shows such a situation. At first glance, it may seem as
though only two tasks are being started by the controller’s main program. A
careful analysis of the program indicates a structural error that would ultimately
result in an infinite number of tasks running.

Introduction

1-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multi-Tasking

Avoiding Recursion

In thefirst step of the program the instruction do (ONLOAD OFFLQOAD) got o
next startstwo separate tasks as shown. However, there is no DonEe instruction
at the end of each task. Although this may be allowable under some circum-
stances, in this example there is an instruction at the end of each task that returns
the controller to the first step:

nmoni tor Onl oad_Conpl ete got o BEA NNI NG
noni tor OF fl oad_Conpl ete got o BEG NNI NG

Onload_Complete and Offload_Complete are symbolic names for inputs.

Since tasks are allowed to jump around within a program, the controller views
these instructions as continuations of their respective tasks. Each monitor
instruction independently causes its task to jump back to the step called BEGIN-
NING. Then, each task independently encounters the Do instruction in the first
step again, and each task sets up two additional tasks—one commencing at step
ONLOAD and one commencing at step OFFLOAD. Each of these two tasks
ultimately returnsto the first step and in turn sets up an additional two tasks
each, and so on.

This problem iswell known in computer programming and is called recursion.
Recursion results whenever a subroutine (equivalent to a task) includes an
instruction to restart the same subroutine. Eventually, the computer has to keep
track of so many subroutines that it crashes, sometimes with disastrous conse-
guences.

In CTC’s controllers this results in a software fault, leaving all outputs, and
other controller resources in the state they were in at the time of the error. Refer
to the Register Reference Guide for a description of special purpose register
13009 and its use in software fault detection.

With Quickstep, recursion occurs when atask or one of its subtasks encounters
the Do instructions which started it and re-executes it. Recursion can be avoided
by clearly planning what you want to accomplish.

Do you want each program to loop back on itself continuously? Then change
the MoniTor instruction to send the controller back to the beginning of that task.
For example:

nmoni tor Onl oad_Conpl ete goto ONLOAD
nmoni tor O fl oad_Conpl ete goto OFFLOAD

This avoids re-execution of the original Do instruction.

Do you want the programs to execute in parallel and, when both tasks are
completed, begin again simultaneously? Then add a step at the end of each
program with a DonEe instruction to signal the end of each task. The Done
instructions close out the tasks, signaling the original Do instruction to return to
the first step. The controller returns to the first step and re-executes the Do
instruction.

Using Modular Programs

Often a program can be written as a collection of tasks. If the construction of a
machine is highly modular, you may be able to write a separate program module
(task) for each mechanical module on the machine. The main program for the
controller becomes a series of Do instructions that start the various tasks in the
appropriate order.

1-14

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Fault Monitoring

Creating segmented or modular programs is a powerful technique for simplify-
ing the programming of a complex machine. When initially debugging the
machine, you can quickly identify and rectify a programming problem in any
given area. The location in the machine where the problem is occurring points
to the appropriate program module to change. Writing modular programs also
makes it very unlikely that modifying one task has any unintended side effect on
another portion of the machine.

Multi-tasking also allows you to perform continuous monitoring of a sensor
during a machin€e’s operation. By using multi-tasking it is possible to create a
separate fault-monitoring program that does nothing but watch one or more fault
sensors during the machine’s operation. Only when the controller detects a fault
condition does this program take action.

CAUTION: It is the machine designer’s responsibility to assess the possibility of human injury and
economic risk inherent in a machine’s design and function. The machine designer must
take adequate steps to protect against those risks. Under no condition should any one

A system or element on a machine represent the sole protection against injury or risk.

Good design practice requires independent back up systems in such instances, prefer-
ably incorporating differing technologies in their design. The appropriateness of such
measures must be assessed by the machine designer according to generally accepted
safety practices in his or her industry.

The following illustration is an example of afault monitoring program.

.k LA ¥ Tk 1
FARFICATE PAAT FALLT MDRITOR | rorsi e Pault o
: | T P
- -
L ™
. ™
REFTRAGT QFFLGAD
Maln Program Fauilt Manltaring Pregram

Multi-tasking startsin the first step of the program:
do (FABRI CATE_PART FAULT _MONI TOR) got o START

NOTE: The destination for the original Do instruction, goto start, is programmed to satisfy the format of
the Do instruction and, in this instance, has no significance in the program.

Thefirst of the two tasks, starting at step FABRICATE_PART, is the main task
for running the machine. Thistask can take advantage of multi-tasking by

Introduction

1-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multi-Tasking

nesting additional subtasks within it. At the end of the task, step
RETRACT_OFFLOAD loops back to the beginning of the task without execut-
ing a DonE instruction.

At the same time the fault-monitoring task remains at step FAULT_MONITOR,
where an instruction continuously monitors a fault sensor on the machine. Only
if the fault sensor becomes active does this program jump to step
CHECK_FAULT. This step cancels all other tasks.

At step CHECK _FAULT you can program a number of different reactions to the
fault condition. In theillustration the instruction, cancel ot her tasks,
causes any other tasks that may be operating to cease operation. Cancel leaves
all controller resources in the states they were in just prior to the CanceL instruc-
tion. From thistime on, the controller executes only one program, the fault
monitoring program. This program can then proceed to take control over the
machine, taking it through an orderly shutdown.

Sometimes less drastic action than shutting down all tasksis desired in response
to afault condition. For example, by programming the instruction, st op got o
FAULT_MONI TOR, at step CHECK_FAULT of the program, the entire machine
would stop sequencing when a fault condition is sensed (including
FABRICATE_PART and any subtasks). When the machine’s operator corrects
the fault and starts the controller again, al of the active tasks would continue
execution from where they left off and the fault monitoring program could return
to step FAULT_MONITOR.

CAUTION:

AN

The CanceL and Stop instructions do not stop any of the motor motions in progress; nor
do they turn off outputs that may be causing continuous motion, e.g., motor starters.

Rules for Writing Multi-tasking Programs
Do instructions can start up to eight tasks.
Do and DonE instructions must be in steps by themselves.

Obey the tasks limit for your controller model.

LT A o

More than the maximum number of tasks can be included in a
program, as long as no more than the maximum number are
active at the same time.

Atask may have other tasks nested inside of it.
Recursive programs should be avoided.

A DonE instruction signals the end of the task.

© N o u

A CanceL OTHER TAsks instruction or a reset input signal can be
used to force an end to multi-tasking.

Sensing Multiple Faults

If more than one fault condition is possible on a machine, the fault monitoring
program may include several instructionsin itsfirst step. Each instruction
would monitor a separate condition. If different responses are required to the
various faults, each instruction may cause the controller to jump to a different
step. One factor that must be considered in setting up this structure is the

1-16

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

possibility of simultaneous faults and the desired priority and reaction to such a
condition.

Running Several Machines with One Controller

It is sometimes possible to use multi-tasking to control several different ma-
chines from the same controller. Although there are a number of disadvantages
to this approach, one obvious advantage is the ability to apportion the costs
associated with the controller’s capabilities over a number of machines.

You can use multi-tasking’s ability to run several programs simultaneously to
accomplish this. You must use adlightly different approach to do this. The most
important difference is that each individual program is made to loop back on
itself. It endswith some instruction, such as a monitor or time delay, that sends
it back to its beginning.

The illustration below shows several machines run from the same controller
using multi-tasking.

L TaSRD TS START
; — — — |

| TREK 1 | | TaEK 3 | l THEK 3 I | TASK 4 |

| | | | | | | | | | |
.] []]
L] L L
L & L] L

| [emo Task 1 | _|!n1ux: | ._|!m1.m:: | _|nm Thgs 4

In some of the previous examples, the Do instruction waited for all tasksto end
before continuing with the program. When running multiple machines, you
would not want to have one of the machines, after completing its task, to wait
for al the other machines to finish before starting anew cycle. By eliminating
the DonE instruction, each program becomes one long task that never ends and
loops forever in acircle. Thisalows each program to proceed at its own rate of
speed without having to wait for another program to finish.

NOTE: The destination for the original Do instruction, goto start, is programmed to satisfy the format of
the Do instruction and, in this instance, has no significance in the program.

One of the major disadvantages of this approach is the dependence of a number
of machines on asingle control system. This usually meansthat if one machine
is stopped, all the machines being run by the same controller must also be
stopped. The controller’s dedicated stop, start, reset, and single step functions
act on all of these machines simultaneously. When the economic advantages
outweigh these concerns, multi-tasking represents a viable approach to the
control of multiple machines.

Introduction

1-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Chapter 2

Quickstep Instructions

Contents

ftfodiciion 2-2
Using Symbofic Names T QUicStep Tsiieions; 2:3
Delay Instructions '. 2-4
-St'o'r'e' instructions 2-7
Flag reracions: 2-9
it insiructions 2-10
Goto Instructions ' 2-11
Milt-iasking nstiucions 212
Counter Coniiol Instructions;
Stop instruciions! 214
.'Sfébbfrigj Motor fris?t'roét'ubh's' i 2-15

.Servo Motor Instructlons ' 2-18

Introduction

This chapter presents an overview of the Quickstep instructions. The
following is alist of Quickstep instructions.

Cancel

Clear Flag
Count Up

Count Down
Delay

Disable Counter
Do

Done

Enable Counter
Goto

If

Monitor Boolean
Monitor Flag
Monitor Input
Monitor Motor
Monitor Servo
Profile Motor
Profile Servo
Reset Counter
Rotate Flag
Search and Zero Motor
Search and Zero Servo
Set Flag

Shift Flag

Start Counter
Stop (Controller)
Stop Motor

Stop Servo

Store

Test And Set Flag
Turn Motor

Turn Servo

Zero Motor

Zero Servo

2-2

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Symbolic Names in Quickstep Instructions

In many of the examples shown in this manual the inputs, outputs, registers, etc.
have symbolic names. Starting with Quickstep 2.0 you can give resources, such
asregisters, inputs, or stepping motors, symbolic names that can identify their
function. For example, an output that turns on a pneumatic cylinder for a
stamping press, can be called Stamp_Press On. Or you can give several servo
motors different symbolic names, e.g., Transverse, Rotate, Spindle, rather than
calling them Servo_1, Servo_2, Servo_3.

You can define symbolic names for the following items:
* Steps

* Controller resources - counters, flags, numeric registers, Data Table col-
umns.

* Specialized motion control devices - servo and stepping motors.

* Specialized 1/0O devices - analog inputs and outputs, thumbwheels, and
numeric displays.

* Digital inputs and outputs.

* Numeric constants used in a Quickstep program, e.g., maximum speed of a
stepping motor or atemperature value.

Symbolic names are created using the Symbol Browser. For a description of the
Quickstep editor and the Symbol Browser, refer to the Quickstep™ User Guide.

Previous versions of Quickstep did not allow you to use symbolic names. When
you use the new Quickstep editor to update aversion 1.6 or 1.7 Quickstep
program, it changes the names of all the controller resources to the default
symbolic names. The examplesin this chapter use the default symbolic names.
The table on the following page lists the default symbolic names used in this
chapter. The Quickstep editor includes afile, DEFAUTS.SYM, which contains
default symbolic names for additional controller resources. You can use them
when writing a Quickstep program. Appendix B contains a list of the default
symbolic hames.

We recommend that you write all new Quickstep programs using symbolic
names that identify their function.

Symbolic Name Controller Resource
ain_1 analog input - ain#1
aout_1 analog output - aout#1
col 1 data table column - col#1
ctr 5 counter - ctr#5
disp_5 display - disp#5
flag_3 flag - flag#3
in_3A input normally open - in#3a
in_3B input normally closed - in#3b
OUT_1_ON output on - 1+
OUT_1_OFF output off - 1-
motor_1 stepping motor - motor#1
reg_50 register - reg#50
servo_1 servo motor - servo#l
twhl_1 thumbwheel - twhl#l

Quickstep Instructions

2-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Delay Instructions

The DeLAy instruction causes the controller to proceed to a new step after a
specified amount of time has passed. A time delay can be a specific amount of
time, or it can be derived from another source, such as athumbwheel or register.

You can use any of the following devices to specify the amount of time for the
delay:

* Ananalog input specifying minutes, seconds, or hundredths of seconds.

» A vauefrom registers 1 through 128 specifying minutes, seconds, or hun-
dredths of seconds.

* Aninteger specifying hours, minutes, seconds, or milliseconds.

* Thevaue from the Data Table specifying minutes, seconds, or hundredths
of seconds.

* A thumbwheel specifying: hours and minutes, minutes and seconds, or
seconds and hundredths of seconds

To set atime delay for a specific time, the format of the DeLay instruction is as
follows:

delay 2 sec 300 nms goto next
Thisinstruction sets the delay for 2.3 seconds.

When using an integer to specify a millisecond time delay, the least significant
digit should always be zero. Thisis because the time resolution of the controller
isin ten milliseconds.

To set atime delay using the value in aregister or from an analog input, the
format of the DeLay instruction is as follows:

del ay reg_15 sec goto next
delay ain_6 mn goto next

To set atime delay using athumbwheel, the format of the DeLAy instruction is as
follows:

delay twhl _2 ssff goto next

The value ssff represents the four digits of the thumbwheel, ssff = seconds and
hundredths of seconds, mmss = minutes and seconds, hhmm = hours and min-
utes.

2-4 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Monitor Instructions

Monitoring Inputs

The Monitor instructions allow the controller to monitor inputs, flags, and
stepping and servo motors. Monitor instructions can check any of the following
states:

e Check if aninput is open or closed
» Checkif aflagisset or clear
» Check if astepping or servo motor is running or stopped

» Use aBoolean expression to check or monitor the state of any combination
of inputs, flags, stepping motors, and servo motors

MoniTor INpuT checks the status of one or more of the controller’s digital inputs.
The controller goesto anew step if a specified condition is met. For example:

nonitor in_12A goto next

monitors the state of digital input 12. The switch is monitored as a normally
open switch, and the controller proceeds to the next step only when the switch
closes. You can also monitor inputs as normally closed.

nmonitor in_12B goto next

NOTE: To check the status of an analog input, use an Ir instruction.

Monitoring Flags

MoniTor FLAG checks the state of aflag. You can detect whether the flag is set
or clear. For example,

nonitor flag 12:set goto next

monitors the state of flag 12. The controller proceeds to the next step only when
theflag is set.

Test aND SeT FLAG is aspecia flag monitoring instruction. 1t is often used in
multi-tasking, when two mechanisms are contending for the same resource, for
example, two separate robotic arms that are invading the same workspace. In
this case, Test AND SeT FLAG tests aflag to seeif it is clear, representing the
workspace being empty. If theflag is set, the controller does not take any action.
If the flag is clear, the controller immediately sets the flag and proceeds to the
next step.

testandset flag_12 goto next

The testing of the flag is essentially simultaneous with the setting of the flag.
This allows you to use the flag to arbitrate the use of the workspace without any
risk of collision.

Quickstep Instructions

2-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Monitor Instructions

Monitoring Stepping Motors and Servos

MoniTor Motor and MoniTor Servo check the status of a motor control module.
The stepping or servo motor can be monitored to see if it isrunning or stopped.
The controller does not go to a new step until the control module indicates that
the motor isin the desired state.

nmoni tor notor_2:running goto next

noni tor servo_1: stopped goto next

NOTE: The definition of stopped for the purposes of the monitor instruction is that the control module
has completed its execution of the last motion. For example, the controller has no knowledge
of any continued motor motion caused by an external force on a motor.

Monitoring Boolean Statements

MoniTor BooLeaN allows you to perform the monitoring of complex combina-
tions of inputs, flags, stepping motor, and servo motor states. Multi-level
nesting of Boolean functionsis supported. You can use the following Boolean
algebra functions in a monitor statement.

 AND — Requires all listed states to be true.

* OR — Requires any one or more of the listed states to be true.

* XOR — (Exclusive or) requires exactly one of the listed states to be true.
* NAND — Requires any one or more of the listed states to be false.

* NOR — Requires all listed states to be false.

* NXOR — (Not exclusive or) requires either more than one or none of the
listed states to be true.

The following examples show how to use Boolean statements:
monitor (and in_16A in_19B i n_24A) goto next

requires that inputs 16 and 24 be closed and input 19 be open for the statement
to be true.

nonitor (or in_5A (and servo_1:stopped servo_2:stopped))
got o next

requires either input 5 to be closed or both servosto be stopped.

2-6

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Store Instructions

A simple Srore instruction copies numeric data from one location in the control-
ler to another location. For example,

store twhl _1 to reg_307

You can use a numeric value from the following sources as input for a Store
instruction:

e Ananaloginput
* A columninadatatable
* A counter (registers 1-8)

* A numeric register, including any special purpose registers having read
access

* The servo error of a servo motor

* The position of a servo motor

e A thumbwheel preset

* A fixed number from -2,147,483,648 to +2,147,483,647
You can store numeric data to the following destinations:

» Analog output

* Counter

* Numeric display

* Numeric register, including any specia purpose registers having write
access

e DataTablerow and column

In addition, a Store instruction can perform arithmetic, Boolean, modulo, and
rotate instructions as follows:

* Perform mathematical operations between any two sources of numeric data
and store the result in any destination for numeric data.

store reg_307 + twhl 1 to reg_934

Math operations performed are addition (+), subtraction (-), multiplication
(*), and division (/)

e Perform amodulo operation. A modulo operation stores the remainder of an
integer division in any destination that accepts a numeric value.
Store 10 mod 6 reg_15
The value stored in register 15is 4.

» Perform bit-wise Boolean algebra on numbers using Boolean Srore instruc-

tions. You can use the Boolean Store instruction to mask data from 8-, 16-,
and 32-bit data sources.

The following instruction reads the binary value represented by the state of
the controller’sfirst set of 32 inputs and performs a boolean AND operation

Quickstep Instructions 2-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Store Instructions

with the number 4095. Asaresult of thisinstruction, the binary
representation of thefirst 12 inputs only is stored in register 10.

store reg_10001 and 4095 to reg_10
Thevalueinreg 10001 is. 0100 0110 1111 0100 0000 1111 1001 1101
4095 in binary is: 0000 0000 0000 0000 0000 1111 1111 1111

The resulting number
stored in register 10 is: 0000 0000 0000 0000 0000 1111 1001 1101

The following instruction performs a bit-wise Exclusive OR operation
between the binary value of the first 32 inputs and the binary value of the
second 32 inputs, storing the result in register 10. This instruction compares
the status of these two groups of inputs. Only when the two groups are
identical does register 10 contain azero. The valuein register 10 can be
tested with an IF instruction.

store reg_11001 xor reg_11002 to reg_10

The following boolean instructions can be performed: AND, OR, XOR
(Exclusive or), NAND, NOR, NXOR (Not exclusive or), and NOTAND.

For additional information on using Boolean Store instructions see, Chapter
3, Performing Boolean Operations on Binary Numbers. For additional
examples, refer to the Application Note, Bit Level Operators and CTC
Controllers.

* Rotate the bit pattern in aregister right or left one or more bits. The rotate
instruction replaces the value in a bit (either 1 or 0) with the value in the bit
preceding or following it. Thefirst bit in the seriesinherits the value of the
last bit in the series. For example:

The number 33 is stored in register 75 and forms the following bit pattern:
0000 0000 0000 0000 0000 0000 0010 0001

After the controller executestheinstructionstore reg_75 rol 1 to
reg_75, the bit pattern in the register is as follows:

0000 0000 0000 0000 0000 0000 0100 0010
You can rotate the bit pattern several places, for example,
store reg_75 rol 4 to reg_75

Storing data to the Data Table
You can store data to a specific row and column in a Data Table using the
following set of instructions:

store 5 to reg_131 (selectsrow 5 of the Data Table)
store 8 to reg_132 (selects column 8 of the Data Table)
store 368 to reg_9000 (stores368incolumn8row 5 of the Data Table)

For 2600 series and higher controller models, you can also store datato a
specific row and column in a Data Table using the following instructions:

store 5 to reg_126 (selectsrow 5 of the Data Table)
store 368 to col _8 (stores 368 in column 8 row 5 of the Data Table)
For more information, see The Data Table in Chapter 3.

2-8

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Flag Instructions

Flags are memory elements within a controller that can be either set or clear and
are used to store yes/no types of information. You can also use them to store
information from one part of a machine’s cycle to another or during multi-
tasking to communicate from one task to another. Flags can also be used as
elementsin a shift register. There are 32 flags available in a controller.

» The Set FLaG instruction sets aflag. The flag remains set until it is cleared
or until the controller isreset or the power to it is turned off.

set flag_8

* The CLear FLAG instruction clears aflag that was previously set.
clear flag_8

* The SHiFT FLAG and RoTaTE FLAG instructions treat a series of flags as a shift
register. They automatically move information from aflag to the next flag
within a specified range of flags. Any sequential series of flags can be
shifted, and you can establish severa shift registers.

The SHiFT FLAG instruction replaces the status of aflag (either set or
clear) with the status of the flag preceding or following it. Thefirst flag
in the seriesis automatically cleared.

The RotaTe FLAG instruction replaces the status of aflag (either set or
clear) with the status of the flag preceding or following it. Thefirst flag
in the series inherits the status of the last flag in the series.

To shift or rotate a series of flags up

shift flag 5 >> flag_10
rotate flag 5 >> flag 10

To shift or rotate a series of flags down
shift flag_11 << flag_20
rotate flag_5 << flag_10

To shift or rotate a series of flags multiple shifts
shift flag_11 << flag_20 2 tines
rotate flag 5 >> flag 19 3 tines

For information on monitoring flags (MoniTor FLaG and TesT AND SeT FLAG),
refer to Monitor Instructions in this chapter.

Quickstep Instructions

2-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

If Instructions

The IF instructions allow the controller to perform a comparison between any
two numeric quantities within the controller. If the comparison istrue, the

controller goes on to anew step. For example:
if reg_15 >= twhl_2 goto next
compares the value stored in register 15 to thumbwhed 2. If thevaluein

register 15 is greater than or equal to the value entered on external thumbwheel

2, the controller goes to the next step
IF instructions can perform any of the following comparisons:

Greater than, >

Less than, <

Greater than or equal to, >=
Lessthan or equal to, <=
Equal to, =

Not equal to, <>

An IF instruction can draw its comparison values from the following numeric

resources:

Analog input

Column of adatatable

Integer from -2,147,483,648 to +2,147,483,647
Register

Counter

Servo motor position or error

Thumbwheel

For example,

if ain_2 > reg 25 goto next
if ctr_2 >= 7500 goto next
if servo_l:error >= reg 38 goto next

if servo_2:position <= col _3 goto next

2-10

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Goto Instructions

The Gorto instruction tells the controller which step to execute next. You can
tell the controller to proceed to any step including the current step.

The following examples are three different ways to use Goto instructions:

* Thisinstruction tells the controller to jump to the step named
SHUT_DOWN, where ever the step isin your program.

got o SHUT_DOWN

* A specia form of the Goro instruction tells the controller to proceed to the
next step in numeric sequence.

got o next

* Itispossibleto have a Goro instruction which jumps back to the same step.
This results in the controller re-executing any instructions which normally
executed only once upon entering the step, for example Store instructions.

goto TEST_AGAIN
This tells the controller to re-execute the step TEST_AGAIN.

You can use goto instructions to move around within a program. However, you
must take care when using Goto instructions in programs or you can write a
recursive program. Recursion results whenever atask in a program encounters
an instruction to restart the same task.

For additional information on recursion, see the section on Multi-Tasking in
Chapter 1.

Quickstep Instructions 2-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multi-tasking Instructions

You can control multi-tasking functions using the Do, Done and CaANceL instruc-
tions.

The Do instruction can initiate from one to eight tasks. Each task is an indepen-
dent program beginning at the step specified in the Do instruction. |f multiple
tasks are started, they run independently and asynchronously of each other. The
format of aDo instruction is:

do (FABRI CATE_PART FAULT_MONI TOR OVER_PRESSURE) got 0 START

A task continues until it encounters a Done instruction. Done signals the
completion of atask. After it encounters a Done instruction for each task started
by the Do instruction, the controller proceeds to the destination specified by the
Do instruction.

A Do instruction can also loop through atask or tasks up to 99 times. For
example:

do (ONLOAD OFFLOAD FAULT_MONI TOR) 50 tines goto next

The controller executes all the tasks until each encounters a DoNE instruction
and then begins all the tasks over again until it reaches the number of iterations
specified.

CanceL shuts down all other tasks.
cancel other tasks

For additional information on multi-tasking, refer to the section on Multi-
Tasking in Chapter 1.

2-12 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Counter Control Instructions

The counter instructions control the eight internal countersin a controller.
These instructions can start a counter and increase or decrease the value in one
of the controller’s counters. They also reset, enable, and disable any of the
controller’s counters.

* StarT CounTeR initializes a counter. The counters overlay the first eight
registers (i.e., counter No. 1 = register No. 1). When starting the counter,
you can assign three of the controller’sinputsto perform the count-up,
count-down, and reset functions:

start ctr_1up (in_5A) down (in_6B) reset (in_7A)
Thisinitializes the counter and assigns functions to three of the controller’s

inputs. These inputs continue sending input signals to the counter until the
counter isre-initialized or disabled.

— Up (in_5A) specifies that input No. 5 is being used for the count up
function and increments the counter for each switch closure. The A
specifies that the input is a normally-open input. A normally-open input
means that the count occurs when the switch closes.

— Down (in_6B) specifiesthat input No. 6 is being used for a count down
function and decreases the value in the counter by one for each time the
switch opens. The B specifies that the input isanormally closed input.
A normally-closed input means that the count occurs when the switch
opens.

— Reset (in_7A) resets the value in the counter to zero when the switch
closes.

start ctr_1 up (i n_5A 30) down (in_6B:30) reset (in_7A 100)

The debounce time (shown as : 30) allows you to use mechanical switches
for counting, even though they normally bounce a number of times when
they actuate. Although thereis no increase in reaction time, the maximum
count frequency is reduced.

NOTE: Debounce is not available in the model 2600 and 2700 series controllers. The controller
ignores the debounce parameters.

¢ Count Up adds one to the current value in the counter.
count up ctr_3

e Count Down subtracts one from the current value in the counter.
count down ctr_3

e ReseT returns the value in the counter to zero.
reset ctr_3

* DisasLE temporarily disables a counter so that it does not accept any count
up, count down, or reset pulses until it is enabled.
di sable ctr_3

* EnABLE reactivates a counter that was temporarily disabled.
enable ctr_3

Quickstep Instructions

2-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Stop Instructions

The Sror instruction tells the controller to stop running the program. This
usually causes the mechanism being run by the controller to stop.

All controller resources remain in the state they were in before the controller
executed the Srop instruction. To restart the controller and maintain the current
state of the controller resources, use the start dedicated input function. For a
description of the dedicated input functions, see Using Dedicated Inputsin
Chapter 3.

stop goto stepnane

When the controller is restarted following the execution of a Stop instruction,
the program will continue with the step specified in the Sroe instruction. If the
program was multi-tasking at the time the Sror instruction was executed, the
other tasks also continue from where they have stopped.

WARNING!

I\

Stepping and servo motor motions which were in progress at the time the controller
executed the Stop instruction will continue to completion. In the event of a velocity mode
instruction, a motor will continue turning indefinitely. Also, digital or analog outputs retain
their current state, which may result in a continuous on state for a mechanism. All such
conditions should be evaluated for possible dangers when using the Stop instruction.

2-14

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Stepping Motor Instructions

Using the stepping motor instructions, you can set the motion parameters for a
stepping motor, start it turning, and specify when and how it will stop. You can
also establish a zero or home reference position for a stepping motor. The
stepping motor instructions are:

Profile Motor

Turn Motor

Zero Motor

Search and Zero Mator

Stop Motor

Monitor Motor (described in the section Monitor Instructions)

You can define motion parameters for up to 16 stepping motors.

NOTE: Currently, the stepping motor instructions are used only with the model 2205 Stepping Motor
Control Module. Other stepping motor control modules use the more flexible servo motor
instructions. Refer to the Installation and Applications Guide for your stepping motor for more

information

For information about stepping motor applications and special functions, see
Using Sepping Motorsin Chapter 3. For programming examples, see Appendix
A.

Profile Motor Instruction

The ProriLE MoTor instruction sets the motion parameters for a stepping motor
asfollows:

Stepping Mode — Specifies either half-step mode or full-step mode with
one or two coilson. You can only use this parameter to specify the stepping
mode using the on-board drivers of the model 2205. We recommend using
half-step mode when using an on-board driver since it is smoother and has
less resonance.

When using an external drive, the external drive determines the stepping
mode.

Base Speed (basespeed)— defines the speed, in steps per second, at which the
motor motion begins. The motor must be capable of virtually instantaneous
acceleration to this speed.

Maximum Speed (maxspeed) — defines the speed, in steps per second, at
which the motor ceases accelerating during amotion. The maximum speed
is maintained until the stepping motor control module cal cul ates that the
motor must begin to decelerate.

Acceleration Factor (accel) — determines the rate at which the motor acceler-
ates to maximum speed. It isexpressed as arelative factor from 1 to 500.
500 represents instantaneous acceleration. Typical values range from 200 to
475.

Deceleration Factor (deceleration) — determines the rate at which the motor
deceleratesto astop. It isexpressed as arelative factor from 1 to 500. 500
represents instantaneous deceleration. Typical values range from 200 to
475.

Quickstep Instructions

2-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Stepping Motor Instructions

The following illustration shows the velocity profile for a stepping motor.

- Maximum Spaed

Acceleration Factor

Deceleration Factor

\\ Basa Spaed

Velocity

Time

Any of the numeric parameters for a stepping motor can be drawn from any of
the controller’s numeric resources, instead of being expressed as a fixed number.
For additional information, refer to the section on the Store instruction.

The following example is for a ProriLE MoTor instruction for a motor using half
step mode:

profile nmotor_2 (half) basespeed=reg_200 naxspeed=reg_201
accel =reg_202 decel =reg_203

The following example is for a ProriLE MoToRr instruction for amotor using full
step mode with two coils on:

profile motor_1 (2 coils) basespeed=reg 10 naxspeed=reg 11
accel =reg_12 decel =reg_13

An aternative form of a ProriLE MoToRr instruction allows you to establish the
zero position of the motor as its present position.

profile and zero notor_1 (2 coils) basespeed=reg_10
maxspeed=reg 11 accel =reg_12 decel =reg_13

The ProriLE MoTor instruction does not start the motor motion. To initiate
motion use the Turn MoTor instruction. You may respecify the motor profile
parameters any number of times in the same program, but only when the motor
is stopped. If you do not wait until it stops, a software fault results.

Zero Motor and Search and Zero Instructions

The Zero MoTor and SearcH AND ZERO MoTOR instructions set a zero or home
reference position for a stepping motor as follows:

» The Zero MoToRr instruction sets the current position of the stepping maotor
asits zero or home reference position. The stepping motor must be stopped
when the controller executes this instruction.

zero notor_1
* The SearcH AND ZERO MoTOR instruction starts the motor turning in either a

clockwise or counter clockwise direction at the base speed until the
controller’s motor control module senses a contact closure on the home limit

2-16

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

switch input. At that time, the motor stops and the current position is set as
the zero point. You can specify whether the motor turns in a clockwise or
counter clockwise direction.

search cw and zero nmotor 1

Turn Motor Instruction

Turn MorToRr instructions initiate motor motion and define either the distance to
be traveled or the new desired coordinate position. The controller must have
executed a profile instruction at some time before the first turn instruction for
any given axis. If it hasn't, the controller reports a software fault stating “motor
not ready.” The motor uses the parameters from the | ast-executed ProFILE
Mortor instruction for that axis.

The Turn Moror instruction defines the distance the motor travels using one of
the two following methods:

* Relative — Turns the motor either clockwise or counter clockwise a speci-
fied number of steps from the current motor position.

turn motor _5 ccw 750 steps

Thisinstruction has the motor move 750 steps in the counter clockwise
direction. The current position of the motor isirrelevant to thisinstruction,
since the distance of the motor motion is defined relative to the motor’s
current position. However, even in relative moves the controller keeps track
of the absolute position of the motor.

* Absolute — Turns the motor a calculated number of steps based on the
distance from a predetermined zero or home position. This type of turn
instruction is more powerful, especially for applications involving the
positioning of an actuator. Using an absolute turn instruction the stepping
motor control module maintains the motor’s current absolute position in
memory. For example,

turn motor_1 to 1500

This instruction has the motor turn to a position 1500 steps clockwise from a
preestablished reference (zero or home) position. Since the new position is
expressed in terms of an absolute coordinate, this form of instruction
relieves the designer of the task of maintaining knowledge of the motor’s
current position and cal culating the required motion to reach anew position.

NOTE: Do notissue ProriLE or TuRN MoToOR, ZERO, OF SEARCH AND ZERO instruction when a stepping
motor is in motion. Program a noni t or not or : st opped instruction before any new instruc-
tion for the motor. Failure to do so may result in a CPU software fault, halting execution of the

program.

Stop Motor Instruction

The Srop MoTor instruction stops the generation of pulsesto a stepping motor.
Use this instruction with caution, since the inertial load often carries the motor
forward and consequently the absolute position may be lost.

stop nmotor_2

WARNING: Do not use a Stop MoTor instruction to implement an emergency stop function where
danger to human safety or substantial economic damage exists. Such functions should
A be implemented with independent, external systems.

Quickstep Instructions

2-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Servo Motor Instructions

Using the servo motor instructions, you can set the motion parameters for a
servo motor, start it turning, and specify when and how it will stop. You can
also establish a zero or home reference position for a servo motor. The servo
motor instructions are:

Profile Servo

Turn Servo

Zero Servo

Search and Zero Servo

Stop Servo

Monitor Servo (described in the section Monitor Instructions)

You can define motion parameters for up to 16 servo motors.

The Model 2206 Stepping Motor Control Module also uses servo motor instruc-
tions. For information about servo motor applications and special functions, see
Using Servo Motors in Chapter 3. For programming examples, see Appendix A.

Profile Servo Instruction

The Profile Servo instruction sets the motion parameters for a servo as follows:

* Maximum Speed (max) — Establishes the maximum speed of the servo. It
is defined in encoder pulse edges (steps) per second (fully decoded).

NOTE:

The highest permissible maximum speed varies according to the module used. Refer to the
installation guide for your module.

» Acceleration Rate (accel)— Specifies the acceleration rate of the servo.
Defined in encoder pulse edges (steps) per second per second (steps/sec?).
This parameter also sets the deceleration rate.

If you want the acceleration and decel eration values to be different, store the
deceleration value to a special purpose register. The following example sets
the deceleration rate:

profile servo_1 nmax=50000 accel =100000
store 20000 to reg_15006 (axisNo. 1 deceleration register)

» P (Proportional) Filter - Specifies the factor applied to the sensed position
error to create a correction signal. It is expressed as a multiplication factor
from O to 255.

* | (Integra) and D (Derivative) Filters - Determine the characteristics of the
built-in digital compensation filter.

NOTE:

Check the Applications Guide for your servo control module. Some servo modules give you
additional compensation filter choices.

* Holding Mode — Specifies the status of the servo when stopped, using one
of the following parameters:

— Servo at position - Once the servo reaches the desired position, the
actuator will continuously seek this position. If the actuator is forced
from its position, the servo control module sends a correction signal to
attempt to correct the perceived error.

2-18

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Zero Servo

— Deadband of __at position - The servo control module senses position
errors but does not correct them unless the error is out of the range of
the Deadband.

— Off at position - Once the servo reaches position no further corrective
action occurs. This allows manual adjustment or another external force
to change the position of the servo.

— None - Indicates that the controller should use the holding mode speci-
fied in a previous ProriLE Servo instruction.

The ProriLE Servo instruction does not start the servo motion. To initiate motion
use the TurN Servo instruction. You may respecify the servo profile parameters
any number of timesin the same program. Any of the numeric parametersfor a
servo motor can be drawn from any of the controller’s numeric resources,
instead of being expressed as a fixed number. For additional information, refer
to the section on the Srore instruction.

Unlike a stepping motor, you can execute a new ProFiLE Servo instruction while
the servois still in motion. You can change any parameter except the accelera
tion rate.

profil e servo_3 servo at position maxspeed=15000 accel =35000
P=10 | =95 D=50

The Zero Servo instruction sets the current position of the servo as its zero or
home reference position.

zero servo_1

Search and Zero Servo

The SearcH AND ZERO SERVO instruction sets a zero or home reference position
for aservo. The SearcH AND ZERO SERvO instruction starts the servo turning at
the rate specified in the ProriLE Servo instruction until the servo control module
senses a contact transition on its home limit switch input (dedicated input).
Depending on the model of the servo control module you have, the instruction
functions differently. For examples showing how to establish and find a home
position, see Using Servo Motorsin Chapter 3.

search and zero servo_1

Turn Servo Instruction

The Turn Servo instructions initiate a new servo motion. The controller must
have executed a ProriLE Servo instruction to define the motion parameters.
Turn Servo defines the distance the servo travels using one of the following
methods:

* Absolute — Turns the servo a calculated number of steps based on the
distance from a predetermined zero position. For example,
turn servo_1 to 1500
turn servo_2 to 1500 on_start_switch

The second absol ute distance instruction also requires a contact closure on
the servo module's dedicated start input before the servo motion begins.

NOTE: step = encoder signal transition

Quickstep Instructions

2-19

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Servo Motor Instructions

* Relative — Turnsthe servo clockwise or counter clockwise a specified
number of steps from the current motor position. For example,

turn servo_5 cw 70000 steps

» Velocity — Begins continuous clockwise or counter clockwise mation. The
servo remains in motion until the controller executes a Stop Servo instruc-
tion or the servo control module senses a stop input signal. For example,

turn servo_5 ccw

NOTE:

Do not issue another Turn Servo instruction for a servo while the servo is still in motion. If the
servo is still turning, the controller reports a software fault (servo not ready) and halts execution
of the program. Before issuing another turn instruction, you should program a noni t or
servo: st opped instruction prior to any subsequent turn instruction.

Stop Servo Instruction

The Stop SErvo instruction brings the servo to a halt. You can choose one of the
following methods to stop the servo:

* Soft Stop — Causes the servo to stop at the deceleration rate specified in the
last profile instruction.

stop (soft) servo_ 2

* Hard Stop — Causes the controller to attempt to stop the servo instantly.
However, because of momentum (caused by the inertial load), the servo does
not stop instantly and consequently the absol ute position may be lost and
instability may result.

stop (hard) servo_1

In either case, you should use a monitor instruction before issuing another turn
instruction.

WARNING: Do not use a Stop Servo instruction to implement an emergency stop function where

A

danger to human safety or substantial economic damage exists. Such functions should
be implemented with independent, external systems.

2-20

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Chapter 3

Using the Quickstep
Programming Language

Contents

introduction 3-2
‘Counters | 3-3
Flags and Shift Registers 3-6
Nimeric Registers 1 3-11
The Pointer and Phanior Registers 314
Using Stepping Motors 3-17
Using Servo Motors ; 3-20
:The Data Table ! 3-25
Using Analog Inputs and Otputs | 3-28
{Using Thumbwheel Arrays and Numeric Displays : 3-31
Using Dedicated Inputs 3-34
{Using High Speed Counting Modules | 337
:8-, 16-, or 32-bit Access to Input/Output Points | 3-38

'Performlng Boolean Operations on Binary Numbers. 3-40

Introduction

CTC's automation controllers support high-level instructions for a number of
internal resources, specialized 1/O, and motion control devices to make writing
an automation program with Quickstep easier. These resources include;

Counters

Flags

Numeric registers

Data Table

Specia purpose registers
Stepping motor control modules
Servo motor control modules
Analog input/output modules
Specialized input/output features
Thumbwheel array and numeric display interface modules
Dedicated inputs on the controller
High-speed counting modules

3-2

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Counters

CTC controllers can be programmed to automatically count pulses from the
controller’'sinputs. You can use the first eight numeric registers as counters, and
each counter can be programmed to accept input signals from three of the
controller’s inputs.

Counters work in the background. Once started, a counter operates much like an
external, independent device within the controller. You can assign counting
inputs. The counter continuously monitors the inputs for counts, while the
controller proceeds on through subsequent steps of its program. You can assign
any of the controller’s inputs to a counter.

Possible uses for counters include:
* In packaging applications, counting a product passing by a sensor.

* Using a counter wheel to count the linear footage of a material being me-
tered out.

* Detecting the motion of aworkpiece over a specific distance.
* Tracking the quantity of a product in aholding area.
Programming Counters

Counter control instructions can be programmed to perform the following
functions:

* Start counter — initializes a counter, resetsit to zero, and, optionally,
assigns inputs to the counter.

e Count up — adds one to the accumulated count.
¢ Count down — subtracts one from the accumul ated count.
¢ Reset — resets the accumulated count to zero.

* Disable — disables a counter temporarily so that it does not accept any
count up or count down pul ses.

* Enable — reactivates a counter that was temporarily disabled.
The maximum range of a counter is-2,147,483,648 to +2,147,483,647.

Each counter input can be selected to take effect on a normally-open or nor-
mally-closed basis. A normally-open operation means that the count occurs
when the switch closes, and a normally-closed operation means that the count
occurs when the switch opens.

Since counters are treated similarly to numeric registers (they overlap with the
first eight numeric registers), you can use any instruction that references a
numeric register to reference a counter. For example, you can display the value
of acounter on an external numeric display:

store ctr_3 to dis_1

Once a counter is started with a Start CouNTER instruction, it continues to run,
and its total accumulated count can be tested at any time with an Ir instruction.

if ctr_1 >= 1500 goto next

Using the Quickstep Programming Language 3-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Counters

Debouncing

You can program an independent debounce interval for each counter input.
Debouncing allows the counter to register the multiple pulses typically received
from a mechanical switch contact as a single count.

NOTE: Debounce is available in 2200XM and 2800 series controllers only.

Counting Speeds

When a mechanical switch closes, the switch contacts will bounce for a period
of time (typically from one to 15 milliseconds). The bouncing is due to the
imperfect electromechanical coupling that occurs when two pieces of metal
come together under spring tension.

Debouncing allows a programmabl e interval from one to 250 milliseconds for a
switch closure to settle. No degradation of reaction time occurs when using
debouncing; a contact closure is instantly recognized and registered by the
counter. However, from that time forward no further counts are allowed until
the debounce time has expired, which allows the switch to settle.

One advantage of theinternal countersisthat they can attain greater counting
rates than those attained from numeric registers. Thisfaster counting rateis
obtained because the controller handles the counters as an independent activity,
unrelated to the execution of your Quickstep program.

The counting speed capabilities are related to the number of inputs assigned to
al counters at any given time. Thisincludes the count up, count down, and reset
inputs of active counters. The following table lists the maximum counting rates:

1to 3inputs. 500 Hz (assumes a 50% duty cycle)
4to6inputs: 250 Hz
7to8inputs. 166 Hz

If your application requires a higher counting speed, you can obtain a separate
high speed counter module.

Example
The following example uses a counter in asimplified application involving the
metering of afixed amount of material. In this application output 1 is used to
control the motor that feeds the material.
[1] SET_I NI TI AL_STATUS
;;; This step contains instructions that set the
;,, initial conditions for each iteration of our
;;; counter. The controller turns off all the
;;; digital outputs. It then starts the counter so
;;; 1t can begin nmeasuring the material once the
;;; motor starts in the next step. The | ast
;;; instruction is a 2.1 second tinme delay. Wen
;;; the delay is up, the controller noves to the
77, next step.
; Travel = counter 1
D Count _up = input 30
D Count _Dn = input 31
D Reset I np = input 32
v Feed_Motor_On = output 1 on
Feed_Motor O f = output 1 off
3-4 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

M Cut _On = output 2 on

LR EN

<TURN OFF ALL DI G TAL QUTPUTS>

start Travel up(Count_Up) down(Count _Dn) reset
(Reset _I np)
delay 2 sec 100 ns goto next

[2] START_MOTOR

;75 In this step we turn on the output that
;; controls the feed nmotor for the material. The
;; |If instructions continuously nonitors the
;; counter, and when it reaches or exceeds 1500,
;; the controller proceeds to the next step.

)
l
l
1
)
’

Feed Mot or_ On

if Travel >= 1500 goto next

[3] DELAY
;75 In this step the controller turns the out put

;;; that controls the feed motor off, and, after a

;;; 1 second delay, it proceeds to the next step.

Feed Motor O f

delay 1 sec goto next

[4] cuTr
;7 In this step the controller turns on output 2
;; to cut the naterial and goes to the first step
;;; in the program At the first step, the
;; controller turns off all the outputs, restarts
;; the counter, and waits for the time del ay.

1
l
l
)
)
’

Cut_On

nonitor Limit_Contact goto SET | N Tl AL_STATUS
This example illustrates two important points:

1. The Srart CounTeR instruction automatically zeros the counter, and no
additional instruction is necessary to reset the counter before each new
cycle.

This also means, if your application requires a continuous count throughout
multiple cycles, the Start CounTER instruction must be outside the main
program cycle to avoid resetting the counter.

2. When testing a counter with an IF instruction, you should use a greater than
orequa (if ctr_1 >= 1500) comparison. Sometimes dueto arapid
counting rate, more than one count is registered between two successive
tests of the counter by the controller, and the target count is exceeded. The
>= comparison still allows the test to be met.

Using the Quickstep Programming Language 3-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Flags and Shift Registers

Monitoring Flags

Flags are memory locations within the controller that can store yes/no types of
information. CTC controllers have 32 flags.

At any given time flags are either set or clear. Using Quickstep instructions you
can specify aflag's state as either set or clear and, in a subsequent instruction,
changeits state. Other instructions can monitor the state of aflag and send the
controller to anew step if the flag isin the specified state. Quickstep also
provides instructions to shift the data within a group of flags, allowing you to
program the flags as a shift register.

Possible uses for flags are:
* Storing status information from one portion of a machine's cycle to another.
e Communicating information from one task to another when multi-tasking.

* Implementing a shift register for progressive assembly machines, e.g., index
tables.

* Setting up handshaking when using computer data communications.

Flags are very straightforward in function. Once the state of aflag is changed
with either a SeT FLAG or CLEAR FLAG instruction, the flag remains in that state
until a subsequent instruction changes its state or power is removed from the
controller. When a controller is powered up, it automatically clears all flags.
Resetting the controller or downloading a new program also resets all the flags.

You can use the information stored in a flag during one portion of a program’s
operation to affect the course of alater portion of the program. For example,
you can set aflag in one step, program an instruction in alater step to monitor
the flag, and proceed to a new step depending on the state of the flag.

You can check aflag and determine whether the flag isin a specified state, either
set or clear. If the test is met, the instruction sends the controller’s program to a
new step. For example,

monitor flag 18:set goto next

Using Monitor Boolean Instructions

The MoniTor BooLEaN instruction allows you to monitor combinations of flags
or combinations of flags, inputs, and motor states (running or stopped). Moni-
ToR BooLEAN supports nested combinations using the Boolean algebra functions.
The following is a sample instruction:

nonitor (or (and flag 5:set Mtor_1:stopped)
(and flag_12:set Mdtor_2:stopped)) goto next

Thisinstruction requires one of two conditions to be true. Either flag 5 must be
set and motor 1 be stopped, or flag 12 must be set and motor 2 be stopped.

Using Shift Registers

Shift registers consist of a sequential series of flags, (e.g., flags 5 through 10)
and can be used to track the status of a series of different workpieces. After
executing a shift instruction, the first flag in the range specified will be clear and
the datain the last flag in the range will belost. The format of a SHiFT FLAG
instruction is

shift flag_20 >> flag 24

3-6

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

You can program multiple shifts with a single instruction:
shift flag_20 >> flag_24 3 tines

The arrows within the instruction indicate the direction of datatravel. Itis
possible to program a shift instruction that shifts the data in descending order:

shift flag_15 << flag_20

Flag 20 Flag #1 Flag 22 Flag &3 Flag 24
Seat Clear Sel Sel Hat
rlag 20 Flag 21 Flag 22 Flag 23 Flag 24
Claar = Claar Ea Sed

Shift registers are often used with machines that perform progressive operations
on workpieces simultaneously. Anindex table, for example, can have a number
of workstations designed to perform a series of progressive operations on a
workpiece asit travels around arotary table. Typically, at any given time there
isaworkpiece at each station. After all workstations have completed their
cycles, the table rotates, carrying each workpiece to the next station in sequence.

In progressive operation machines there is often a requirement to remember
some status information for each part in process, e.g., good part/bad part or type
A part/type B part. Remembering thisinformation is made more complex
because the workpieces are continuously moving from station to station, new
parts are being fed onto the table, and completed parts are being removed from
the table.

Shift registers provide a mechanism for tracking the information along with the
workpiecesin process. To track the information you must first assign aflag, in
sequence, for each successive workstation that contains aworkpiece. The status
of the flag, either set or clear, indicates the status of the workpiece residing in
the associated station.

At the point in the program where the workpieces are advanced to the next
workstation, you program an instruction such as shift flags 1>>8. Thisinstruc-
tion causes the information within flags 1 through 8 to shift one position. Inthis
manner, the controller transfers the status of flag 1 into flag 2, the status of flag
2 istransferred into flag 3, and so on.

If the status of a part isinitially determined and loaded into the first flag being
used, the information will follow the part throughout all subsequent operations.
You can test the information at any workstation by using a MoniTor FLAG
instruction to monitor the flag associated with that workstation.

Using the Quickstep Programming Language 3-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Flags and Shift Registers

Using Multiple Shift Registers

Since the action of a SHiFT FLAG instruction is limited to the range of flags
specified in the instruction, you can create more than one shift register within
the controller. For example, if flags 1 through 8 are used to store one piece of
information for parts at eight workstations, you can use flags 9 though 16 to
store a second piece of information for those same parts.

HINT: Using flags 11 through 18 may be easier to remember.

Each time the parts are indexed within the machine two shift instructions are
then executed:

shift flags 1>>8
shift flags 9>>16

Rotating Flags in a Shift Register

RotaTe FLAG, like SHIFT FLAG, sets up a series of flags as a shift register. How-
ever, when the program executes a RoTaTe FLAG instruction, the data from the
last flag in the range specified is returned to the first flag in the range. The data
travelsin acircle and no datais lost as aresult of the instruction. The format of
aRoTATE FLAG instruction is:

rotate flag_20 >> flag 24

Flag 24 Flag 20 Flag 21 Flag 22 Flag 23 Flag 24
Set Sat Clear Sat Sel Sat
Flag 20 Flag 21 Flag 22 Flag 23 Flag 24 Flag 20
Sat S Claar Eaf Sal Bal

Aswith SHiFT FLAG you can also program multiple shifts and indicate the direc-
tion of datatravel:

rotate flag 20 >> flag_24 2 tines
rotate flag_15 << flag 20

Avoiding Mechanical Contention

Flags can a so be used to avoid contention in instances where two or more
mechanisms might, at some time, conflict with each other mechanically. An
example of thisisin amulti-tasking program that controls two pick-and-place
mechanisms moving within the same work space in amachine. 1f the mecha-
nisms are triggered asynchronously, a situation may arise where they would
collide.

To avoid this, you can use aflag to indicate when the workplace is occupied.
Each program controlling one of the pick-and-place mechanisms would be
regquired to monitor this flag prior to entering the work space. The program
would then set the flag, indicating that it will be occupying the work space.
Once the mechanism is finished, the program would clear the flag.

3-8 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Example

Quickstep provides a special instruction that eliminates the very slight possibil-
ity of the following scenario: Task A monitors aflag, findsit clear and before
setting the flag, a second task, Task B, also monitors the flag and finds it clear.

To eliminate this possibility, use the Test anp SeT Flag instruction. In this case,
Task A monitors aflag and, if the flag is clear, automatically setsit. Task B
cannot access the flag between the testing of the flag by Task A and its subse-
guent setting. The program can proceed without any chance of mechanical
contention.

The following example uses a flag to communicate information between two
tasks in a multi-tasking program. The flag insures that one of the tasks does not
proceed before the other task reaches a given step.

[1] INITIALI ZE
77, This step sets up the initial conditions for a
;;; programthat cuts and pl aces a piece of
;;; material on a stanping press. The cutting and
;;; placing operations take |onger that the
;;; Stanping press. The flag signals the stanping
;;; press that the material is in place. The first
;;; step turns off all digital outputs, nonitors
75, two inputs to make sure everything is ready,
;;; and proceeds to the next step.

M Part In_Place = flag 1

M Stanmp_Arm Up = input 5 open
v Feed Part = notor 3

S Stanp_Press_On = output 5 on
L Stanmp_Press_Of = output 5 off

RN

<TURN OFF ALL DI G TAL OUTPUTS>

nonitor (and Stanp_Arm Up Feed Part: stopped) goto
next

[2] START_TASKS
;,; This step starts the multi-tasking sequence.

RN

<NO CHANGE I N DI G TAL OUTPUTS>

do (CUT_AND_PLACE STAMP_PART) goto START

[10] CUT_AND PLACE
;;; This is the first step of a nulti-step task.
;;; For the purposes of our exanple we are not
;;; interested in what happens here until step 20
; where the flag is set.

Qut_1_On

nmonitor In_1A goto next

Steps 11 - 19 not shown here

Using the Quickstep Programming Language 3-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Flags and Shift Registers

[20] SET_FLAG

; This step sets flag Part_In_Place. This

;;; notifies task STAMP_PART to proceed with its
;;; next step which is stanping the part.

<NO CHANCE I N DI G TAL QUTPUTS>

set Part _In_Place
goto CUT_AND PLACE

[50] STAMP_PART

;;; This step starts the task that controls the
stanp press. It begins with a nmonitor flag
instruction. Once the flag is set, the
controller proceeds to the next step in the
t ask.

l
)
)
l
l
’

<NO CHANCE I N DI G TAL QUTPUTS>

nmoni tor Part_In_Place: set goto next

[51] ACTI VATE_STAMPI NG_MECHANI SM

;7 This step turns on the output that operates the
;;; stanp press. For the purposes of the exanple we
;7 Will not show any nore steps in this task.

Stanp_Press_On

delay 2 sec 500 nms goto next

3-10 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Numeric Registers

Numeric registers are storage locations within the controller for numbers. They
are capable of storing numbers from -2,147,483,648 to +2,147,483,647. The
controller can use the numbers stored in numeric registersin arithmetic opera-
tions. There are two types of registers: general purpose registers and special
purpose registers. Special purpose registers can store numbers, but are reserved
for special functions.

CTC controllers have two types of general purpose registers: volatile and
nonvolatile. Volatile registers lose their data when power is removed from the
controller. Nonvolatile registers retain their data when power is removed from
the controller.

The number of volatile registers differs depending on the model of your control-
ler. For information on this, refer to your installation guide. For alist of special
purpose registers, refer to the Register Reference Guide.

Possible uses for numeric registers are
e Storing intermediate results from mathematical equations.
e Maintaining counts of program cycles, parts processed, etc.

e Storing learned (experienced) parameters within intelligent adaptive pro-
grams, e.g., motor positions.

* Maintaining machine history information (e.g., total cycles) in nonvolatile
registers.

Using Numeric Registers in Quickstep Programs

A broad array of instructions are available for storing numbers into registers and
retrieving them. These instructions range from the Srore instruction (st or e
thw _3 to reg_10) to motion control instructions (profil e servo_1
maxspeed=r eg_15).

You can program any instruction that incorporates numeric data to derive data
from a numeric register. This allows you to store calculated datain aregister
(store ain_5 * 100 to reg_10) and then useit in a subsequent instruction
(turn Motor_1 ccw reg_10 steps).

Quickstep allows you to use the same register as both an operand in a math-
ematical calculation and as the destination for theresult (store reg_20 + 1
to reg_20).

When operating parameters (e.g., motor speed and positions, time delays) for a
machine are transferred from an external computer, the numeric registers are a
convenient location for transfer of the information. The computer can load the
data into a specific register and an instruction in the controller’s program can
reference that register (del ay reg_15 sec goto next).

Nonvolatile Registers

Data stored in nonvolatile registers is maintained even during power-down
periods. Thisallowsyou to store long-term data, such as weekly, monthly, or
lifetime cycle counts.

CAUTION:

N\

The provision for maintaining data in nonvolatile registers varies by controller model.
Some controllers use lithium cell batteries. Refer to the specifications for your controller
for battery life information.

Using the Quickstep Programming Language 3-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Numeric Registers

Using Registers

A potential use of nonvolatile registers is to write a program that is capable of
fine-tuning certain parameters (time delays, motor speeds) and sensing the effect
on the process being controlled. You can automatically store optimum, experi-
mentally-determined values and continuously update them in nonvolatile regis-
ters. These parameters could potentially automatically adjust the machine to
accommodate variations in tooling, lubrication, etc. over along period of time.

You can aso use the nonvolatile registers to store parameters from an external
device, such as a computer, which are changed infrequently.

The following paragraphs are examples showing different types of instructions
using registers.
* Transferring numeric information from one location to another within the
controller.
store reg 15 to disp_1
store ain_3 to reg_10
* Performing a mathematical operation and storing the result in aregister.
store twhl 1 * 25 to reg_10
store reg_45 + 500 to reg_45
» Performing arelationa test (>, <, =, >=, <=, <>) using the value in aregis-
ter.
if reg_36 >= 1500 goto next
if reg_51 < reg_50 goto next
* Specifying atime delay.
del ay reg 14 sec goto next
Only registers 1 through 128 can be used for time delays.

» Storing the operating parameters for a stepping motor or servo motor.

profile Mtor_1 (hal f) basespeed=reg 10 maxspeed=
reg 11 accel =reg_12 decel =reg_13

These parameters can be calculated in a computer and transferred to the
controller.

» Specifying the number of steps for Turn MoTor or TurRN Servo instruction,
if desired.
For arelative turn:
turn Motor_1 ccw reg_38 steps

For an absolute turn:
turn Servo_2 to reg_18

Example
The following program is designed to interact with an external computer, using
one of the controller’s registers as a means of communicating new positions for
a servo motor.
[1] I NITIALI ZE
;75 In this programthe conputer can conmunicate a
; new coordi nate position for the servo using
;;; either the serial protocols or an Ethernet
;7 connection. The new coordinate is stored in a
3-12 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

register. After it has sent the coordinate, the
computer sets a flag, indicating that the data
i s ready.

;;; The first step sets up the profile for the
;;; servo notion, using data stored in severa
;;; nonvolatile registers. This data can be stored
;;; by the designer of the program and tuned as
;;; required via serial or network conmmunication

ports.
Servo_1 = servo 1
New Pos = flag 1

Servo_Pos = register 25

<NO CHANGE I N DI G TAL OUTPUTS>

profile Servo_1 servo at position naxspeed=Reg 501
accel =Reg 502 P=Reg 503 | =Reg_504 D=Reg 505

search and zero Servo_1

got o next

[2] WAI T_FOR HANDSHAKE
i, At this step, the controller is waiting for the
;;; external computer to set the flag, indicating
;;; that there is a new servo position waiting in
s, register Servo_Pos.

RN

<NO CHANGE I N DI G TAL OUTPUTS>

noni tor New Pos: set goto next
[3] MOVE_SERVO

;;; Here, the controller knows that the new

;;; position information is available, it initiates
;;; the servo notion.

;;; First, we nust range the value in register

;;; Servo_Pos. The data fromthe conputer is

;;; expressed in thousandths of an inch of linear
;;; travel, but we’ ve previously calcul ated that

;;; the servo nust turn 4 steps to nove its

;;; actuator 0.001 inch. So first, we multiply the

nunber in register Servo_Pos by 4.

<NO CHANGE I N DI G TAL OUTPUTS>

store Servo_Pos * 4 to Servo_Pos

turn Servo_1 to Servo_Pos

cl ear New_Pos

noni tor Servo_1: stopped goto WAI T_FOR HANDSHAKE

Using the Quickstep Programming Language 3-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The Pointer and Phantom Registers

The pointer and phantom registers are a pair of special-purpose registers that
you can use to access most of the controller’s resources. The pointer and
phantom registers are registers 127 and 128 and are used in conjunction with
each other. Register 128 isthe phantom register, and register 127 acts asits
pointer. Register 128 is called the phantom register because it does not actually
exist as aphysical register; it acts as awindow through which other resources
are accessed.

Any instruction referring to register 128 actually accesses another of the
controller’s resources, for example, an input or aflag. By storing the number of
ageneral or special purpose register in the pointer register, the phantom register
can then access the controller resource being pointed to. The specific resource
being accessed is determined by the number of the register stored in the pointer
register. Using this approach you can use this feature to access any of the
controller’s inputs, outputs, numeric displays, the position of a stepping motor,
or other resources.

One of the major uses of the pointer and phantom registersisto allow iterative
(repetitive loop) programs to access a sequential array of inputs, outputs, regis-
ters, etc. When requirements exist for performing the same operations on a
number of I/O points, this technique allows you to dramatically shorten pro-
grams. Possible applications include automatic testing of switches and other
electrical devices or monitoring of a number of identical workstations.

The following tableis a partial list of special purpose registers you can use to
reference controller resources. The first column in the table is the number stored
in register 127, and the second is the controller resource accessed. Refer to the
Register Reference Guide for a more complete listing of specia purpose regis-
ters.

Store in Register 127 Access in Register 128

1-1000 Numeric registers 1 - 1000

1001 - 1999 Outputs 1 - 999

2001 - 3024 Inputs 1 - 1024

7001 - 7016 The position of stepping motors 1 -16
8001 - 8256 Analog output 1 - 256 settings

10001 - 10032 Groups of 32 outputs as a binary number
11001 - 11032 Groups of 32 inputs as a binary number
13201 - 13232 Flags 1 - 32

Specia purpose registers 1001 through 1999 reference the controller’s outputs
from output 1 to 999, respectively. Storing 1018 in register 127 specifies output
18 and storing the number 1 in the phantom register (register 128) turns on the
output. Storing O in register 128, turns the output off. The following instruc-
tions turn output 18 on.

store 1018 to Poi nter
store 1 to Phantom

In the instructions shown in this section, register 127 has the symbolic name
Pointer, and register 128 is named Phantom.

This technique is known as indirect addressing, because the location being
addressed is not explicitly stated in the instruction being executed. Since the
pointer register (register 127) can be incremented as part of a programmed |oop,
you can write a program to go through a series of sequential 1/0O points, perform-
ing the same operation on each set of 1/0.

3-14

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

You can use the phantom register to access any numeric register. For example,
storing 115 in register 127, tells the phantom register to access register 115. You
can use any of the instructions that access the controller’s general purpose
registers to access the phantom register. To the controller, the phantom register
looks like any other register. The difference is that the phantom register is
automatically steered to the resource indicated in the numeric code previously
stored in register 127. The following sample instructions show how to use the
phantom register.

store Reg 10 to Phant om
store Phantomto Aout 3

i f Phantom <> 0 goto next

if Ain_1 >= Phantom goto next
turn Motor_1 to Phantom
del ay Phantom sec goto next

Accessing Digital Inputs and Outputs

Even though inputs and outputs are bi-stable (either on or off) their states are
expressed as a number when accessed via the phantom register. The number 1
indicates that the input or output is on and the number 0 indicates that it is off.
Inputs can only be read via the phantom register, not changed. Outputs can be
either read or changed via the phantom register.

Example

The following example uses the phantom register for an output scanning opera-

tion.

[1] INITIALI ZE
;;; This program exanpl e uses the phantomregister
;;; 1n a programloop. The program sequentially
;;; turns on, then off, each of the controller’s
7, first 32 outputs.
;;; This step stores the nunber of the special
;;; purpose register which corresponds to output 1
;75 (1001) to the pointer register. It then
;;; proceeds into the program |l oop.
::: Poi nter = Register 127
;;; Phantom = Regi ster 128
<NO CHANGE | N DI G TAL OUTPUTS>
store 1001 to Pointer
got 0 next

[2] OQUTPUT_ON
;;; The program | oop starts here. The first tine
;;; this step is executed, the pointer register
;;; contains the value 1001, neaning that it is
;;; pointing to digital output 1.
;;; By storing the value 1 to the phantomregister
7, we are, in effect, turning output 1 ON
::: The second tinme through this |oop, the pointer
;;; register will point to output 2, so that is
;;; the output which is turned on. Each successive

Using the Quickstep Programming Language 3-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The Pointer and Phantom Registers

Programming Hints

[3]

;;; iteration of the program | oop turns on the next
;;; output in the sequence.

RN

<NO CHANGE I N DI G TAL OUTPUTS>

store 1 to Phant om
delay 1 sec goto next

OUTPUT_OFF

77 This step first turns off the output we turned
on in the previous step. Since the phantom
register is still pointing to the sane out put
we turned on in the previous step, we can do
this by storing the value 0 into the phantom
register.

; Then, before noving to the next output to be

; cycled, we have the programtest to see if

; we've reached the last output in our sequence.
; The If instruction checks to see if we've just
; cycled output 32 on and off and, if so, takes
; us out of the loop. If not, the store

; instruction increnents the pointer register

; and returns to step OUTPUT_ON

LI}
1
1
LI}
LI}
1
[N
(IR}
(IR}
1
1
LR}
(IR}
1
1
()

<NO CHANCE I N DI G TAL OQUTPUTS>

store 0 to Phant om

if Pointer >= 1032 goto DO _SOVETH NG _ELSE
store Pointer + 1 to Pointer

goto OUTPUT_ON

When a program loop is written, there is usually some condition programmed for

leaving the loop. The Ir instruction in step OUTPUT _OFF tests the pointer
register to determineif it is pointing to output 32.

Tracking Multiple Resources

In instances where the 1/O points are being accessed in a program loop, you may
need to maintain more than one pointer for the phantom register. For example,
each pass through a program loop could require the actuation of three outputs
and the monitoring of three inputs, all of which require indexing for each new
cycle.

You can accomplish this by using some of the general purpose numeric registers

for storing a pointer for each I/O point to be accessed. Just prior to the required

access, the program stores the number from that register into register 127. At the
end of each cycle, al of the general-purpose registers being used to store point-
ers can be incremented individually.

3-16

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Stepping Motors

Quickstep provides direct support for the control of stepping motors through a

series of stepping motor modules that plug directly into your controller and are
programmed using Quickstep instructions. The stepping motor instructions are
high-level instructions and allow you to:

Set or change stepping motor motion parameters
Establish a home or zero position for the motor
Start the motor in motion

Stop the motor motion

Quickstep supports relative and absolute turn instructions.

The stepping motor instructions can derive some or all of their parameters from
any of the controller’s numeric resources. For a description of the stepping
motor instructions, see Chapter 2, Sepping Motor Instructions. Some stepping
motor modules must be programmed using servo motor instructions. Refer to the
Installation and Applications Guide for your stepping motor module.

Since the stepping motor control modules contain independent processors, the
controller can continue executing a program during a turn instruction, even
though the motor may still be in motion. This gives you more flexibility for
multi-axis applications or for the preparation of tooling when aworkpieceisin
motion. The modules also keep track of the motor’s position at all times,
allowing you to program absol ute (coordinate-based) positioning instructions.

When using on-board motor drivers, the modules automatically generate the
sequence of pulses necessary to turn a stepping motor in either full-step or half-
step mode.

HINT:

We recommend using half step mode for most applications, since it results in smoother opera-

tion of the motor.

Programming Stepping Motors

Example

A typical sequence for controlling a stepping motor is as follows:
» Initialize the motion parameters using a ProriLE MoToR instruction.

» If the absolute position of the motor isimportant, home the motor using
either the ZEro MoToR Or SEARCH AND ZERO MOTOR instruction.

* Initiate motor motion using a TurN MoToR instruction.

e Wait for the motor motion to stop.

The following sample program shows the typical sequence for stepping motor
motion and control described previously. For an additional example using
stepping motors, see the sample programsin Appendix A.

[1] INITIALI ZE
;7 The profile instruction provides initial operating

;;; paranmeters for the notor. We'll then search for the
;;; motor’s hone position. Once this is found and the
;;; motor stops, we'll proceed to the next step.

<TURN OFF ALL DI G TAL QUTPUTS>

Using the Quickstep Programming Language 3-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Stepping Motors

profile Mtor_1 (half) basespeed=200 nmaxspeed=500
accel =400 decel =400

search ccw and zero Motor 1

noni tor Motor_1:stopped goto Next

[2] TURN_MOTCOR
;;; Here, we'll start the notor turning using an
;;; absolute turn instruction. The notor will nove to
;;; a position 1000 steps clockwi se fromthe hone
position sensed in the previous step.

<NO CHANCE I N DI G TAL QUTPUTS>

turn Motor_1 to 1000
noni tor Motor _1:stopped goto REST OF SEQUENCE

Subsequent Turn MoTor instructions will use the motion parameters established
in the previous profile instruction for that axis. You can program new profile
instructions to create different speeds or accel eration/decel eration rates for
different moves as many times as necessary during a program. One method of
changing parameters in a profile isto place the profile instruction in a program
loop that references aregister or Data Table for various motion parameters. This
is a convenient technique for programming different parameters for along series
of motions.

When amotor isin motion, the controller should not execute another turn or
profile instruction for that motor or a software fault will result. After program-
ming a TurRN MoToRr instruction, you should have the controller execute a
MoniTor MoTor instruction to see if the motor is stopped prior to any subse-
guent turn or profile instructions.

Reading Stepping Motor Position

CTC controllers provide a series of specia-purpose registers that display the
position of a stepping motor. The register numbers are 7001 through 7016 for
motor axes 1 to 16. Any instruction that can access a numeric register (e.g.,
STORE) Can access these registers.

When using a Model 2205 Stepping Motor Control Module, access these regis-
ters when the associated motor is stopped. |f the motor is still running, the
controller returns a value of -1 for the position.

Establishing a Home Position

The SearcH AND ZERO instruction establishes a home position for a stepping
motor. Using the SEarcH AND ZERO instruction you can start the motor turning in
either a clockwise or counterclockwise direction. The stepping motor continues
turning in that direction until a switch closure is sensed on the motor module’s
home input. To get amotor in the home position consistently, perform a multi-
step homing sequence. Search and zero the motor once; then search and zero the
motor again at a slower speed. Re-homing the motor a second time at the slower
speed provides a more consistent home position. The following example shows
how to search and zero a motor and find the home position consistently:

[55] BEG N_HOVE_SEQUENCE
; Begin initial hone sequence for notor 1

<NO CHANCE I N DI G TAL OQUTPUTS>

3-18

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

profile notor_1 (half) basespeed=800 maxspeed= 2000
accel =400 decel =400

search ccw and zero notor _1

nonitor notor_1 stopped goto next

[56] MOVE_OFF_HOVE
- Move off the home switch in order to
;. re-home the notor

<NO CHANGE I N DI G TAL OQUTPUTS>

turn notor_1 to 50
nonitor notor_1 stopped goto next

[57] FI ND_HOVE
;;; Set the profile for slower speed then
;5 re-home notor

<NO CHANGE I N DI G TAL QUTPUTS>

profile notor_1 (half) basespeed=100 nmaxspeed=200
accel =400 decel =400

search ccw and zero notor_1

nmoni tor notor_1 stopped goto next

Programming Concepts

The following list contains hints and notes that may be helpful in understanding
some of the conceptsinvolved in writing stepping motor control programs using

Quickstep.

* The ProriLE MoTor instruction can aso derive parameter values from a
changeable source, such as an operator interface or athumbwheel. The
actual motion parametersin use are only updated when the profile instruc-
tion isre-executed. If you wanted to update parameters each time through
the loop, you would need to include the ProriLE MoToRr instruction within
the program loop.

» Although, it is common practice to include a MoniTor MoTor instruction in
each step with a motor motion instruction, thisis not a general requirement.
MoniTor MoToR instructions can serve two purposes:

1. To avoid sending the motor a new motion instruction while the previous
motion is still under way (This can cause a CPU software fault).

2. Toavoid mechanical conflict (e.g., insuring that the motor has stopped
prior to sending the stamping press down).

* Inprogramsinvolving batch production of many workpieces, CTC recom-
mends that you SearcH AND ZERO the motor each cycle to insure that me-
chanical interference hasn't caused the motor to lose position. If the addi-
tional time required to rehome the motor every cycleis aproblem, add a
cycle counter to the program to jump to a SEARCH AND ZERO instruction every
nth cycle, minimizing the number of potentially defective workpieces.

* When using the controller’s dedicated stop function, any stepping motor
motions that have already been initiated will continue to their completion. If
thisis undesirable, you can program a separate task to create a customized
stop function that invokes a Stor MoTor instruction.

Using the Quickstep Programming Language 3-19

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Servo Motors

Quickstep provides direct support for the control of servo motors through a
series of servo control modules that plug directly into your controller and are
programmed using Quickstep instructions. The servo instructions are high-level
instructions and can derive some or all of their parameters from any of the
controller’s numeric resources. They allow you to:

Set or change servo motion parameters

Establish a home or zero position for the servo

Program relative, absolute, and continuous velocity turn instructions
Start the servo in motion

Stop the servo motion

The ProriLE Servo instruction gives you control of acceleration, deceleration,
velocity, and servo closed loop gain characteristics. CTC's servo control mod-
ules contain a programmabl e compensation filter which provides program
control over the stability characteristics of the servo and allows you to write
programs to automatically compensate for changesin the dynamics of the servo
system.

Since our servo control modules contain independent microprocessors, the
controller’s program can continue execution after aturn instruction, even though
the servo may still be in motion. This provides freedom for multi-axis applica-
tions or for the preparation of tooling while aworkpieceis still in motion. In
addition, the controller can read the servo error and instantaneous servo position
even while the servo isin motion, providing a useful tool for sensing perfor-
mance.

Some stepping motor modules must be programmed using servo motor instruc-
tions. Refer to the Installation and Applications Guide for your stepping motor
module.

Programming and Initiating Servo Motions

The two major instructions for setting up and initiating servo motions are
ProriLE SErRvo and TurN Servo. The ProriLE Servo instruction establishes the
following motion parameters: holding mode, maximum speed, acceleration rate,
and proportional, integral, and differential compensation filters. All the numeric
parameters in a ProFiLE Servo instruction can be derived from any of the
controller’s numeric resources, which facilitates several important capabilities:

» Tuning aservo using datain numeric registers, from an operator interface,
from a Data Table, etc.

* Modifying the servo parameters by observing the servo performance and
automatically modifying certain parameters.

* Modifying servo parameters with an external PC using CTCMON.

The Turn Servo instruction initiates servo motion. There are three different
modes of servo motion:

» Relative —the servo turns a specified number of steps clockwise or counter-
clockwise from the servo’s current position. For example,

turn servo_1 ccw 500 steps

NOTE: A step refers to one edge transition on either encoder input (A or B) for that axis. For example,
a 500 line encoder generates 2000 steps.

3-20 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Programming Notes

» Absolute — the servo turnsto a new absolute, or coordinate, position based
on some predetermined zero reference point. For example,

turn servo_1 to 500

Once a zero or home reference location is set, all subsequent absol ute
instructions specify a coordinate position based on the zero position. The
servo control module automatically determines the direction and distance to
turn the actuator to the new position.

» Velocity — Begins continuous clockwise or counterclockwise motion. The
servo remains in motion until the controller executes a Stop Servo instruc-
tion or the servo control module senses a Stop input signal. For example,

turn servo_5 cw

Example
The following sample program shows the typical sequence for servo motor
control. For additional examples, see the sample programsin Appendix A.

[1] INITIALI ZE
;:; The Profile conmand establishes the initia
;;; motion parameters for the servo. W then use
;. the Search and Zero conmmand to find the servo's
;;; home reference position. The Mnitor conmand
;;; determ nes when the servo has sensed hone and
;;; come to a stop.

<TURN OFF ALL DI G TAL QUTPUTS>

profile servo_1 servo at position maxspeed=2000
accel =500 P=8 =250 D=219

search and zero servo_1

nmoni tor servo_1:stopped goto Next

[2] MOVE_THE_SERVO
;7: The Turn instruction belowis an “absolute”
7, turn; in other words, the servo will turn to a
;;; position 5100 steps forward fromthe predeter-
;;; mned hone position. Once again, we'll wait for
;;; the notion to be conpl ete before continuing.
7, Alternatively, you may continue with the
7,5 programwi t hout waiting by substituting a
;5 goto next instruction.

<NO CHANGE I N DI G TAL OUTPUTS>

turn servo_1 to 5100
noni tor servo_1: stopped goto Next

Once the controller has executed a turn instruction for a specific axis, no subse-
guent turn instruction can be executed for that axis until the first motion has
ended. Executing a second turn instruction results in a software fault halting the
execution of the program.

Unlike the profile instruction for stepping motors, the controller can execute a
new ProriLE SErvo instruction for a specific axis when the servois till in
motion. The new ProriLE Servo instruction can change any parameter except the
acceleration rate.

Using the Quickstep Programming Language 3-21

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Servo Motors

Tuning a Servo

You can use this programming technigue when operating a servo in velocity
mode to make periodic changes in the velocity of the servo actuator. A ProrILE
Servo instruction specifying a new maximum speed causes the servo to acceler-
ate or decelerate to the new speed. For example, if the current maximum speed
is stored in anumeric register, incremental changes in speed could be pro-
grammed with instructions such as:

store reg_10 + 400 to reg_10
profile servo_1 naxspeed=reg 10

This type of change could be made in response to any condition the controller is
capable of sensing or deriving.

All servos have some form of sensor, typically an encoder, that provides position
and velacity feedback to the controller. The servo controller compares the
servo's current position to a calculated ideal instantaneous position and, based
on the difference, sends a corrective signal to the actuator. CTC's servo control
modules use the on-board microprocessor to perform this comparison.

Theideal position mentioned previously is not the ultimate target position for
the complete servo motion being executed. Instead, it is the position where the
servo motor should be at that instant to successfully execute the desired motion
profile. This motion profile takes into account the desired acceleration and
deceleration characteristics of the actuator in the real, mechanical world.

dasiraed position

FID

aciual position

ancode

Once the difference between the ideal and actual positions (instantaneous error)
is known, a correction signal is sent to the actuator. The strength of this correc-
tion signal, for a given amount of error, isacritical parameter in any servo
system. The correction signal is determined, in part, by a multiplication factor
applied to the error. Thisfactor, called the system gain, is specified in the Servo
Profile instruction as the P parameter.

Using the P Parameter

If the P parameter or gain is set too high, the correction signal sent to the actua-
tor causes it to overshoot the ideal position. This resultsin a sensed error in the
opposite direction that, in turn, is disproportionately corrected. The result of this
instability may be continuous oscillation around the ideal position.

If the P parameter is set too low, the resulting correction signal isinsufficient to
fully correct the position error. The result is a slow, inaccurate servo system.
Because of this, there is atrade-off between accuracy and stability.

3-22

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

By applying afilter to the sensed error signal, you can maintain stability at a
higher gain factor. The filter can dampen the tendency to oscillate while allow-
ing ahigh DC gain and resultsin high accuracy. The microprocessor in the
servo control module implements a filter for this purpose.

Using the | Parameter

The additional parameters used in programming this filter arethe | (integral) and
D (differential) parameters. The | parameter is useful to obtain increased
accuracy at low frequencies, or when stopped. The | factor integrates, or builds
up, acorrective signal in response to steady-state error. A greater | factor will
cause the filter to build up a corrective signal for even small amounts of error,
greatly increasing the terminal accuracy of each move.

Using the D Parameter

The D parameter, on the other hand, senses and responds to rapidly changing
rates of error. It istherefore most useful in increasing system response to
varying loads and frictions at high speeds.

Using the P, I, and D parameters to tune a servo system requires knowledge of
servo system basics. CTC has application notes available to assist in the pro-
cess, aswell astutorials on servo theory to provide some necessary background
information. We encourage you to take advantage of thisinformation.

Some models of CTC servo control modules have advanced filters offering a
choice of compensation techniques, including feed forward compensation. For
more information about these functions, refer to the installation guide for your
control module.

When using the Servo Profile command in conjunction with amodel 2206
Stepping Motor Control Module, the P, I, and D parameters do not apply and
may be ignored.

Using the Servo Position and Error Parameters

The instantaneous position and error of a servo can be easily accessed by your
Quickstep program. Thisinformation provides an important set of tools for
tuning, control, and diagnostics.

A few of the ways in which thisinformation can be used include:

* The servo position may be used to trigger events. For example, you can
commence a servo motion in velocity mode, then trigger a change in velocity
or perhaps a motion on another axis when the servo reaches a specific
position. This may be done with an instruction such as:

if servo_1:position >= 15000 goto next

A number of such instructions may be used throughout a servo move to
trigger avariety of events.

* Theservo error may be used as atuning aid. By observing the servo error
throughout amotion (e.g., store servo_l:error to disp_2)youcan
detect portions of a move where excessive error isbuilding. For example, if
error is high during acceleration, you may be attempting to accelerate at a
rate faster than your motor can accommodate. If, on the other hand, the
error starts building as you reach maximum speed, and then continues to
build, you may be attempting to run faster than your motor allows. Such
problems often masquerade as instability; observing the servo error can help
you determine what is really happening.

Using the Quickstep Programming Language 3-23

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Servo Motors

* Often, excessive servo error can be used to indicate ajam condition. If a
physical obstacle prevents a servo from keeping pace with your motion
command, error will build quickly. Thismay be detected with afault
monitoring program containing an instruction such as:

if servo_l:error >= 100 goto JAM DETECTED

Establishing a Home Position

The SearcH AND ZERO instruction establishes a home position for aservo. Each
servo axis on a servo control module has a dedicated home input that isused in
conjunction with the SearcH AND ZERO instruction to set a home position for that
axis. The precise function of this instruction depends on the servo control
module being used. For information on using the SEARcH AND ZERO SERVO
instruction, refer to the instalation and applications guide for your servo module.

3-24

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The Data Table

The Data Table is atwo-dimensional array of numbers that can be stored in
memory along with your Quickstep program. The numbersin a Data Table can
range from 0 to 65,535. For the maximum allowable size of a Data Table, refer
to the specifications for the controller model you are using. The following
illustration shows an example Data Table.

% Up to 32 columns wide —————p
= Column 1 Celumn 2 Calumn 3
% Row 1 1500 100 10000
g Row 2 2100 110 10050
= Row 3 1200 120 10075
.‘,-.é’ Row 4 1950 130 11000
3"—3: Row & 1632 140 11050
T | Rowé 1630 150 11075
E Row 7 1628 160 12000
‘§ Row & 1626 170 12050
2 | Rowd 500 17600 12075
EE Row 10 10000 17700 13000

Storing information in the Data Table can make your program easier to maintain
by keeping related numeric parameters together in an organized format. You can
change the datain a Data Table by using the Data Table editor (part of the
Quickstep Editor), by instructions in a program, or by remote loading of data
from an external computer as supported by the CTC serial protocols or by using
CTCMON.

There are two major uses for the Data Table:

* Initerative (repetitive loop) programs, you can store parameters which must
change for each iteration in rows of the Data Table. Each time through the
loop, your program would “point” to the next row to obtain its data.

* Flexible assembly machines must often be reconfigured to manufacture a
variety of products. The Data Table allows you to store the parameters for
multiple products in the rows of the table. To make a specific product, you
point to the appropriate row.

An additional use of the Data Table isto store results information for each
workpiece being produced as your program runs. This information may then be
transferred to a remote computer on a batch basis.

How you use a Data Table is determined by the referencesto it within your
Quickstep program. The dataitself may be used as motor motion parameters
and coordinates, analog set points, time delay durations, and other manufactur-
ing parameters. Thereisalso aspecial function in most CTC controllers for
sending arow of the Data Table out through the controller’s seria port as an
ASCI| message.

Using the Quickstep Programming Language 3-25

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The Data Table

Accessing the Data Table Using the Row Pointer

Example

In many applications, you will want to use information from the Data Table on a
row-by-row basis. The easiest way to do thisis by using the row pointer,
register 126. The number stored in this register determines the row from which
you'll obtain data when you access the Data Table using col_1, col 2, etc. For
instance, the following sequence of instructions resultsin servo_1 turning to the
position stored in Data Table row 15, column 2:

store 15 to reg_126
turn servo_1 to col 2

The benefit of using this approach is that you can select the desired row of the
Data Table at one point in your program. You can then program a number of
subsequent instructions to use data from the various columns of that row.

One use for thistechnique is for programming an X-Y table, for positioning a
workpiece using two servo motors controlling the X and Y axes of motion. The
sets of coordinates for these axes can be stored in successive rows of the Data
Table, using column 1 for the X coordinate and column 2 for the Y coordinate.

After initially pointing to row 1, a short program loop could be written that
would:

1. Send servo_1to the position in col_1 and send servo_2 to the position in
col 2.

2. Perform the inspection, drilling or some other function on the workpiece at
the new location.

3. Movetherow pointer to the next row by adding 1 to the value in register
126.

4. Return to the beginning of the loop to process the next row.

Using the Data Table, what could have been a lengthy program with position
information scattered throughout, has become a very compact loop. The pro-
gram stores al the position information separately where it can be easily main-
tained.

Storing Data Using the Row Pointer

For 2600 series and higher controllers, you can store data to a specific row of a
data table using the row pointer. The following instructions store a value (368)
in row 5, column 8 of the Data Table:

store 5 to reg_126
store 368 to col _8

Using Row and Column Pointers

In the example using the row pointer, it varied for each new cycle and the
column designation was fixed. You can also reference the Data Table so that
both the row and column numbers are expressed as variables. Register 131
points to the active row and register 132 points to the active column. You then
use a special purpose register (register 9000) to access the target Data Table

3-26

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

location. The following instructions store the position of a servo motor in the
fourth row, third column of a Data Table:

store 4 to reg_131
store 3 to reg_132
store servo_1:pos to reg_9000

Example - Using the Data Table in Quickstep Programs

A broad array of instructions can obtain and use the numeric data stored in the
Data Table, for example:

store col 1 to dis_1
profile servo_1 maxspeed=col _8

The following example uses numeric values from the Data Table in math calcu-
lation:

store col _1 + 500 to reg_10
turn Motor_1 ccw reg_10 steps

Srore instructions can perform a math function and store the result in any
numeric destination for use in a subsequent instruction. This allows you to store
datain the Data Table in engineering units (e.g., inches of travel, degrees C).
Later, your program can convert it into units required by the controller for motor
motions, analog values, etc. This can increase the maintainability of your
program.

A program can also use an I instruction to test a value in the Data Table against
another source of numeric data. If the test is satisfied, the instruction takes the
controller to a new step.

if ain_1 >= col_1 goto next
if servo_1:pos < col_3 goto next

You can use avaluein the Data Table to generate a time delay, with the number
in table representing time in units of minutes, seconds, or hundredths of seconds.

del ay col 4 sec goto next

You can derive any or all of the operating parameters for a stepping or servo
motor.

profile Mtor_2 (half) basespeed=col _1 maxspeed=col _2
accel =col _3 decel =col _4

In arelative turn instruction:

turn servo_2 ccw col _1 steps

In a absolute turn instruction:

turn Motor 1 to col 1

For programming examples using the Data Table, see Appendix A.

For information on using the Data Table for message transmission, refer to the
Application Note, ASCIl Message Transmitting with CTC Controllers.

Using the Quickstep Programming Language 3-27

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Analog Inputs and Outputs

Analog signals are signals in which information is carried in the form of a
voltage value (or, sometimes, a current value). While digital signals are either
on or off at any given time, analog signals can vary continuously within arange.

Quickstep allows analog data to be accessed through a variety of analog input
and output modules. Modules are available with resolution ranging from 10-bit
(1 part in 1024) to 15-bit (1 part in 32,768), and with a number of different
voltage range options. Possible uses for analog input and output points include:

* Monitoring and/or set-point control of temperatures, pressures, levels, etc.
* Acquiring datafor statistical process control.

e Controlling analog actuators, e.g., proportionate solenoid valves, motor
speed controls, etc.

* Programmable control of mass flow controllers.

Representing Analog Signals in Quickstep

Microprocessors are digital devices and can only process analog information
when it is expressed in the form of numeric data. An analog input module
converts an input voltage into a numeric representation using a process called
analog-to-digital (A/D) conversion.

For example, a module with 12-bit resolution is capable of resolving 1 part in
4096. If the allowable input voltage range is 0 to +10 volts, the module can
sense a change as small as 2.44 mv (.00244 volt). Although the numeric value
created directly by the conversion is a number from 0 to 4095, the controller
automatically ranges this value into a number from 0 to 10,000 to make pro-
gramming more convenient. A voltage level of 2.5 voltsis represented by the
value 2,500.

NOTE:

Some high-resolution modules will represent 2.5 volts as 2,500,000. Refer to the installation
and applications guide for your analog I/O module.

Using Analog Input Data

Any instruction that uses numeric data can use analog input data. For example,
the value of an analog input can be frozen by storing it to a numeric register
using a Store instruction, store ain_1 to reg_10. You can useamath
instruction to scale the analog input value and store the result to a numeric
display,store ain_1 * 25 to dis_1.

NOTE:

Such a transfer only occurs once each time this instruction is executed. No permanent rela-
tionship is established between the analog input and the display. To continuously refresh the
displayed data, the instruction would have to be continuously executed in a program loop.

You can also test an analog value by comparing it to another source of numeric
datausing an IF instruction,i f ain_1 >= reg_10 goto next.

Motion control instructions such as turn or profile can also derive numeric data
from analog input values. Usually a math instruction is necessary to scale the
analog data into an appropriate range of values.

3-28

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Analog Outputs

Analog outputs create a voltage level which performs some controlling function
in the process or machine being controlled. For example, you can use an analog
output to control the intensity of a heater (using a proportionate controller) or
the feed rate of avibratory feeder. Analog outputs can aso be used to control
the speed of a motor drive system or provide control signals for mass flow
controllers.

Aswith analog inputs, analog output values are represented numerically with
values that tranglate easily to voltage levels. For example, avalue of 5000 sent
to an analog output will result in avoltage level of 5 volts appearing on that
output. This may be done with a Srore instruction, for example:

store 5000 to aout_1

You can use any source of numeric data to derive the number sent to an analog
output. For example, the instruction, store reg_10 to aout _1, readsthe
value from register 10 and creates a proportional voltage level at analog output
1

NOTE: As with analog inputs, such an instruction only acts once and does not create any ongoing
relationship between the register and the analog output. To continuously update the analog
output, the instruction must be placed in a program loop that continuously re-executes it.

You can use amath instruction to calculate a numeric value and send the value
to an analog output, for example:

store thw 1 * 25 to aout 1

You can use one or more such math instructions to convert a value expressed in
engineering units to the desired voltage level that must appear at an analog
output.

Using various combinations of time delay, input monitoring and math instruc-
tions, you can establish complex interrelationships between analog or digital
inputs and analog outputs. You can even program analog ramping viathe
creation of a program loop that, based on atimed interval, gradually increases an
analog output value.

For a programming example, see Appendix A.
Programming Hints

Using If Instructions

The If instruction allows any source of numeric data, including an analog input,
to be tested with any of the six possible relational tests, greater than (>), less
than (<), equal to (=), greater than or equal (>=), less than or equal (<=), not
equal to (<>). If atest is satisfied, the instruction takes the controller to a new
step of its program.

if ain_5 >= 1500 goto next
if ain_1 < ain_2 goto next

The value from an analog input can be tested against any other numeric value
accessible to the controller.

Using the Quickstep Programming Language 3-29

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Analog Inputs and Outputs

Using a Delay instruction

You can use the value from an analog input to generate atime delay with the
numeric value representing time in units of hours, minutes, seconds, or hun-
dredths of a second:

delay ain_1 sec goto next

For typical applications, math commands would first be used to scale the value
appropriately, storing the intermediate result in aregister:

store ain_1 - 500 to reg_10
del ay reg_10 sec goto next

Using Special-Purpose Registers

The controller can also access analog outputs via a set of special-purpose
registers. Thisallows you to use the Phantom register to indirectly address the
analog outputsin arepetitive loop. References to registers 8001 to 8256 actu-
ally access analog outputs 1 through 256, respectively. Referencesto registers
8501 to 8756 give you read only access analog inputs 1 through 256, respec-
tively.

3-30 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Thumbwheel Arrays and Numeric Displays

Quickstep supports high-level access to thumbwheel arrays and numeric display
modules. These devices are connected to your controller via athumbwheel and
display interface module. The interface modules allow you to avoid significant
programming effort and the use of large quantities of

1/0O. With this approach, thumbwheels and displays may be used with any
Quickstep instruction that requires or provides numeric data.

Possible uses of thumbwheels and displays include:
* Entering and reading numeric parameters.
* Entering and displaying batch counts or footage counts.

* Entering and displaying analog information, such as pressure, weight, and
temperature.

* Entering motor motion parameters such as velocity or distance, for runtime
tuning of operation.

* Modifying motion parameters for initial set-up of a servo or stepping motor
system.

Examples of instructions referencing thumbwheels and displays are shown
below. The controller automatically handles all of the scanning of digits and
decoding of data, simplifying the programming effort required.

store thwh_1 + 500 to reg 15
turn Motor_1 ccw thw _1 steps
store ctr_1 to dis_1

Prescaling Values Automatically

Freguently the numeric information used in a control program is not expressed
in units that are convenient for the operator of an automated machine. For
example, the motor motions are expressed in steps within the controller’s
program, while the machine’s operator may think in terms of thousandths of an
inch.

You can use math instructions to prescale values derived from thumbwheel
arrays or rescale values sent to numeric displays. For example, in a case where a
stepping motor must be driven 2 steps for each thousandth of an inch of resulting
linear travel on a machine, the following sequence of instructions would allow
the operator to enter the motion as thousandths of an inch:

store twhl _1 *2 to reg_10
turn Motor_1 cw reg_10 steps

Register 10 stores the result of the multiplication until it is used by the Turn
Mortor instruction. You can program both instructions in the same step, as long
as the math instruction isfirst.

Sometimes a program requires more than one math instruction to properly scale
avalue. For example, a pressure transducer provides a 0.5 to 5.5 Volt signal
which represents a pressure range from 0 to 500 PSIG. Thissignal isread by the
analog input of the controller as a number from 500 (0.5 Volt) to 5500 (5.5
Volts). For information on analog inputs, see Using Analog Inputs and Outputs.

Using the Quickstep Programming Language 3-31

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Thumbwheel Arrays and Numeric Displays

To display this value in units of PSIG, we need to offset and scale the value to
properly range it. This could be accomplished using the following instructions:

store ain_1 - 500 to reg_20
store reg 20 / 10 to disp_1

The first instruction reads the signal from analog input 1 and then removes the
offset of 500 prior to storing it in register 20. The second instruction ranges the
valuein register 20 to a number from 0 to 500 by dividing the number by 10.
The result of this math operation is then sent to the display.

For programming examples showing thumbwheel arrays and displays, see
Appendix A.

Accessing Four-digit Displays Using Special Purpose Registers

You can also access a numeric display by storing a number to special purpose
registers 3001 to 3016 (representing displays 1 through 16). Thisalowsthe
displays to be accessed using the Phantom register or from a remote computer
using CTC's serial communications protocols or CTCMON.

For example, st ore 3820 to reg_3002, displaysthe number 3820 in
numeric display 2.

Using Eight-digit Thumbwheels

The controller views eight-digit thumbwheels and numeric displays as a pair of
four-digit devices. Because of this you must read the number from an eight-digit
thumbwheel as two separate four-digit numbers.

In the following example, the most significant four digits of the thumbwheel
array are connected in position twhl_1, and the least significant four digits are
connected in position twhl_2.

store twhl _1 * 1000 to reg_10
store reg_10 + twhl _2 to reg_10

Register 10 then contains the eight-digit value read from the thumbwheel array.
Using Eight-digit Displays

A series of special purpose registers (registers 4001 to 4016) provide accessto
eight-digit numeric displays. Any two successive four-digit display connections
may be used to connect an eight-digit numeric display.

Register 4001 automatically accesses an eight-digit display connected in posi-
tionsdisp_1 and disp_2. To access an eight-digit display connected in positions
disp_2 and disp_3, register 4002 would be used, and so on.

The following example sends the current count stored in counter 1 to an eight-
digit display connected in positions disp_3 and disp_4:

store ctr_1 to reg_4003

Registers 4001 to 4016 are write-only registers. The information in them cannot
be read by subsequent instructions.

Setting a Decimal Point

A fixed decimal point may be displayed on any four- or eight-digit numeric
display. Thisisaccomplished by using special purpose registers 6001 to 6016,
representing four-digit displays 1 through 16.

3-32 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

For example, theinstruction, st ore 3 to reg_6002, displaysadecimal point
on display 2 in the third position. Therefore, the number 9999 would appear on
the display as 9.999.

When setting a decimal point on an eight-digit display, use the register corre-
sponding to the least significant four digits. For example, to display adecimal
point in the fifth position of an eight-digit display connected in positionsdisp_1
and disp_2, use the instruction:

store 5 to reg_6001
In this case, the number 1234567 would appear as 12.34567.

When using a decimal point, the display automatically shows zeros for unused
digitsto the right of the decimal point, e.g., .00012.

Using the Quickstep Programming Language 3-33

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Dedicated Inputs

You can assign the first four inputs connected to your controller as dedicated
functions. They are asfollows:

* Sart — Starts or continues execution of a program
* Stop — Stops the execution of a program in place

* Reset — Re-initializes the controller and starts executing the program at the
first step

* Step —Advances the controller one step in the program

These functions are enabled as part of the programming process, using the
Parameter editor. Once programmed, they are triggered automatically when an
external switch connected to the appropriate input closes. The inputs are active
at every step of your Quickstep program, subject to the priorities and rules listed
for each input. (See the following paragraphs.)

Start Input Functions

The Start input causes the controller to begin or continue the execution of its
program from its current step onward. If multiple tasks are active, al tasks start
executing again. The Start input only functions when the controller is stopped:

* At power-up
* Inresponse to a stop instruction
* Inresponse to stop signal from the dedicated Stop input

If, during the execution of a program, the controller is stopped and then restarted
using the dedicated Start input, each task continues based on the following
priorities:

» If thereisaMoniTor instruction whose conditions are already satisfied when
the controller is restarted, the controller jumps to the step destination
specified by that instruction. If there is more than one such instruction, the
first one occurring in the step takes precedence.

» If there are no MoniTor instructions satisfied in the step, any DeLAy instruc-
tion in the step isinstantly timed out, and the controller jumps to the step
specified by the DeLay instruction

The controller ignores the dedicated Start input when:

e Itisalready running
* The Stop input has a continuous switch closure applied
* The dedicated Reset input has a continuous switch closure applied

If you do not select Start on Input #1 from the Parameter editor, the controller
automatically wakes-up running at step one of its program when power is

applied.

Stop Input Functions

The Stop input causes the controller to stop executing its program. Any tasks
currently running are suspended at their current step, and no further progressin
any of these tasks takes place.

When the Stop input halts the controller, the following rules apply:

* Any stepping motor or servo motions that have begun will continue to
completion. A velocity mode instruction will continue indefinitely.

3-34

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The controller will begin executing its program, in the step that was active,
when you restart the computer after a Stop input. If you also triggered the
Reset input, the controller begins executing its program at the first step
when it is restarted.

When the Stop input is active, the Start and Step inputs are inactive, but the
Reset input is active.

WARNING! In any circumstances where human injury or substantial economic damage is possible,
you must use a separate, overriding method to implement emergency stop functions.
A Never use an automation controller to implement back-up safety circuits. Refer to the

Application Note, Thinking about Safety, for further information.

Reset Input Functions

The Reset input re-initializes the controller. The Reset input is active whether
the controller is stopped or running. Triggering the Reset input causes the
following actions:

Cancels al tasks, and the controller returnsto first step of the program.

Turns off al outputs, and then turns on only those specified in first step of
the program.

Resets all volatile general-purpose registers and counters to zero.

Terminates all counters previously established with Start Counter instruc-
tions.

Blanks all numeric displays.

Clearsal flags.

Stops all stepping motors.

Resets al high-speed counting modules
Resets, i.e., de-profiles, all servos.

Turns off the outputs of any customization boards in the system.

The controller remains in the state described above as long as the reset input is
held active. The Reset input functions as follows:

Step Input Functions

If the controller is running at the time of the reset, it continues to run from
the first step in the program when the reset signal is removed.

If the controller is stopped at the time of the reset, it remains stopped, but at
thefirst step in its program.

If the controller receives a Stop input signal when the Reset input is active,
the controller stops.

When the Reset input is active, the controller ignores the Start and Step
inputs.

The Step input performs ajog function, allowing the controller to advance one

stepinits program. If multiple tasks are running, each task is allowed to ad-

vance one step. The Step input is active only when the controller is stopped,

and

the controller automatically stops again once the single step has been executed.

Using the Quickstep Programming Language

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

3-35

Using Dedicated Inputs

The Step input does not function when the controller is running or when the
either the Reset or Stop inputs are held active.

After the Step input is toggled, the controller makes one pass through the current
step of each activetask. The Step input functions as follows:

* If the current step contains one or more MoniTor instructions that are
satisfied, the first such MoniTor instruction causes the controller to proceed
to anew step.

* If no MoniTor instructions are satisfied and a DeLAy instruction exists within
the step, the time delay isinstantly timed out and the controller jumps to the
specified step.

* |If any tasks are allowed to proceed to a new step as the result of the Step
input, the controller executes the output instructions and other instructions
in the new step, but does not execute any instructions capable of taking the
controller on to another step.

If any task does not contain instructions that, according to the above rules, allow
it to proceed at the instant the Step input signal is applied, the opportunity to
proceed to the next step islost for that task until the Step input is released and
pressed once again. The Step input does not arm the controller to proceed at
some future time. It only allowsit to proceed, if permitted by specific instruc-
tions within a step, during the instant the Step input is first activated.

WARNING! If your program relies upon the sensing of an input condition to stop the progress of an
actuator, using the Step function could cause a dangerous situation. An example is a
A step which triggers a hydraulic valve causing a cylinder to begin extending, and which

also contains a MoniTor instruction sensing a limit switch to stop the motion by proceed-
ing to a new step. If the Step input is used to advance into such a step, the valve would
be actuated, but the MoniTor instruction would not be activated until the Step input is
released and actuated again. This may cause damage or a safety hazard.

3-36 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using High Speed Counting Modules

High Speed Counting Modules provide hardware support for count rates faster
than that possible using the software counters described earlier. These modules
also support quadrature counting, used to automatically track the position of
encoders and similar devices.

Counting Functions Supported

The high speed counting modules support two counting functions: continuous
totalizing or frequency counting (which can also be used for speed sensing).
These functions are accessible from your Quickstep program using special
purpose registers.

Up to eight counting channels can be present in agiven controller. The current
value of a high speed counter can be accessed using registers 5001 through 5008
for counters 1 through 8 respectively. You can also preset the countersto a
specific value by storing a number to these registers, or reset the counter by
storing zero to the associated register:

store 1234567 to reg_5001
store O to reg_5005

These registers can be accessed with any instruction which can be used with
numeric registers.

Frequency Counting

The first high speed counter (only) may be configured as a frequency counter.
Thiswill cause the counter to be sampled over afixed number of milliseconds,
from 1 to 60,000 (one minute).

To enable this mode of operation, store the sample period to register 5501. Any
subsequent reading of register 5501 will return the number of pulses received
during the last sample period. For example, the following instruction sets the
sample period to 10 milliseconds:

store 10 to reg_ 5501
The counter may be returned to normal operation by storing O to register 5501.

NOTE: Frequency counting is not available in 2200 and 2200XM controllers.

Using the Quickstep Programming Language 3-37

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

8-, 16-, or 32-bit Access to Input/Output Points

Normally, digital inputs and outputs are accessed individually using the specific
instructions provided for that purpose. Sometimes, however, you may wish to
access agroup of consecutive 1/0O points, treating the bits represented by these I/
O points as a binary value. The two major applications for this capability are:

e Communicating with an external intelligent system (for example, adigital
thermometer) that provides or requires datain the form of a parallel word up
to 32 bitswide.

* Allowing an external computer to communicate output information to the
controller in the form of 8-, 16-, or 32-bit numbers. This can result in
shorter data transmission time.

Quickstep provides this type of binary accessto groups of 8, 16, or 32 I/O points
viaagroup of special-purpose registers.

8-, 16-, or 32-bit Output Access

Outputs may be set in groups of 8, 16, or 32 by storing a number to one of the
following special purpose registers:

* For 32-bit access, store a number (—2,147,483,648 to +2,147,483,647) to
registers 10001 to 10032.

* For 16-hit access, store a number (0 to 65535) to registers 10101 to 10164.
* For 8-bit access, store a number (0 to 255) to registers 10201 to 10328.

For example, storing a number to register 10001 causes a binary representation
of that number to appear on the first 32 outputs within the controller. Similarly,
register 10002 affects outputs 33 through 64; register 10003 affects outputs 65
through 96; and so on.

In each instance, the smallest-numbered output receives the least-significant bit
of the binary value. The binary weighting of each output is shown in the follow-

ing illustration.
1 a a0 I 1 40 F 1 a4 0 1 1 0 1 1 00 € 1 0 0 [D1 a1
NoBEE §3EF SANS @R EEOS mogd gTEe wenc
= — I ﬁ'_l-\..E e =oa Lyt o B En\.'—' o
T L T &b - -\.__l.__ig Eihll.' o
BUEHR S8 mwa=w BEA
E:—:ng: ;1%&-5 BE RGO
o= f [-
FEeP#

NOTE: The numeric value stored to registers 10001 through 10032 (32-bit access) must be expressed
as a two’s-complement signed integer from

-2,147,483,648 to +2,147,483,647. For a description of two’'s complement notation, see page
3-54.

You can also read the current status of the outputs from these same registers.

3-38 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

8-, 16-, or 32-bit Input Access

The controller’s inputs can also be accessed in groups of 8, 16, or 32 by using
one of the following special-purpose registers:

» For 32-hit access to inputs, use registers 11001 to 11032.
» For 16-hit accessto inputs, use registers 11101 to 11164.
* For 8-bit access to inputs, use registers 11201 to 11328.

For example, the number you read from register 11001 will be a 32-bit binary
representation of the first 32 inputs within the controller. Thisvalue will be
expressed in signed two’'s-complement. Reading a number from register 11002
accesses inputs 33 through 64; register 11003 accesses inputs 65 through 96; and
so on. Aswith outputs, the inputs are read with the smallest-numbered input
represented by the least-significant binary bit.

Masking Unused Bits

The number of inputs you wish to read, or outputs you wish to change, may not
always be exactly equal to 8, 16, or 32. In such cases, you can use Boolean math
operators (AND, OR, XOR, NAND, NOR, NXOR) to mask the bits you do not
wish to affect. For example:

store reg_11101 and 4095 to reg_10

The above instruction first obtains the binary representation of inputs 1 through
16, but the upper 4 bits are then cleared by using the AND operator with the
number 4095. The number 4095, expressed in binary, is

0000 1111 1111 1111.

You can also use Boolean operators to set, clear, or toggle certain outputs. For
instance:

store reg_10201 or 15 to reg_10201

This instruction reads the current status of the first 8 outputs in your controller,
then forces the lowest 4 bits (representing outputs 1 through 4) to be on. The
number 15, in binary, is0000 1111. Theresult of thisinstruction is stored
immediately back to the first 8 outputs. Therefore, outputs 5 through 8 remain
unchanged, but outputs 1 through 4 are forced on.

Similarly, you can toggle a set of outputs with an instruction such as:
store reg_10201 xor 8 to reg_10201

Since the effect of the XOR operator is to invert any bit that combines with 1,

and to leave alone any bit that combines with O, this instruction causes output

4's state to change The number 8, expressed in binary, is 0000 1000, a pattern
with only the fourth bit set.

IMPORTANT! The above instructions will read, modify, and then write back a value from a bank of
outputs. This will work in Quickstep because no other task or external communication is
allowed to affect the outputs during the execution of an individual step. Use extreme
caution, however, in programs that read a bank of outputs in one step, and then store the
information back in another step. If any outside influence has changed an output state in
the interim, the write operation will undo that change, which can potentially cause unex-
pected operations to occur.

Using the Quickstep Programming Language 3-39

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Performing Boolean Operations on Binary Numbers

Performing Boolean Operation on Binary Numbers

Quickstep can perform bit-wise Boolean operations on binary numbers. Bit-
wise Boolean instructions perform a bit-wise comparison between the identically
positioned bitsin two numeric expressions.

The Srore instruction can perform the following Boolean operations on 32-bit
binary numbers.

AND

OR

XOR
NOR
NXOR
NAND
ANDNOT

AND
Using a Boolean AND instruction to perform a bit-wise comparison gives the
following results:

Bit in first Bit in second

operand operand Result
0 0 0
0 1 0
1 0 0
1 1 1

Boolean AND instructions can be expressed in either of the following formats:

Store Reg 15 and Reg 16 to Reg 17
Store Reg_15 & Reg_16 to Reg_17

Thisinstruction does the following:

1. Takesthefirst operand, the valuein register 15, and expressesit as a 32-bit
binary number using two's-complement notation. For adescription of two's
complement notation, see page 3-54.

2. Logically ANDsthe first operand on a bit-wise basis to the second operand,
the value in register 16 (also expressed as a 32-bit binary number using
two's-complement notation).

3. Storestheresult in register 17.
Thevaueinregister 15is: 0000 0000 0000 0000 0000 0000 0110 0101
Thevaluein register 16is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
toregister 17 is: 0000 0000 0000 0000 0000 0000 0110 0001

3-40 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

NAND
NAND means NOT AND. A Boolean NAND operation is the opposite of a
Boolean AND operation and gives the following results:

Bit in first Bit in second

operand operand Result
0 0 1
0 1 1
1 0 1
1 1 0

Boolean NAND instructions are expressed in the following format:
Store Reg 15 nand Reg 16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs alogical NAND
operation on them and then stores the result in register 17.

Thevaluein register 15is: 0000 0000 0000 0000 0000 0000 0110 0101
Thevaluein register 16is. 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 1111 1111 1112 1111 1111 1111 1001 1110

OR
Using a Boolean OR instruction to perform a bit-wise comparison gives the
following results:

Bit in first Bit in second

operand operand Result
0 0 0
0 1 1
1 0 1
1 1 1

Boolean OR instructions can be expressed in either of the following formats:

Store Reg_15 or Reg 16 to Reg_17
Store Reg 15 | Reg 16 to Reg 17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs alogical OR operation
on them and then stores the result in register 17.

Thevaluein register 15is: 0000 0000 0000 0000 0000 0000 0110 0101
Thevaluein register 16is. 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 0000 0000 0000 0000 0000 0000 0111 0111

Using the Quickstep Programming Language 3-41

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Performing Boolean Operations on Binary Numbers

NOR
NOR means NOT OR. A Boolean NOR operation is the opposite of a Boolean
OR operation and gives the following results:

Bit in first Bit in second

operand operand Result
0 0 1
0 1 0
1 0 0
1 1 0

Boolean NOR instructions are expressed in the following format:
Store Reg_15 nor Reg_16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs alogical NOR opera-
tion on them and then stores the result in register 17.

Thevauein register 15is: 0000 0000 0000 0000 0000 0000 0110 0101
Thevaluein register 16is. 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 1111 1111 1111 12111 1111 1111 1000 1000
XOR
XOR means Exclusive OR. A Boolean XOR operation gives the following
results:
Bit in first Bit in second
operand operand Result
0 0 0
0 1 1
1 0 1
1 1 0

Boolean XOR instructions can be expressed in either of the following formats:

Store Reg_15 xor Reg_16 to Reg_17
Store Reg_15 ®» Reg_16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs alogical XOR opera-
tion on them and then stores the result in register 17.

Thevaluein register 15is: 0000 0000 0000 0000 0000 0000 0110 0101
Thevaluein register 16is. 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 0000 0000 0000 0000 0000 0000 0001 0110

3-42 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

NXOR
NXOR means Not Exclusive OR. A Boolean NXOR operation gives the follow-

ing results:

Bit in first Bit in second

operand operand Result
0 0 1
0 1 0
1 0 0
1 1 1

Boolean NXOR instructions are expressed in the following format:
Store Reg_15 nxor Reg_16 to Reg_ 17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs alogical NXOR opera-
tion on them and then stores the result in register 17.

Thevaluein register 15is: 0000 0000 0000 0000 0000 0000 0110 0101
Thevaluein register 16is. 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 1111 1111 1111 1241 1111 1111 1110 1001

ANDNOT
ANDNOT is acombination of two boolean operations AND and NOT. This
SrorE instruction

Store Reg_15 andnot Reg 16 to Reg_17

does the following:

1. Takesthe second operand, the value in register 16, expresses it as a 32-bit
binary number using two's-complement notation, and then inverts that
number.

This means that 0000 0000 0000 0000 0000 0000 0111 0011 becomes 1111
1111 11171 1171 1111 1111 1000 1100.

2. Takesthefirst operand, the valuein register 15, and expressesit as a 32-bit
binary number using two's-complement notation

3. Logically ANDs the first operand on a bit-wise basis to the inverted second
operand.

4. Storestheresult in register 17.
Thevaueinregister 15is: 0000 0000 0000 0000 0000 0000 0110 0101
Thevalueinregister 16is. 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 0000 0000 0000 0000 0000 0000 0000 0100

Using the Quickstep Programming Language 3-43

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Performing Boolean Operations on Binary Numbers

Second
Bit in first Bit in second operand
operand operand Inverted Result
0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

NOTE:

Two's complement is a method of representing signed binary numbers, where: 0000 0000
0000 0000 0000 0000 0000 0000 represents zero
and 0111 1111 1111 1211 1211 1211 1111 1111 represents 2,147,483, 647.

Negative one is represented by: 1111 1111 1111 1111 1111 1111 1111 1111 and the most nega-
tive number -2,147,483, 648 is represented by:
1000 0000 0000 0000 0000 0000 0000 0000

Using Bit-wise Boolean Algebra in Your Quickstep Program

You can use Boolean Srore instructions to perform bit-wise Boolean algebra on
numbersin order to mask data from 8-, 16-, and 32-bit data sources. The
following example reads the binary value represented by the state of the
controller’sfirst set of 32 inputs and performs a boolean AND operation with the
number 4095. Asaresult of thisinstruction, the binary representation of the
first 12 inputs only is stored in register 10.

store reg_11001 and 4095 to reg_10
Thevalueinreg 11001is; 01000110 1111 0100 0000 1111 1001 1101

4095 in binary is: 0000 0000 0000 0000 0000 1111 1111 1111
The resulting number
stored inregister 10 is: 0000 0000 0000 0000 0000 1111 1001 1101
NOTE: For additional information and examples, refer to the Application Note, Bit Level Operators and
CTC Controllers.
3-44 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Appendix A

Sample Programs

Contents

{Infroduction; A-2
iProgram to Control a Simple Machine: A-3
Using Registers - Cycle Couning At
{Using Counters; A-8
Using Muiti-Tasking " A-9
.U‘é‘.’f{a’f’ﬁ"u‘r}a’t‘)’g&ﬁé’e'i's"aaab.'s'rilayg'- A-12
| Using Analog Tnputs and Oufputs + A-14
.‘Gé.‘rfg‘s,'{ébb';ﬁgmiéi'ir';é{'r'a'z{az'h;‘. A-19
.'Gé."rig""s"e"r"vz"M&B‘r"m‘s'fr‘u‘&?aﬁé‘-" A-20
Using ihe Daia Table A-24
{Using the Phantom Register A-27

-Usmg a Multi-station Indexing Table - A-33

Introduction

This appendix contains a series of sample programs. Each program contains
extensive comments describing the program and the functions preformed in each

step.
The sample programs are as follows:

Program to control a simple machine

Using registers - cycle counting

Using counters

Multi-tasking example

Using thumbwheels and displays

Using analog inputs and outputs

tepping motor control - using stepping motor instructions
Servo motor control - using servo instructions

Servo motor control - velocity mode example

Using the Data Table in an iterative program (to store motor coordinates)
Using acircular buffer and the phantom register
Accessing multiple 1/0 points using the phantom register

Program showing a multi-station Indexing table

Copies of the sample programs are available in the QSWIN directory and arein
a self-extracting compressed file named SAMPLES.EXE. SAMPLES.EXE
places the files in the directory that the EXE fileislocated in. If you want the
samples in subdirectory, create the subdirectory and place SAMPLES.EXE in
that directory before extracting the sample files.

IMPORTANT!

These programs are not intended to be complete working programs for any specific
machine. Instead, they are intended to illustrate programming concepts that can be used
in certain programs and must be combined with sound engineering practices to achieve
adequate levels of functionality and safety

A-2

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Program to Control a Simple Machine

[1] INTIALI ZE

)
l
l
’
)
l
l
)
)
l
’
)
)
1
1
)
)
l

This programillustrates sone of the basic
concepts of witing autonmati on prograns using
Qui ckstep

This text constitutes a comrent for step 1.
Comments nmay be used to explain what is happening
in a step, to provide information about the status
of your machine, and to docurment the use of

regi sters, flags, etc. Use coments; six nonths
later you'll be glad you did.

Notice the nane at the top of this step: INTIALIZE
Use of step names is highly recomrended; future
versions of Quickstep will require step nanes.

Later in the program if you wish to return to

this step, you can use the instruction goto I N TIALIZE
Ext ensi ve use of such | abel s makes your program nore
readabl e.

<TURN OFF ALL DI G TAL QUTPUTS>

store 0 to Part_Counter
delay 1 sec goto Next

[2] BEG N_SEQUENCE

11
IR}
11
11
11
IR}
IR}
11
v
IR}
IR}
11
11
IR}
IR}
11

The two horizontal |ines bel ow delineate any
changes nade to the controller’s digital outputs
during this step. These output changes take pl ace
as soon as the controller enters the step.

Qut puts can have two synbolic nanmes. One synbolic

name is for turning the output on; the other is for
turning it off. |In this program outputs use the synbol
names Qutput_n_On to indicate an instruction to

turn an output, and Qutput_n Of to indicate an
instruction to turn an output off. (nis the

nunber of the output.)

O course, nornmally you woul d narme t hese out put
changes to reflect the operation they performon
your nachi ne.

Qut put _15 On

delay 1 sec goto Next
[3] LQAD_PART

l
l
)
’
1
1
)
)
l
’
)

In this step, an output is turned on to actuate a
pneunati c cylinder, |loading a new part into the
machi ne bei ng controll ed.

Two instructions are programed bel ow, one
represents the nornmal path of the program (delay 1
sec goto next), the other | ooks for a fault
condition via a sensor:

noni tor Fault_Sensor goto FAULT DETECTED.

This further illustrates the value of step nanes.

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-3

Program to Control a Simple Machine

[4]

[5]

[6]

;7 The name FAULT_DETECTED inplies that this second
7, instruction is for fault detection, naking the
i, program nore sel f-explanatory.

Qutput_1 On

delay 1 sec goto Next
nmoni tor Fault_Sensor goto FAULT DETECTED

CLAMP_PART

In this step, the output which was turned on in
the previous step is nowturned off, and five
ot her outputs are turned on, sinultaneously
actuating five clanping cylinders.

;;; The nonitor instruction belowrequires five

;;; separate limt switch inputs to be closed before
;;; proceeding to the next step. These limt swtches
;;; are located at the end of each clanping cylinder,
77, and are used to confirmtheir full actuation. The
;;; input names “Limt_A", etc., may be programmed to
;;; refer to input as either normally-open or

77, normally-closed. Synbolic names are defined using
i, the Symbol Browser.

Qutput_1 Of
Qutput_5 On
Qut put_6_On
Qut put_7_On
Qut put _8 On
Qutput_9 On

monitor (and Limt A Limt BLimt CLimt DLimt_E) goto Next

STAVP_PART

In this step, a stanping ramis actuated by
turning on output 10. Because we want the “on”
tinme of this operation to be adjustable by the
machi ne’ s operator, we have programmed a tine
delay referring to a thunbwheel switch.

In the instruction below, the four-digit thunbwheel
array is interpreted as tw digits of seconds and
two digits of fractions of a second (ssff), allow ng
the setting of tinme delays from 1/ 100 second

(0001) to 99.99 seconds (9999).

11
11
11
11
11
11
IR}
11
11
IR}
IR}

Qut put _10_On

delay thw 1 ssff goto Next

UNCLAMP

;;; This step simultaneously retracts the stanping ram
;7; (output 10) and retracts the clanps. Notice how
;;; much nore readable this step would be if these

;;; output operations had expl anatory nanes. Such

;;; nhames may be assigned using the Synbol Browser.

Qutput 5 Of
Qutput_6 _Of
Qutput_7 Of

A-4

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[7]

[8]

[9]

Qutput_8 Of
Qutput_9 Of
Qutput _10 O f

delay 1 sec goto Next

EJECT

;;; This step actuates an eject cylinder using output 11,
;;; ejecting the conpleted part.

77, In addition, the value in a nuneric regi ster named
;;; Part_Counter is incremented; this counts the part

;;; just produced. The updated count is then stored

;;; to a display which has been named Part_Count Di spl ay.

Qut put _11 On

store Part_Counter + 1 to Part_Counter
store Part_Counter to Part_Count_Di spl ay
delay 1 sec goto Next

END_SEQUENCE

;7 Inthis step, the eject cylinder is retracted. W
77, then return to the beginning of the cycle to start
7, over again.

Qutput 11 Of

delay 1 sec goto BEGA N_SEQUENCE

FAULT_DETECTED

i, The controller only executes this step if a fault
;;; condition is sensed. Here, we stop the controller
77, and turn on a fault indicator light attached to
7., output 12,

When the controller is restarted by the operator, the
programwill return to the step called I N TIALI ZE

Faul t | ndicator_n

stop goto I NI TIALIZE

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-5

Using Registers - Cycle Counting

[1]

[2]

[3]

[4]

I NI TI ALl ZE

)
1
’
)
)
1
’
)
)
l
l
)
’
1
l
)
)
1
’
)
)
l
l
)
)
l

This programillustrates some of the uses of
numeri c registers.

In this program a register named Cycle Cr is
used as a cycle counter; after 100 cycles, the
machine will be told to shut down.

In addition, a nonvolatile regi ster named
Lifetime_Cycle_Ctr is used as a lifetinme cycle
counter for the nmachine. This information will be
retai ned even when power is renoved fromthe nachi ne,
and is useful for maintenance, etc.

In this first step, we will initialize the nachine
by turning all of the controller’s outputs off,
and storing O to register Cycle_Ctr. W do not
initialize register Lifetine_Cycle Cr, because we
want it to retain its previous count.

NOTE: the above initializations are not necessary
on power-up, as the controller automatically
turns its outputs off and zeros all volatile
regi sters when power is first applied. However,
we are occasionally junping back to this step
fromwi thin the program and these initializations
are necessary under those circunstances.

<TURN OFF ALL DI G TAL QUTPUTS>

store 0 to Cycle Ctr
got o Next

BEG N_CYCLE

This step will be the start of a cycle for the
nmachine we are controlling. No detail will be
given, as the machine is hypothetical.

Qutput_1 On
Qut put _18 On
Qutput_5 On

monitor (and Limt_Switch CLimt_Switch A Limt_Swtch_B) goto Next
M D _CYCLE

The program for the hypothetical nachine continues...

Qutput _18 O f

Qut put _15 On

Qutput 5 Of

del ay 200 ns goto Next

END_OF_CYCLE

;7 This is the last step of our machine's cycle. Here,
we will count the finished part just produced by

adding one to Cycle Cr, as well as
Lifetime_Cycle_ Cr. Then, we'll test Cycle Cr to
determine if nmore parts should be produced in this

A-6

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

lot (“if Cycle_Ctr >= 100 goto END OF BATCH'). If
we have not yet made 100 parts, then the program
returns to the begi nning of the cycle.

Qutput _15 O f
Qutput_1 Of

store Cycle Ctr + 1 to Cycle Ctr

store Lifetime_Cycle Ctr + 1 to Lifetine _Cycle Ctr
if Cycle_Ctr >=100 goto END OF BATCH

goto BEG N _CYCLE

[10] END_OF_BATCH

Havi ng made a batch of 100 parts, we will now wait
until the operator of the nachine renoves the
finished parts and restarts the machi ne.

<NO CHANGE I N DI G TAL QUTPUTS>

stop goto INITIALIZE

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Counters

[1]

[2]

[3]

I NI TI ALI ZE
Thi s program
Al t hough any

illustrates the use of counters.
regi ster nay be used as a counter, the

first 8 nuneric registers nmay be configured to
perform automati c counting of pul ses appearing on
any of the controller’s inputs. To do this, the
counters nust first be initialized with a Start
Counter instruction.

application.

Counter 1 counts items on a conveyor

belt; when 10 itens have gone by, we trigger a
pal | eti zi ng sequence (not shown here).

NOTE: when a

counter is initialized, we may specify

inputs for counting up and down, as well as for
resetting the counter to zero.

77, The program uses counters in a conveyor/palletizer

<TURN CFF ALL DI G TAL QUTPUTS>

start Counter_1 up (ltem Sense_| nput) down (Manual _Down_Count _| nput)
reset (Manual _Count Reset)

got o Next

WAI T_FOR _TEN
;7. In this step,

we will start the conveyor by turning

77, on output 1 (Conveyor_On), reset our counter to zero
;7; (via programmed instruction), and then wait for the
;;; counter to count ten itenms before junping to the

71y next step.

Conveyor _On

reset Counter_1

if Counter_1 >=10 goto Next

STOP_CONVEYCR

;;; Here, we have already sensed ten itens on the

;;; conveyor, so we will stop the conveyor notor by

77, turning output 1 off (Conveyor O f), and then

;;; continue to our palletizing program (not shown here).

Conveyor O f

got o PALLETI ZE

A-8

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Multi-Tasking

[1] INITIALI ZE

This programillustrates one of the uses of

mul ti-tasking. As an exanple, we'll use a program
for an autonmatic riveting nachine.

; On this machine, a vibratory feed systemis used to

; feed rivets into a singulator to feed exactly one

; rivet into the machine at a tine. At the same tine,

; using a pick-and-place robot, we are feeding a new

; workpiece into the machine to be riveted. The nmachi ne
; has been designed to allow these two operations to

; occur sinultaneously, so we will use two

; simul taneous, independent tasks to control them

LI}
[}
LI}
LI}
LI}
[}
[}
LI}
LI}
LI}
[}
LI}

<TURN OFF ALL DI G TAL QUTPUTS>

got o Next

[2] START_CYCLE
i, Here, we will just check to nake sure the nmachine
77y is not out of rivets, or out of workpieces, by
;35 checking two proximty sensors (R vet_Supply and
7, Parts_Supply) before proceeding.

<NO CHANCGE I N DI G TAL QUTPUTS>

monitor (and Rivet _Supply Parts_Supply) goto Next
got o SHUT_DOWN

[3] START_TASKS

; Inthis step, we will start two separate prograns
; by using the do instruction to commence mul ti -

; tasking. The first program starting at the step
; labelled FEED RI VET, feeds a rivet into the

; machi ne. The second task, starting at a step

; labell ed FEED PART, operates the pick-and-pl ace

; robot to feed a new workpi ece into the nachi ne.

Only after both of these tasks are done, does the
mai n program continue on to the next step.

LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}

<NO CHANCGE I N DI G TAL QUTPUTS>

do (FEED R VET FEED PART) goto Next

[4] CHECK BEFORE TRI P
;7 In this step, we'll performa final check of the
;;; machine' s status before tripping the riveting press.
;7 Two sensors, on inputs Rivet_Loaded and Part_Loaded,
;;; are checked to insure the presence of both a rivet
;7 and a workpiece in the press.

<NO CHANGE I N DI G TAL QUTPUTS>

nmonitor (and Rivet Loaded Part Loaded) goto Next
got o SHUT_DOM

Appendix A - Sample Programs A-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Multi-Tasking

[5]

[6]

TRI P_PRESS
75y Inthis step we fire the riveting press by turning
;7 on output 1, Rivet_Press_On.

Ri vet _Press (On

delay 250 ns goto Next
END_OF_CYCLE

Rivet Press Of

goto START_CYCLE

[10] FEED Rl VET

77, This is the beginning of a short program (“task”) that
;;; feeds a rivet into the riveting head of our machine.
;;; This program operates a singulator, which separates a
;;, continuous line of rivets froma vibratory feed into
;7. an individual rivet to be fed. W start by operating
;;; a hold-back cylinder, actuated via a sol enoid val ve
;7 (output 2, Hold Back _On)

Hol d_Back_(n

delay 250 ns goto Next

[11] DROP_RI VET

;7: The hol d-back cylinder will retain all but the first
;;; rivet in line. Now, by actuating another valve, we
;7 Will retract the drop cylinder, allowing the first
7, rivet to fall into the riveting head.

Drop_Rivet _On

delay 350 ns goto Next

[12] R VET_FED

;7 Now that the rivet has dropped, we can return both
;7 singulation cylinders to their original position.

;73 This is the end of the FEED R VET task, as indicated
;;; by the instruction “done”.

Hol d_Back_Of f
Drop_Rivet _Of

done

[50] FEED PART

;7; This is the beginning of a programto operate a

;7. pick-and-place robot which will feed a new workpi ece
7, into our riveter. In this step, we will operate a
;.. gripper to grasp a new workpi ece.

G i pper_On

del ay 200 ns goto Next

A-10

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[51] EXTEND_PART
77, In this step, we trigger a horizontal motion of the
;;; robot grasping the part. W'll wait for a linmt
77, switch, ArmExtended, to confirmthe conpletion of
;. this notion.

Extend_Arm

moni t or Arm Ext ended got o Next

[52] LONER_PART
77y Imthis step, we will lower the part into a holding
7, fixture. Once again a limt switch, Part_Lowered,
7, indicates conpletion of the notion.

Lower _Arm

moni tor Part_Lowered goto Next

[53] RELEASE_PART
77, Now, we can rel ease the gripper, dropping the part
7, intoits fixture. Due to the design of our robot,
77, we may sinultaneously raise the gripper.

Gipper Of
Rai se_ Arm

nmonitor Part_In_Place goto Next

[54] RETRACT_ARM
;;; Having released the part, we may now retract the
77, pick-and-place armto its rest position.

Ret r act

done

[100] SHUT_DOMN

77, Afault has been detected, so we'll turn off all
outputs and stop the controller. First, we'll
term nate nultitasking by executing a cancel other
tasks instruction.

When the operator restarts the controller, the program
will junp back to the begi nning. Because we've ended
mul titasking, this will not cause recursion.

1
IR}
11
11
Vo
11
11
11

<TURN CFF ALL DI G TAL QUTPUTS>

cancel other tasks
stop goto INITIALIZE

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-11

Using Thumbwheels and Displays

[1]

[2]

[3]

[4]

I NI TI ALI ZE
This programillustrates the use of thunbwheels and
nurreri ¢ di spl ays.

Thunbwheel s al | ow manual entry of numeric paraneters,
whi l e di splays allow nuneric information to be vi ewed
by the operator of a machine.

;; This sanpl e program uses two t hunbwheel arrays and
;; a numeric display to control a cut-off machine. A
;; stepping notor is used to meter out a certain length
;; of material, after which a cutter is triggered. W
;; want the operator to be able to dial in the desired
;; length of material, as well as the quantity of parts
;; to be cut before shutting down.

The first step sets up the stepping notor (Feed_Motor)
with a profile instruction, and initializes the
Part _Counter (a nuneric register) to zero.

<TURN OFF ALL DI A TAL QUTPUTS>

profile Feed Mdtor (half) basespeed=100 naxspeed=7500 accel =420
decel =420

store 0 to Part_Counter

got o Next

FEED_MATER AL

;7 The machine's operator dials the desired materi al

77, length into thunbwheel 1, but this length is expressed
;7. in inches. Since we know that the stepping notor nust
;;; turn 50 steps in order to feed one inch of nateri al

;o we will multiply this value by 50. The resulting

;;; value is temporarily stored in Travel, for use in the
;;, following turn motor instruction.

<NO CHANCE I N DI G TAL QUTPUTS>

store Material _Length * 50 to Travel
turn Feed Mdtor cw Travel steps
nmoni t or Feed_Mbdt or: st opped got o Next

CUT_CFF

;7 In this step, we will cut off the material fed in the
;,, previous step by actuating a cutter. Atine delay is
;7 programmed which should be sufficient to allow the
;;, cutter to conplete its travel

Cutter_On

del ay 500 ns goto Next

RETRACT_CUTTER

i, Nowwe will retract the cutter by turning off the

; output. At the sane tinme, we will count the part just
; cut (by adding one into Part_Counter), and display the
; current count to the operator (store Part_Counter to

; Parts_Count Display).

This count is then conpared with a value dialed into
a second thunbwheel (Batch_Total) to determine if the

[}
[}
LI}
LI}
[}
[}
LI}
LI}

A-12

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[5]

;;, proper nunber of parts has been nade. If so, we wll
;;; shut down the nmachine (END OF BATCH), otherw se we'll
;7 return to feed another part.

Cutter Of

store Part_Counter + 1 to Part_Counter

store Part_Counter to Parts_Count_ Displ ay

if Part_Counter >=Batch_Total goto END OF BATCH
got o FEED MATERI AL

END OF BATCH

i, Now we have conpl eted the desired nunber of parts; the
stop instruction causes the controller to stop until
;;; the operator presses the START switch connected to the
;7 controller’s input 1.

<NO CHANGE I N DI G TAL QUTPUTS>

stop goto INITIALIZE

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-13

Using Analog Inputs and Outputs

[1] SET_INTIAL_COND Tl ONS
Thi s program denonstrates the use of analog 1/ 0O
i nstructions, using two i ndependent tasks.

The first task controls a tenperature by taking an
anal og output through a timed ranp. This ramp is

generated by a series of programred commands which
deternmine the initial value, the rate of increase

and the term nal val ue.

; The other task continuously nonitors a pressure

; transducer connected to an analog input. The input

; value is ranged into engineering units fromO to 100

; PSIG and is displayed on a nuneric display. In

; addition, the peak pressure value is naintained and

; displayed on a second nuneric display. If the pressure
; goes above a fixed limt (75 PSIGQ, the tenperature

; control value is sent to zero, and the entire process
; 1s stopped.

This step contains three instructions that perform
certain initialization functions within the
controller. The analog output, used to control the
process tenperature, is initially set to zero volts.
Both the numeric register used to accunul ate the peak
pressure reading and the nuneric display that displays
the actual pressure reading are also initialized to
zero. The last instruction in this step sends the
controller to step 2.

LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}

<NO CHANCGE I N DI G TAL QUTPUTS>

store 0 to Tenp_Control

store 0 to Peak_ Val ue

store 0 to CQurrent_Pressure D spl ay
got o Next

[2] START_TASKS
77, This step begins multi-tasking and starts two tasks:
i, TEMP_PROCESS and MONI TOR PRESSURE.

<NO CHANGE I N DI G TAL QUTPUTS>

do (TEMP_PROCESS MONI TOR_PRESSURE) goto SET | NI TI AL_CONDI TI ONS

[10] TEMP_PROCESS
77, This task controls the ranping of the anal og out put
;;: (see the rampi ng sequence shown in the acconpanying
;7 illustration). Storing 1000 to the register called
;;; Process Tenp sets the initial value at 1 volt. This
;;; value will be stored to the anal og out put controlling
;;; temperature, Tenp_Control, and increnented in
i, Subsequent steps to create the desired ranp.

<NO CHANGE I N DI G TAL QUTPUTS>

store 1000 to Process_Tenp
got o Next

A-14 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Ramp Sequence Used to Generate Ramp

7.5 volts
5 volts ‘ ‘
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1 1
| A |
5 minutes 10 seconds
1 volt 16 seconds | |)
- - - - - - 1 minute
0 volt ‘ ‘ to repeat

[11] BEG N_ANALOG RAMP

;7 This step creates the initial analog ranp. The
control l er updates the tenperature control val ue
by storing the Process_Tenp setting to the anal og
output called Tenp_Control.

This step goes on to increase the Process_Tenp
setting via a store instruction which adds 25 to the
regi ster. This does not change the voltage at the
anal og out put vyet.

The next instruction in this step tests the value in
the register to determne if our ranp is conplete,
havi ng reached a val ue of 5000 volts. |If so, the
programwi ||l proceed to the next step

O herwise, the tinme delay instruction will ultinmately
time out. However, the destination of the time del ay
instruction is this sane step, so the controller
executes it as if it were a new step. This time the
new, updated value in Process Tenp is stored to the
anal og output, resulting in an increase in voltage.

Then as before the controller increments the value in
Process_Tenp and the tinme delay begins. This process
continues, with the voltage increasing by 25 nmv each
100 s, until the if instruction is satisfied,
indicating that the 5 volt |evel has been reached.

Two factors dictate the slope of the ramp being
generated; the time delay duration (which deternines
the update interval) and the ambunt added to the

vol tage value each tinme the step is re-executed. By
nmodi fying the instructions within this step, you can
;;; create ranps of various slopes.

Appendix A - Sample Programs A-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Analog Inputs and Outputs

[12] DELAY

[13] ST

<NO CHANGE I N DI G TAL QUTPUTS>

store Process_Tenp to Tenp_Contro

store Process_Tenp + 25 to Process_Tenp
if Process_Tenp > 5000 goto Next

delay 100 nms goto BEA N _ANALOG RAMP

After the voltage of anal og output Tenp_Control has
ranped from1l to 5 volts, the step uses a del ay
instruction to maintain this level for a period of
five minutes. Such an operation is sonetinmes called
a soak interval

<NO CHANCGE I N DI G TAL QUTPUTS>

delay 5 min goto Next

EP_FUNCTI ON

As shown in the ranp illustration, the program
executes a step function which increases the voltage
to alevel of 7.5 volts for a period of ten seconds.
The store instructi on shown bel ow sends the nunber
7500, representing 7.5 volts, to the anal og out put.
The delay instruction generates the required ten
second tine del ay.

<NO CHANGE I N DI G TAL QUTPUTS>

store 7500 to Tenp_Contro
delay 10 sec goto Next

[14] TEMP_PROCESS_END

1
)
)
l
’
)
)
1

This is the last step in the ranp generation. It
conpl etes the process by returning the anal og out put
to a value of zero volts and, after a one mnute tine
del ay, returns to step TEMP_PROCESS

Not e the absence of a “done” instruction. |In this
case, each task sinply |oops back upon itself,
continuously executing its intended function.

<NO CHANGE IN DI G TAL QUTPUTS>

store 0 to Tenp_Control
delay 1 mn goto TEMP_PROCESS

MONI TOR_PRESSURE

[100]

)
l
l
)
)
l
’
)
)
l
l
)
)

This task operates in parallel with the ranping
program |t continuously nonitors a pressure
transducer connected to anal og i nput Transducer | nput.
The current and peak pressures are displayed for the
system s operator, and the pressure is tested to
insure that a predefined limt is never exceeded.

The pressure transducer provides an output signal
ranging from0.5 to 5.5 volts in response to an
applied pressure of 0 to 100 PSIG The anal og i nput
reports this range as a nunber from500 (0.5 V.) to
5500 (5.5 V.). The conversion math necessary to
convert these values into units of PSIGis:

A-16

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Pressure_PSI G = (Transducer _| nput - 500) / 50

Two successive instructions are used to performthis
math. The first instruction reads the current val ue
of Transducer | nput, subtracts the offset of 500,

and stores the result in register Internediate Val.
The second instruction divides that result by 50, then
stores the finished value in register Pressure PSI G

77, Note that the internediate val ue coul d have been

;;; stored in Pressure PSIG since it would have been
7, imrediately replaced with the final val ue.

;7; The third instruction updates the readi ng on the

i, Qurrent _Pressure Display by storing our new pressure
;. value to it.

The “if” instruction will then test to see if the
new pressure exceeds the Peak Val ue we' ve previously
stored. |If so, the programw |l continue to the
next step to store the new Peak_Val ue.

QG herwi se, the instruction “goto MONl TOR_PRESSURE”
will cause the current step to be re-executed.

<NO CHANGE I N DI G TAL QUTPUTS>

store Transducer _Input - 500 to Internedi ate_Val
store Internmediate Val / 50 to Pressure PSI G
store Pressure PSIGto Current_ Pressure_Di splay
if Pressure PSI G > Peak Val ue goto Next

got o MONI TOR_PRESSURE

[101] UPDATE_PEAK VALUE

i, |If we’ve reached this step, the current pressure
exceeds the previous peak reading stored i n Peak Val ue.
Therefore, we will update Peak Val ue by storing the
current Pressure PSIGto it, and al so update the
Peak Pressure Display with the sane val ue.

;; Each tinme a new peak pressure is sensed, it is also
;; checked to determine if it has exceeded a maxi num

;; limt of 75 PSIG |f the pressure is over this limt,
;; the controller junps to step OVER PRESSURE.

WARNI NG No single device, including a progranmabl e
control l er, should be the sol e device responsible

for detecting a fault condition that could result

in human injury or substantial econom c damage.

Proper design practice dictates the use of appropriate
judgnent in the design of backup safety systens.

This is the responsibility of the nachine designer.

<NO CHANGE I N DI G TAL QUTPUTS>

store Pressure PSI G to Peak Val ue

store Peak_Val ue to Peak_Pressure_Di spl ay
if Pressure PSI G >=75 got o OVER PRESSURE
got o MONI TOR_PRESSURE

Appendix A - Sample Programs A-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Analog Inputs and Outputs

WARNING! No single device, including a programmable controller, should be the sole device respon-

sible for detecting a fault condition that could result in human injury or substantial eco-

A nomic damage. Proper design practice dictates the use of appropriate judgment in the

design of backup safety systems. This is the responsibility of the machine designer.

[250] OVER PRESSURE

This step cancels the other tasks and sets the
;;; temperature control to zero. The programthen goes to
i, the next step.

<NO CHANGE I N DI G TAL QUTPUTS>

cancel other tasks
store 0 to Tenp_Control
got o Next

[251] PRESSURE_CHECK

; This step returns the controller to MONI TOR PRESSURE
; where the controller will continue to update the

; operator displays. The operator will then have to

; press areset switch to return to the first step in
; the programand restart the sequence.

<NO CHANGE I N DI G TAL QUTPUTS>

got o MONI TOR_PRESSURE

Programming Hints

Because of thegot o MONI TOR_PRESSURE instruction in step
MONITOR_PRESSURE, the display program in step continuously cycles and
constantly updates the pressure reading. Without this instruction, the pressure
value would only be displayed once, upon first entering the step and not be
updated as the pressure changed.

A-18

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Stepping Motor Instructions

[1] INTIALI ZE

11
IR}
11
11
11
11
IR}
11
11
11
IR}
11
11

This programillustrates the use of the stepping notor
instructions. In this step, we'll execute a profile
instruction to establish the initial notion paraneters
for the motor. A turn instruction may not be executed
until this initial profile has been established.

Next, a “search ccw and zero” instruction tells the
nmotor to begin turning slowy in the counter-cl ockw se
direction, searching for a “hone” limt switch. This
limt switch, connected to the stepping notor contro
board, establishes a reference point for future
notions. The motor automatically stops when this

horme position has been sensed.

<TURN CFF ALL DI G TAL QUTPUTS>

profile Mdtor_1 (half) basespeed=100 nmaxspeed=7500 accel =400 decel =400

search ccw and zero Mtor_1
nmonitor Mdtor 1:stopped goto Next

[2] FIRST_PCSI TI ON

In this step, we send the stepping notor to its first
position, using an absolute turn notor instruction.
This instruction sends the notor to a coordi nate
position based on the previously established “hone”
zero position.

The “nonitor notor#l:stopped” instruction will take
the controller to the next step only when the stepping
not or board has fini shed sending pul ses to the notor.

<NO CHANGE I N DI G TAL QUTPUTS>

turn Motor_1 to 12500
nmoni tor Mdtor _1:stopped goto Next

[3] SECOND _POSI TI ON

IR}
11
11
11
11
11

This step sends the notor to a second position, still
based on the originally-established hone position.

After the notor notion is conplete, the controller
returns to the previous step to repeat the notor’s
t wo- posi ti on sequence.

<NO CHANGE I N DI G TAL QUTPUTS>

turn Motor_1 to 5000
moni tor Mdtor _1:stopped goto FI RST_PCSI TI ON

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-19

Using Servo Motor Instructions

Programming a Servo
[1] INITIALI ZE

[2]

[10] MA

)
)
l
’
)
)
l
l
)
)
’
l
)
)
l
1
)
’
l
l
)
)
l
l
)

This programillustrates the programmi ng of SERVO
instructions by setting up a sinple back-and-forth
servo notion.

The speed of this notion is determned by a
nureric register called Servo_Speed, allow ng the
speed to be tuned while the programis executing.
An additional task will continuously update a
nurreri ¢ display with the instantaneous servo error,
allowing us to view the servo’'s accuracy.

In this first step, an initial value is stored in
the register Servo_Speed, to be used further on

in the program Also, a profile instruction
establishes initial notion paraneters, including
a slow nax_speed setting to be used for honming the
servo.

The search and zero instruction causes the servo to
turn until a signal is received froma limt sensor,
attached to the servo control nodul e s HOVE input.
Refer to the nodule’s Installation Quide for specific
information. Finally, the nonitor instruction senses
when the servo has reached its hone position and cone
to a stop.

<TURN CFF ALL DI G TAL QUTPUTS>

store 20000 to Servo_Speed

profile Servo_1 servo at position maxspeed=1000 accel =250000 P=10 |=253
D=237

search and zero Servo_1

nmoni tor Servo_1: stopped goto Next

ST

l
)
)
’
l
)
)
l
l
)

ART_TASKS

This step starts two tasks running; one task will
sequence the servo notions, while the other wll
noni tor servo error.

NOTE: Neither of the tasks contain Done instructions;
rather, they each | oop back on thensel ves in nornal
operation. Therefore, the destination of this
instruction, “goto INITIALIZE', will never be taken.
It is there sinply to satisfy the formof the Do

i nstruction.

<NO CHANCE I N DI G TAL QUTPUTS>

do (MAI N_PROGRAM FAULT_MONI TOR) goto I NI TIALI ZE

l
l
’
)
l
l
)

N_PROGRAM
This begins a sinple 2-step task, sequencing the
servo back-and-forth between two positions.

Bef ore conmenci ng each new notion, we re-profile
the servo to all ow any changes which nay have been
nade to the register Servo_Speed to take effect.
This regi ster may be nodified using the CTCMON

A-20

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

controller nonitoring utility, or by using an
operator interface termnal or HM software

comuni cating with the controller. Any such change
will not take effect, however, until the next cycle
when the profile instruction is executed.

The turn instructi on commences a 100, 000 step
notion. The monitor instruction will sense when
the notion is conplete and send the controller to
the next step of the program

11
11
IR}
IR}
11
B
IR}
IR}
11
11

<NO CHANCGE I N DI G TAL QUTPUTS>

profile Servo_1 nmaxspeed=Servo_Speed
turn Servo_1 cw 100000 steps
nmonitor Servo_1: stopped goto Next

[11] SERVO RETURN
77, This step works simlarly, except that the notion
isinitiated in the counter-clockw se direction.

When the notion is conplete, this task will junp

Once again, we allow any changes in the register
back to step MAI N PROGRAM t o begi n anot her cycle.

Servo_Speed to take effect.

<NO CHANCGE I N DI G TAL QUTPUTS>

profile Servo_1 nmaxspeed=Servo_Speed
turn Servo_1 ccw 100000 steps
nmoni tor Servo_1: stopped goto NMAI N PROGRAM

[50] FAULT_MONI TCR

77, This task normally remains | ooping at this one
step. The Store instruction updates a nuneric
di spl ay, naned “Servo _Error_Disp”, with the
i nstant aneous error of Servo 1. This error value
is also tested and, if it is excessive, the task
will junp to the step called SHUT DO

The Store instruction would normally only execute
once upon entering this step. To create a conti nuous
update, the “goto FAULT _MONI TOR' instruction causes
the step to re-execute, thus updating the display
agai n.

11
11
IR}
IR
11
11
11
IR
11
11
11
11

<NO CHANGE I N DI G TAL QUTPUTS>

store Servo_l:error to Servo Error_Disp
if Servo_1:error >=100 goto SHUT_ DOMN
goto FAULT _MONI TOR

[51] SHUT_ DOMN

;7 In this step, a servo error of 100 or greater has
been sensed, so we shut down the servo and halt
the controller.

First, however, we mnust cancel the other task to
avoid having it restart a new servo notion.

11
11
11
11
IR}
11
11

Appendix A - Sample Programs A-21

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Servo Motor Instructions

77, Wien the controller is restarted, the programw| |
77, junp back to the step INITIALIZE. Note that,

i, because we have cancelled nultitasking at this point,
;5. this will not cause recursion

<NO CHANGE IN DI G TAL QUTPUTS>

cancel other tasks
stop (hard) Servo_1
stop goto I N TIALIZE

Velocity Mode Example

[1] INITIALI ZE
;7; This programillustrates the control of a servo in
vel ocity node

77, The primary goal of this node of operation is to

;;; control the servo speed through a | ong or continuous
i, nmotion., Quickstep supports this node with a

;;, continuous “turn” comrand, as well as the capability
;;; to nodify servo parameters on-the-fly.

Inthis initial step, we'll set starting paraneters
for the servo using a Profile command, then search
for a home reference position.

<TURN CFF ALL DI G TAL QUTPUTS>

profile Servo_1 servo at position naxspeed=20000 accel =250000 P=10 | =253
D=237

search and zero Servo_1

nmoni tor Servo_1: stopped goto Next

[2] START_MOTI ON
;7; This step starts a continuous servo notion using
a vel ocity-node servo instruction

W will remain in this step until the servo reaches

'; turn Servo_1 cw
: a position 25000 steps fromits zero or honme position.

[}
LI}
[}
[}
[}
LI}
LI}

<NO CHANGE I N DI G TAL QUTPUTS>

turn Servo_1 cw

if Servo_1:position >=25000 got o Next
[3] SLOW DOM

7, Having reached position 25000, we will now
decel erate the servo to 10000 steps/sec by
re-profiling.

W then remain in this step until the servo
reaches a position 75000 steps fromits hone
posi tion.

11
11
11
11
11
11
11

<NO CHANGE IN DI G TAL QUTPUTS>

profile Servo_1 naxspeed=10000
if Servo_1:position >=75000 goto Next

A-22 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[4]

[5]

[6]

SPEED_UP

LI}
[}
[}
LI}
LI}
[}
[}

Now, we'll accelerate the servo to a rate of
100000 steps/sec.

W then remain in this step until the servo

reaches a position 200000 steps fromits zero or hone
position. Once this position has been attai ned,

we'll go on to the next step.

<NO CHANGE I N DI G TAL QUTPUTS>

profile Servo_1 naxspeed=100000
if Servo_1:position >=200000 goto Next

OUTPUT_ON

1
1
)
’
l
l
)
)
l
’
)
)

In this step we’'ll cause sone action to take place
on our nmachine by turning on Qutput 1. W are not
changi ng the servo speed at this point.

This step illustrates how you can program vari ous
events at specific servo positions. Anal og output
vol t ages, secondary motor instructions, and many

ot her types of events could be triggered at various
points in the servo's notion

Once the servo reaches a position 250,000 steps from
horre, our program continues at the follow ng step.

Qutput_1 On

if Servo_1:position >=250000 goto Next
ALL_DONE

1
)
)
’
l
)
)

Havi ng reached servo position 250000, we begin
decelerating to a stop through the use of a soft
stop instruction.

The second stop instruction will stop the
controller’s execution of the program until the
operator restarts it.

<NO CHANGE I N DI A TAL QUTPUTS>

stop (soft) Servo_1
stop goto INITIALIZE

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-23

Using the Data Table

[1] INITIALI ZE

77, This programuses a DATA TABLE to store information
for an iterative (repeating) program The program
controls a drilling nmachi ne, where the workpiece is
held on an X-Y table allowing it to be automatically
posi ti oned.

W wish to drill a nunber of holes in the workpiece,
and have the speed of each nove independently
programrabl e. W al so want a progranmabl e del ay
after each drilling operation

To acconplish these goals, we'll store the data for

t hese hol es, including speeds and del ays, in a data
table. This will result in a nmuch shorter and sinpler
program as well as keeping all of this data in one

pl ace.

Each data table rowwi |l contain the data for one
drilling operation, as foll ows:

colum 1 = X-axis position (nmotor 1)
colum 2 = Y-axis position (notor 2)
colum 3 = Time delay (1/100ths second)
colum 4 = Mtor speed (steps/second)

In this step, we point to the first row of the
data table by storing 1 to the register naned
Data_Thl _Ptr (register 126). W also set up the
initial notion profile for each motor, and have
both motors search for their honme positions.

Note that if the notors do not find hone within
20 seconds, the delay instruction shuts the nachine
down automatically.

11
IR}
IR}
11
11
11
IR}
11
11
11
11
11
11
11
IR}
11
11
IR}
11
11
11
11
IR}
11
11
11
IR}
11
11
11
IR}
11
11

<TURN CFF ALL DI G TAL QUTPUTS>

store 1 to Data Thl _Ptr

profile X Axis (half) basespeed=100 naxspeed=2500 accel =400 decel =400
profile Y _Axis (half) basespeed=100 naxspeed=2500 accel =400 decel =400
search ccw and zero X AXis

search ccw and zero Y _AXis

nmoni tor (and X Axis:stopped Y _Axis:stopped) goto Next

delay 20 sec goto ALL_DONE

[2] NEWPGCSI TI ON

This is the beginning of the drilling loop. In this
step, we establish a profile for both notors, with
their speeds based on colum #4 of the Data Tabl e.

Then, we tell the nmotors to turn to the positions
specified in colums 1 and 2 of the current row of
the Data Tabl e.

11
11
11
11
11
IR}
11

<NO CHANGE I N DI G TAL QUTPUTS>

profile X Axis (hal f) basespeed=100 nmaxspeed=Col 4 accel =400 decel =400
profile Y _Axis (half) basespeed=100 maxspeed=Col _4 accel =400 decel =400
turn X AXis to Col _1

turn Y AXis to Col _2

nmoni tor (and X Axis:stopped Y _Axis:stopped) goto Next

A-24 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[3] DRILL_HOLE

Here, we are at a new position to be drilled, so
the drill is sent down by actuating an air cylinder,
controll ed by one of the controller’s digital outputs.

Extend Drill

del ay 3 sec goto Next

[4] RET

)
’
l
)
)
l
’
)
)
l
’
)
)
1
l

RACT

In this step, we retract the drill.

W al so add one to the register Data_Thl _Ptr
(register 126), so that we are pointing to the next
row of the data table. This points to the next set
of coordinates to be drilled.

The If instruction beloww |l test to deternmine if the
| ast row has been encountered; if so, the program
junmps out of its |oop and stops.

If the program has not encountered the |last row of the
Data Table, it returns to step NEWPOSI TION to drill
another hole. Note that the delay instruction in this

step derives its value fromcolum 3 of the data table.

Retract Drill

delay Col 3 sec/ 100 goto NEW PCSI TI ON
store Data Thl _Ptr + 1 to Data Tbhl _Ptr
if Data_Thl _Ptr >=26 goto ALL_DONE

[10] ALL

_DONE

In this step, we have either conpl eted a workpi ece, or
have shut down because the notors never found

their home position. In case the notors never found
horme, we will execute a stop nmotor instruction for
each notor.

<TURN OFF ALL DI G TAL QUTPUTS>

stop X Axis
stop Y_Axis
stop goto I N TIALIZE

Data in Data Table

Row Columns
1 2 3 4

100 2500 20 2000
100 2600 10 2000
200 2100 20 2000
200 2500 50 2000
200 2600 20 2000
200 3000 25 2000
375 1500 25 2000

N o o~ 0N P

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-25

Using the Data Table

Row Columns
1 2 3 4

375 2500 25 2000

375 3500 25 2000
10 500 1500 20 2000
11 500 2500 20 2000
12 500 3500 20 2000
13 500 4500 10 2000
14 750 500 20 1000
15 750 750 20 1000
16 750 1000 20 1000
17 750 1250 50 1000
18 750 1500 20 1000
19 750 1750 20 1000
20 750 2000 20 1000
21 750 2250 20 1000
22 750 2500 20 1000
23 750 2750 20 1000
24 750 3000 20 1000
25 750 3250 20 1000

A-26

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using the Phantom Register

Using the Phantom Register to Create a Circular Buffer
[1] INITIALI ZE

)
)
l
l
)
’
l
l
)
)
l
l
)
)
l
’
)
)
1
1
)
)
l
1
)
)
1
)
’
1
l
)
)
l
l
)
)
l
l
’
)
l
l
)
)
l
l
)
’
l
1
)
)
1
1
)

Thi s program denonstrates the use of the PHANTOM
REA STER to create a circular buffer. This circul ar
buffer is used to store a continuous stream of data
relating to a continuous flow of parts through a
machi ne.

The circular buffer consists of a series of nuneric
regi sters; this series nmust be |ong enough to
accomodat e t he maxi num possi bl e nunber of parts
within the machine at one time. Two additional

regi sters are used as pointers. These pointers keep
track of which register to use next (i.e.; the next
enpty register) and which register contains the ol dest
active data (i.e.; where to find the data applicable
to the ol dest part on the nachine).

Each time the data for a new part is stored in the
next enpty register the Next Enpty Ptr is increnented
to point to the follow ng register. Because we do not
have an infinite nunber of registers available, we
must always test the pointer after increnenting it to
make sure that it is not pointing to a register
outside of the circular buffer. If it is, we set the
poi nter to point back at the begi nning of the circular
buffer, where we will then start overwiting old data.
As long as we have made the circular buffer |arge
enough, this will not be a problem because this data
will no longer be in use.

The A dest _Ptr is maintained so as to point to the
regi ster containing the data for the ol dest part on
the machi ne. Presumably, this is the data which wll
next be used by the process for which we have
originally stored the data. Wien our process has nade
use of the data, it is no | onger needed, and the

O dest_Ptr may be noved to point to the next

regi ster location. Once again, if the pointer has
noved beyond the end of the circular buffer, we nust
set it to point back to the beginning of the buffer.

In this manner, the two pointers chase each ot her
around the circular buffer. A continuous flow of
information is accommodated, and a vari abl e nunber of
data el enments may be contai ned between the two

poi nters.

In this first step, we will initialize both of the
pointers to point to the beginning of the circular
buffer. At this point, the buffer contains no data.

regi ster 10 = Bake_Tine

regi ster 127 = Phantom Ptr

regi ster 128 = Phant om Reg

regi sters 501 through 550 are used for the
circular buffer.

regi ster 600 = A dest _Ptr

regi ster 601 Next Enpty Ptr

Appendix A - Sample Programs A-27

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using the Phantom Register

[2]

<TURN OFF ALL DI G TAL QUTPUTS>

store 501 to A dest Ptr
store 501 to Next_Enpty Ptr
got o Next

ST

l
’
)
l
l
)
’
l
l
)
)
l
’
)
)
l

ART_TASKS

In this step, we will start two separate tasks:

The first task, called MEASURE, takes a

neasur enment of new parts comng into the machine.
Each measurenent will be stored in the next enpty
| ocation of the circular buffer.

The second task, called PROCESS, bakes the part
for a tine duration proportionate to the
nmeasurenment originally taken of that part. The
nmeasurenment data will be drawn fromthe circul ar
buffer location indicated by O dest Ptr

There may be a variable nunber of parts in transit
bet ween the Measure station and the Process
station.

<NO CHANGE I N DI G TAL QUTPUTS>

do (MEASURE PROCESS) goto | N TIALI ZE

[10]

[11] ST

MEASURE

)
’
l
l
)

This is the beginning of the part measuring task.

In this step, we'll wait for a part to appear (as
sensed by a linmt switch), then proceed to the
next step where the nmeasurenent will be taken

<NO CHANCGE I N DI G TAL QUTPUTS>

nmonitor Part_In_Place goto Next

l
l
)
)
1
l
)
’
l
l
)
)
l
l
’
)
l
l
)

ORE_DATA

In this step, the neasurenent of the new part is
stored in the next enpty location of the

circular buffer. We prepare for this by storing the
nunber of the next enpty register (Next_ Enpty Ptr)
to Phantom Ptr. The measurenent (Transducer) data is
then stored into the phantomregister, and lands in
the next enpty location of the circular buffer.

We then must increnent Next Enpty Ptr to point to the
next register, and test it to see if it has noved
beyond the limts we have established for the
circular buffer. If so, we'll reset the pointer

to point to register 501, which is the first

regi ster of the circular buffer.

NOTE: In many applications, it would be advisable to
test that the Next Enpty Ptr never overruns the

O dest _Ptr. This would nean that the buffer has
overflowed and data is being |ost.

A-28

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

<NO CHANGE I N DI G TAL QUTPUTS>

store Next Empty Ptr to Phantom Ptr

store Transducer to Phantom Reg

store Next _Enpty Ptr + 1 to Next_Enpty_ Ptr
if Next Empty Ptr <=550 goto Next

store 501 to Next Enpty Ptr

got o Next

[12] P

ART_GONE

In this step, we'll sinply wait for the part to nove
out of the measurenent station, at which tinme we can
return to the beginning of this task to wait for
anot her part.

<NO CHANCGE I N DI G TAL QUTPUTS>

monitor No_Part_In_Place goto MEASURE

[20] PROCESS

This is the beginning of the task which controls
the baking of the parts in the machine. In this
step, we'll wait for a part to enter the baking
area, as sensed by alimt swtch.

<NO CHANGE I N DI G TAL QUTPUTS>

nmonitor Part | n_Bake goto Next
[21] BAKE_DATA

)
)
’
l
)
)
l
l
)
)
l
’
)
)
l
1
)
)
l
’
)
)
1
1
)

Here, we'll extract the data originally stored for
the part now in the baking area.

We have carefully maintained A dest Ptr, so we know
that the part which has now entered the baking area
is the part whose data is in the register being
pointed to. To extract this data, we'll store

O dest _Ptr into the phantomregister pointer, then
read the data itself fromthe phantom register
(register 128). This data is stored tenporarily in
regi ster Bake Tinme, to be used in the next step.

Havi ng used this data, we nust then adjust the

O dest_Ptr to point to the next location. As with
the Next Enpty Ptr, we nust test ddest Ptr after we
have increnented it to insure that it has not gone
beyond the limts of our circular buffer. If it has,
we'll reset Odest_Ptr to point to the begi nning of
the buffer (i.e.; register 501).

NOTE: In some applications, it nmay be advisable to
test the new value of A dest Ptr to insure that it
never passes Next Enpty Ptr. This woul d nean that

one or nore parts have been “lost” and the neasurenent
data is now out of sync.

<NO CHANCGE I N DI G TAL QUTPUTS>

store A dest Ptr to Phantom Ptr
store Phantom Reg to Bake_Ti ne

Appendix A - Sample Programs A-29

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using the Phantom Register

store O dest Ptr + 1 to Adest Ptr
if Odest_Ptr <=550 goto Next
store 501 to A dest Ptr

got o Next

[22] BAKE

Here, we’'ll turn on the heating elenents, and wait for
an anmount of tine proportionate to the data which we
extracted in the previous step and stored in register
Bake _Time. NOTE: the data is first ranged by division
and addition; this just illustrates the inplenmentation
of a possible transfer function between neasur enent
and bake duration.

Bake Part On

store Bake Tine / 55 to Bake Tine
store Bake Tinme + 12 to Bake Tinme
del ay Bake Time m n goto Next

[23] AFTER BAKE

In this step, we'll just wait for the part to
clear the limt switch with which we originally
sensed it.

Bake Part Of

moni tor No_Part | n_Bake goto PROCESS

Using the Phantom Register to Access multiple I/O Points
[1] INITI ALl ZE_REG STERS

l
)
)
1
l
’
)
l
l
)
)
’
1
)
)
1
’
)
)
1
l
)
)
l
’
)
)
l

This programillustrates the use of the PHANTOM
REGA STER to performthe sane operation on ten
different groups of I/O points, using a single copy
of a program These I/O points could relate to ten
separate but identical workstations.

The program controls the workstations via the phantom
regi ster, changing pointers to point to each
successi ve workstation, and then repeating the cycle
W have created an arbitrary control program

consi sting of:

Turning on two outputs

Waiting for a limt swtch before proceeding
Turning of f both outputs

Waiting for a second limt switch

b S

Since this task accesses nore than one 1/ O point
during each cycle and there is only one set of pointer
and phantomregi sters, we need to naintain a series of
poi nters in general - purpose nuneric registers. Just
prior to the required access to a given I/O point the
programtransfers the pointer value fromthe general -
purpose register into the pointer register.

This step stores initial pointer values in registers
10, 11, 12, and 13. The val ue being stored in register
Qutput _A Ptr, 1010, will point to output nunber 10

A-30

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

when this value is stored to the phantomregister
pointer. Simlarly, the value 1020 (stored in
Qutput_B Ptr) will point to output nunber 20, the

val ue 2010 (stored in Input_A Ptr) will point to input
nunber 10, and the val ue 2020 (stored in Input_B Ptr)
will point to input nunber 20.

Poi nter = Register 127

Phant om = Regi ster 128

Qutput _A Ptr = Register 10
Qutput_B Ptr = Register 11
Input A Ptr = Register 12
Input_B Ptr = Register 13

<NO CHANCGE I N DI G TAL QUTPUTS>

store 1010 to Qutput_A Ptr
store 1020 to Qutput_B Ptr
store 2010 to I nput_A Ptr
store 2020 to I nput_B Ptr
goto QUTPUTS_ON

[50] QUTPUTS ON

;7 This step will turn on two outputs, then wait for
alimt switch input, all using indirect references
t hrough the phantomregister.

The first instruction transfers Qutput A Ptr to the
phantomregi ster pointer. If this is the first tine
through the | oop, this neans the phantomregister is
now poi nting to output nunber 10, since Qutput_ A Ptr
was previously initialized to the value 1010. The
second instruction then turns this output ON by
storing the value 1 to the phantom register.

this time we will turn on output nunber 20, because
Qutput_B Ptr was initialized to the val ue 1020 above.

The last two instructions use the phantomregi ster to
nonitor a limt switch input. As before, we transfer
the pointer value (Input_A Ptr) to the phantom

regi ster pointer. Then, however, we’'ll use an If
instruction to test the phantomregister. This
actually will indirectly test the input being pointed
to. The phantomregister will read as 1 if the input
has a closure on it, otherwise it will read as zero.

[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}
[}
[}
LI}
LI}

;7 The next two instructions work simlarly, except that

<NO CHANCGE I N DI G TAL QUTPUTS>

store Qutput A Ptr to Pointer
store 1 to Phantom

store Qutput B Ptr to Pointer
store 1 to Phantom

store Input_A Ptr to Pointer
i f Phantomr1l got o Next

[51] MONI TOR_I NPUT
;7 In this step, a series of instructions simlar to the
;7 previous step turns off both outputs, using the sane
;7 pointer values used to turn themon in the previous

Appendix A - Sample Programs A-31

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using the Phantom Register

step. The last two instructions nmonitor a different
7, limt switch, as pointed to by Input_B Ptr. Wen it is
;;; turned on, the program proceeds to the next step.

<NO CHANGE IN DI G TAL QUTPUTS>

store Qutput A Ptr to Pointer
store 0 to Phantom

store Qutput_B Ptr to Pointer
store 0 to Phantom

store Input_B Ptr to Pointer
i f Phantomr1l got o Next

[52] NEXT_QUTPUT
;7 Here we will adjust all the pointer values so they
will point to the I/O points of the next workstation.

First, however, we nmust test to see if we have

;;, completed the entire series of ten workstations. If
;7; SO, we'll return back to the initialization step to
;7 begin again.

7, Qtherwi se, after pointing to the new I/O points, we'll

return to the beginning of our program|oop, starting
with step QUTPUTS ON.

<NO CHANGE I N DI G TAL QUTPUTS>

if Qutput_A Ptr >=1019 goto I N Tl ALI ZE_REQ STERS
store Qutput_A Ptr + 1 to Qutput_A Ptr

store Qutput_B Ptr + 1 to Qutput_B Ptr

store Input_A Ptr + 1 to Input_A Ptr

store Input_B Ptr + 1 to Input_B Ptr

goto QUTPUTS_ON

A-32 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using a Multi-station Indexing Table

[1] INITIALIZE SYSTEM

)
l
l
)
)
1
1
)
’
l
l
)
)
l
l
)
)

This program shows a multi-station rotary indexing
tabl e assenbly nachi ne. There are eight stations on

a rotary index. Each station perforns a specific
functi on on a workpi ece. The machine al so tests each
wor kpi ece during certain critical points of the
process. If a test fails, all further assenbly on that
wor kpi ece ceases, resulting in it being off-I|oaded
into the “bad” bin.

The programtracks good parts/bad workpi eces using a
series of flags in a shift register. The flag's
status, either set or clear, represents a good or bad
wor kpi ece. As the tabl e i ndexes workpi eces from one
station to the next, the Shift Flag instruction
transfers the flag status to the next station on the
table. The task that controls a station nonitors its
flag to determine if the part is good or not.

<TURN CFF ALL DI G TAL QUTPUTS>

got o Next
[2] LAUNCH_TASKS

This step starts start two tasks. MAI N_PROGRAM wi | |
start eight tasks and run the indexing table. The
ot her task continuously monitors for fault conditions.

<NO CHANCGE I N DI G TAL QUTPUTS>

do (MAI N_PROGRAM FAULT _MONI TOR) got o LAUNCH TASKS
[3] MAI N_PROGRAM

Here, the position of the index table, controlled by
the servo called Table, is synchronized by searching
for a home reference position.

<NO CHANGE I N DI G TAL QUTPUTS>

profile Table servo at position maxspeed=2000 accel

D=50
search and zero Tabl e
nmoni t or Tabl e: st opped got o Next

[4] AWAI T_START

After hone position is established, the programwaits
for the operator to press the Start_Switch before
pr oceedi ng.

<NO CHANCGE I N DI G TAL QUTPUTS>

monitor Start_Switch goto Next
[5] INDEX TABLE

l
l
)
’
l
l

The di stance the table noves is defined by a register
naned I ndex. W’ll use this value in a rel ative
cl ockwi se Turn instruction to i ndex the table.

This step also shifts the flags so that, as the
wor kpi eces are indexed, any previously stored good-

=500000 P=50 1=30

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-33

Using a Multi-station Indexing Table

7, part/bad-part information is also indexed to foll ow
;55 the associated workpi ece.

<NO CHANCE I N DI G TAL QUTPUTS>

profile Table servo at position maxspeed=Syst em Speed accel =System Accel
turn Tabl e cw I ndex steps

shift S1 Part >> S8 Part

moni t or Tabl e: st opped got o Next

[6] DO _STATI ONS
;7 This step starts eight tasks. Each task controls one
;;; station on the table and perforns an operation on the
;5 part.

<NO CHANCGE I N DI G TAL QUTPUTS>

do (LOAD_PART FI LL_PART FORM PART TEST_PART WELD COVER FI NAL_TEST
OFFLQAD_BAD OFFLQAD _GOOD) goto | NDEX TABLE

[10] LQAD PART
;;; This step pushes a core part onto the table and
77, monitors to see if the part is in position.

Push_Part _On

moni tor Part_Positioned goto Next

[11] LOAD PART_RETRACT
;7 Once the part is correctly in place, we retract the
;7 push arm When the push armhits a limt switch, we
;;; go to the next step.
77; This step also sets the first flag in the shift
;;; register, indicating that a part is present.

Retract Pusher

set S1_Part
nmoni tor Pusher Retracted goto Next

[12] LOAD_PART_SUCCESS
77, This is the end of the task controlling the first
;5. station.

<NO CHANGE I N DI G TAL QUTPUTS>

done

[20] FILL_PART
;7: This step checks if there is part on the table. If the
;;; flag is set, it continues to the next step and
;;; perfornms the duties of this station. If it is clear,
77y the task is conplete for this cycle.

<NO CHANGE I N DI G TAL QUTPUTS>

nmonitor S2 Part:set goto Next
goto FILL_DONE

A-34 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[21] FILL_PART_DRCP

;;: This step opens the fill valve and waits for the scale
;;; toread full. If the part hasn’t filled within one

;;; second, it alerts the operator that the reservoir is
;. enpty.

Fill _Open

Alert _Operator Of

i f Weigh_Scal e >=Full _Wight goto Next
delay 1 sec goto RESERVAO R EMPTY

[22] FILL_PART_CLCSE
;55 This step closes the fill valve and waits for the gate
;5, to close.

Fill_d osed

monitor Gate_C osed goto FILL_DONE
[23] RESERVAO R_EMPTY

77y This step alerts the operator that the hopper is enpty.

i, After 500 ns it returns to FILL PART DRCP and tests
;;; the scal e again.

Al ert _Operator_(On
Fill _d osed

delay 500 ns goto FILL_PART DRCOP

[24] FILL_DONE
This is the end of the FILL_PART task.

<NO CHANCE I N DI G TAL QUTPUTS>

done

[30] FORM PART
;7; This step checks if there is part on the table. If the
;;; flag is set, it continues to the next step and
; perfornms the duties of this station. If it is clear,
; the task is conplete for this cycle.

<NO CHANCGE I N DI G TAL QUTPUTS>

nmonitor S3_Part:set goto Next
got o FORM DONE

[31] FORM PART COWPRESS
77, This step turns on an output and extends a cylinder to
;;; compress the part. Wen the cylinder hits a limt
i, switch, we go to the next step.

Conpr ess

nmoni tor Part_Conpressed goto Next

Appendix A - Sample Programs

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A-35

Using a Multi-station Indexing Table

[32] FORM PART_DECOVPRESS
;7; This step turns off the output and retracts the
;;; conpression cylinder. Wen the cylinder hits a limt
i, switch, we go to the next step.

Conpress_Up

nmoni tor Conpress_Ret goto Next

[33] FORM DONE
This is the end of the FORM PART t ask.

<NO CHANCGE I N DI G TAL QUTPUTS>

done

[40] TEST_PART
;7; This step checks if there is part on the table. If the
;;; flag is set, it continues to the next step and
;;, performs the duties of this station. If it is clear,
77y the task is conplete for this cycle.

<NO CHANGE I N DI G TAL QUTPUTS>

nmonitor S4 Part:set goto Next
got o TEST_DONE

[41] TEST_PART_MEASURE
77, This step turns on an output that applies air pressure
;;; to the forned part. If a sensor detects a | eak, the
;o part fails.

Pressure_On

nmoni tor Pressure_Leak goto FAILED PRESSURE TEST
del ay 300 ns goto Next

[42] TEST_PART_PASSED
77, This step turns of the output for the pressure tester.

Pressure O f

got o TEST_DONE

[43] FAI LED_PRESSURE_TEST
;;; This step is only executed when part fails the
7, pressure test. It also increnents the Pressure_Fail
;;; counter so we nay keep track of problemareas on the
;;; machine. W also clear the station flag so no further
77, work will be performed on this part as it indexes
77, through the rest of the machine.

Pressure Of

store Pressure Fail + 1 to Pressure_Fail
clear S4_Part
got o Next

A-36 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[44] TEST_DONE
This is the end of the TEST PART task.

<NO CHANCE I N DI G TAL QUTPUTS>

done

[50] VELD COVER
;7; This step checks if there is part on the table. If the
;;; flag is set, it continues to the next step and
;;, performs the duties of this station. If it is clear,
i, the task is conplete for this cycle.

<NO CHANGE I N DI G TAL QUTPUTS>

nmonitor S5 Part:set goto Next
got o WELD DONE

[51] WELD COVER PLACE
77, This step activates an output which places a cover
;;; onto the part. Wien the cover is in place, it
;;; proceeds to the next step.

Pl ace_Cover _(n

nmoni tor Cover Positioned goto Next

[52] WELD COVER RETRACT

;;; This step activates two outputs. The first retracts

;;; the nechanismthat placed the cover on. The second
activates the wel der arm The Bool ean nonitor
instruction waits until the cover pusher has retracted
and the weld armis in position.

Pl ace_Cover Of
Vel d_Arm On

nmonitor (and Pl ace_Cover Ret Wl d Arm Positioned _On) goto Next

[53] WELD_COVER VELD PART

This step turns on the output which controls the

7, welder. After a 250 ns delay it proceeds to the next
vy, step.

Wl der_On

del ay 250 ns goto Next

[54] VELD COVER PULL_BACK

This step turns off two outputs. One retracts the
77, welding armand the other turns the welder off. The
;;; monitor instruction waits until the weld arm has

7, retracted before noving to the next step.

Veld AmOf
Wl der O f

moni tor Wl d_Arm Positioned Of goto Next

Appendix A - Sample Programs A-37

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using a Multi-station Indexing Table

[55] WELD DONE
;7 This is the end of the WELD COVER t ask

<NO CHANCE I N DI G TAL QUTPUTS>

done

[60] FINAL TEST
;.7 This step checks if there is part on the table. If the
;;; flag is set, it continues to the next step and
7, performns the duties of this station. If it is clear,
i, the task is conplete for this cycle.

<NO CHANGE I N DI G TAL QUTPUTS>

nmonitor S6 Part:set goto Next
got o FI NAL_TEST_DONE

[61] FI NAL_TEST_ENGACGE
77, This step activates an output that clanps the part for
77, an electrical test. A sensor indicates that the part
;73 is secure and proceeds to the next step.

C anp_Part

nmonitor Part_C anped_On goto Next

[62] FI NAL_TEST POMER ON
77, This step activates an electrical tester and checks to
;;; see if the part passes or fails. It also nonitors the
;;; results of the test.

Power _On

nmoni tor Good_Part goto Next
nmoni tor Bad_Part goto FINAL_TEST_FAI LED

[63] FI NAL_TEST_ PASSED

;i If the part has passed the electrical test, the task
;; proceeds to this step. It turns off the output that
; controls the electrical power and the clanp. It also
; monitors a sensor to determ ne when the part is no
;; longer clanped.

Power O f
Uncl anp_Part

nmonitor Part_ O anped Of goto FINAL _TEST DONE

[64] FINAL TEST_FAI LED

::; This step is only executed when a part fails the

;;; electrical test. It turns off both outputs, increnents
i, the counter for parts failing the electrical test, and
;;; clears the flag for this station, indicating that a
;;; bad part is present. Wien the sensor indicates the

;;; part is not |longer clanped, the task concl udes.

Power O f
Uncl anp_Part

store Electrical _Fail + 1 to Electrical _Fai

A-38 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

clear S6 Part
moni tor Part_C anped_Of goto FINAL_TEST DONE

[65] FI NAL_TEST_DONE
77, This is the end of the FI NAL_TEST task.

<NO CHANGE I N DI G TAL QUTPUTS>

done

[70] OFFLQAD_BAD
;7; This step tests for a bad part on the table. If the
;;; flag corresponding to the part in this station is
;;; clear (indicating that it had failed a test), the part
77, 1s pushed into the bad part bin.

<NO CHANCGE I N DI G TAL QUTPUTS>

monitor S7_Part:clear goto Next
got o OFFLOAD _BAD_DONE

[71] OFFLOAD BAD PUSH
77, This step activates an output which pushes the bad
;;; part off the table and nonitors a sensor to make sure
7, 1t is gone.

Bad _Part_On

nmoni t or Bad_Part_Gone got o Next

[72] OFFLOAD BAD RETRACT
;7; This step turns off the output turned on in the
;;; previous step and nonitors a limt switch to see that
77, the push arm has retracted.

Bad Part O f

moni t or Bad_Part _Pusher _Hone got o Next

[73] OFFLQAD BAD DONE
77, This is the end of the OFFLQAD BAD t ask.

<NO CHANGE I N DI G TAL QUTPUTS>

done

[80] OFFLQAD GOCD
77, This task pushes good parts into the good part bin.
77, It checks to see if the flag is set, indicating the
;7 presence of a good part.

<NO CHANGE I N DI G TAL QUTPUTS>

nmonitor S8 Part:set goto Next
got o OFFLQAD GOOD DONE

[81] OFFLQAD GOCD PUSH
773 This step activates an output which pushes the good
7y, part off the table and nonitors a sensor to make sure
7, It is gone.

Appendix A - Sample Programs A-39

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using a Multi-station Indexing Table

Good_Part_(On

nmoni tor Good_Part _Gone goto Next

[82] OFFLQAD GOCD RETRACT
;7; This step turns off the output turned on in the
;;, previous step and nonitors a limt switch to see that
;;; the push arm has retracted.

CGood_Part O f

nmoni tor Good_Part Pusher Home goto Next

[83] OFFLQAD GOCD DONE
This is the end of the OFFLOAD GOOD t ask.

<NO CHANCGE I N DI G TAL QUTPUTS>

done

[100] FAULT_MONI TOR
;. |If the servo nmotor error exceeds 2000 counts fromits
7, intended position or if the light-curtain is broken,
;;; the index table is shut down.

<NO CHANCGE I N DI G TAL QUTPUTS>

if Tabl e:error >=2000 goto Next
i f Table:error <=-2000 goto Next
nmonitor Light _Curtain_Intrusion goto Next

[101] DI SABLE_MACHI NE

<TURN CFF ALL DI G TAL QUTPUTS>

cancel other tasks
monitor Start_Switch goto I N TIALI ZE SYSTEM

A-40 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Appendix B

Default Symbolic Names

Contents

introduction! B-2
.D'e'fémt'éyhi boiic Names for Controller Resources B-3
DefadiNames for Registers | B-3
:Default Names for Counters B-4
Default Names for Data Table Columns B-4
Default Names for Flags | B-5
Default Symbolic Names for Numbers B-6
‘Default Symbolic Names for Steps B-7
Default Symbolic Names for Inputs_and Outputs B-8
Default Names for Inputs B-8
Default Names for Outputs ; B-8
Default Symbolic Names for Specialized 1/O Devices! B-9
Default Names for Displays ! B-9
Default Names for Thumbwheels : B-9
Default Names for Analog Inputs B-9
Default Names for Digital Outputs | B-9
Default Symbolic Names for Motion Control Devices| B-10
Defauit Names for Stepping Motors | B-10
Default Names for Servo Motors . B-10

Default Symbolic Names for Special Reglsters B-11

Introduction

The default symbolic names are located in afile called DEFAULTS.SYM. This
Fileisautomatically placed in your QSWIN directory when you installed
Quickstep. DEFAULTS.SYM contains default symbolic names for controller
resources, analog and digital inputs/outputs, motion control devices, and some
specia registers.

B-2

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Controller Resources

Default Names for Registers

Register Number Symbolic Name
Register 10 reg_10
Register 11 reg_11
Register 12 reg_12
Register 13 reg_13
Register 14 reg_14
Register 15 reg_15
Register 16 reg_16
Register 17 reg_17
Register 18 reg_18
Register 19 reg_19
Register 20 reg_20
Register 501 reg_501
Register 502 reg_502
Register 503 reg_503
Register 504 reg_504
Register 505 reg_505
Register 506 reg_506
Register 507 reg_507
Register 508 reg_508
Register 509 reg_509
Register 510 reg_510
Register 511 reg_b11
Register 512 reg_b512
Register 513 reg_b513
Register 514 reg_514
Register 515 reg_b515
Register 516 reg_516
Register 517 reg_517
Register 518 reg_518
Register 519 reg_519
Register 520 reg_520
Register 990 reg_990

Appendix B - Default Symbolic Names

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Controller Resources

Register Number Symbolic Name
Register 991 reg_991
Register 992 reg_992
Register 993 reg_993
Register 994 reg_994
Register 995 reg_995
Register 996 reg_996
Register 997 reg_997
Register 998 reg_998
Register 999 reg_999
Register 1000 reg_1000

Default Names for Counters

Counter Number Symbolic Name
Counter 1 ctr 1
Counter 2 ctr 2
Counter 3 ctr 3
Counter 4 ctr_ 4
Counter 5 ctr 5
Counter 6 ctr 6
Counter 7 ctr 7
Counter 8 ctr_8

Default Names for Data Table Columns

Data Table

Column Number Symbolic Name
Column 1 col 1
Column 2 col_2
Column 3 col_3
Column 4 col_4

B-4 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Names for Flags

Flag Number Symbolic Name
Flag 1 flag_1
Flag 2 flag_2
Flag 3 flag_3
Flag 4 flag_4
Flag 5 flag_5
Flag 6 flag_6
Flag 7 flag_7
Flag 8 flag_8

Appendix B - Default Symbolic Names

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Numbers

Default Names for Numbers

Number Symbolic Name
0 clear
0 false
1 true
1 on
B-6 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Steps

Default Names for Steps
Undefined Step Symbolic Name

0 TOP

Appendix B - Default Symbolic Names

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

B-7

Default Symbolic Names for Inputs and Outputs

Default Names for Inputs

Default Names for Outputs

Input Number Symbolic Name State
Input 1 input_1_off Closed (1)
Input 1 input_1 on Open (0)
Input 2 input_2_off Closed (1)
Input 2 input_2_on Open (0)
Input 3 input_3_off Closed (1)
Input 3 input_3 on Open (0)
Input 4 input_4 off Closed (1)
Input 4 input_4 on Open (0)
Input 5 input_5_off Closed (1)
Input 5 input_5_on Open (0)
Input 6 input_6_off Closed (1)
Input 6 input_6_on Open (0)
Input 7 input_7_off Closed (1)
Input 7 input_7_on Open (0)
Input 8 input_8 off Closed (1)
Input 8 input_8 on Open (0)
Output Number Symbolic Name State

Output 1 output_1 off Off (0)
Output 1 output_ 1 on On (1)
Output 2 output_2_off Off (0)
Output 2 output_2 on On (1)
Output 3 output_3_off Off (0)
Output 3 output_3_on On (1)
Output 4 output_4_off Off (0)
Output 4 output_4 on On (1)
Output 5 output_5_off Off (0)
Output 5 output_5 on On (1)
Output 6 output_6_off Off (0)
Output 6 output_ 6 _on On (1)
Output 7 output_7_off Off (0)
Output 7 output_7_on On (1)
Output 8 output_8 off Off (0)
Output 8 output_8 on On (1)

B-8

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Quickstep™ Language and Programming Guide

Default Symbolic Names for Specialized 1/0 Devices

Default Names for Displays

Display Number Symbolic Name
Display 1 display_1
Display 2 display_2
Display 3 display_3
Display 4 display_4

Default Names for Thumbwheels
Thumbwheel Number Symbolic Name

Thumbwheel 1 wheel 1
Thumbwheel 2 wheel 2
Thumbwheel 3 wheel 3
Thumbwheel 4 wheel 4

Default Names for Analog Inputs

Input Number Symbolic Name
Analog Input 1 ain_1
Analog Input 2 ain_2
Analog Input 3 ain_3
Analog Input 4 ain_4

Default Names for Digital Outputs

Output Number Symbolic Name
Analog Output 1 aout_1
Analog Output 2 aout_2
Analog Output 3 aout 3
Analog Output 4 aout_4

Appendix B - Default Symbolic Names

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Motion Control Devices

Default Names for Stepping Motors
Stepping Motor Number Symbolic Name

Stepping Motor 1 motor_1
Stepping Motor 2 motor_2
Stepping Motor 3 motor_3
Stepping Motor 4 motor_4

Default Names for Servo Motors

Servo Motor Number Symbolic Name
Servo Motor 1 servo_1
Servo Motor 2 servo_2
Servo Motor 3 servo_3
Servo Motor 4 servo_4
Servo Motor 5 servo_5
Servo Motor 6 servo_6
Servo Motor 7 servo_7
Servo Motor 8 servo_8

B-10 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Special Registers
Detault Names tfor Special Registers

Register Number Symbolic Name
Register 127 resource_pointer
Register 128 resource_access
Register 131 dt_row_pointer
Register 132 dt_column_pointer
Register 1001 output_01
Register 1002 output_02
Register 1003 output_03
Register 1004 output 04
Register 1005 output_05
Register 1006 output_06
Register 1007 output_07
Register 1008 output_08
Register 1009 output_09
Register 1010 output_10
Register 1011 output_11
Register 1012 output_12
Register 1013 output_13
Register 1014 output_14
Register 1015 output_15
Register 1016 output_16
Register 2001 input_01
Register 2002 input_02
Register 2003 input_03
Register 2004 input_04
Register 2005 input_05
Register 2006 input_06
Register 2007 input_07
Register 2008 input_08
Register 2009 input_09
Register 2010 input_10
Register 2011 input_11
Register 2012 input_12
Register 2013 input_13

Appendix B - Default Symbolic Names

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

B-11

Default Symbol Names for Special Registers

Register 8002
Register 8003
Register 8004
Register 8005
Register 8006
Register 8007
Register 8008

Register Number Symbolic Name
Register 2014 input_14
Register 2015 input_15
Register 2016 input_16
Register 3001 disp_1
Register 3002 disp_2
Register 3003 disp_3
Register 3004 disp_4
Register 4001 disp8_1
Register 4002 disp8_2
Register 5001 high_speed_ctr_1
Register 5002 high_speed_ctr_2
Register 6001 decimal_point_disp_1
Register 6500 shapshot_control
Register 7001 2205 1 pos
Register 7002 2205 _2 pos
Register 7003 2205 _3 pos
Register 7004 2205 _4 pos
Register 8001 analog_out_1

analog_out_2
analog_out_3
analog_out_4
analog_out_5
analog_out_6
analog_out_7

analog_out_8

Register 8501 analog_in_1
Register 8502 analog_in_2
Register 8503 analog_in_3
Register 8504 analog_in_4
Register 8505 analog_in_5
Register 8506 analog_in_6
Register 8507 analog_in_7
Register 8508 analog_in_8

B-12

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Quickstep™ Language and Programming Guide

Register Number Symbolic Name

Register 9000 dt_access

Register 9001 analog_1 gain
Register 9002 analog_2 gain
Register 9003 analog_3_gain
Register 9004 analog_4 gain
Register 9501 analog_1 resolution
Register 9502 analog_2_resolution
Register 9503 analog_3_resolution
Register 9504 analog_4_resolution

Register 10001
Register 10002
Register 10003
Register 10004
Register 10101
Register 10102
Register 10103
Register 10104
Register 10201
Register 10202
Register 10203
Register 10204
Register 10205
Register 10206
Register 10207
Register 10208
Register 11001
Register 11002
Register 11003
Register 11004
Register 11101
Register 11102
Register 11103
Register 11104

groupl_32_outs
group2_32_outs
group3_32_outs
group4_32_outs
groupl 16 outs
group2_16_outs
group3_16_outs
group4_16_outs
groupl_8 outs
group2_8_outs
group3_8_outs
group4_8_outs
group5_8_outs
group6_8_outs
group7_8_outs
group8_8_outs
groupl 32 _ins
group2_32_ins
group3_32_ins
group4_32_ins
groupl 16 ins
group2_16_ins
group3_16_ins
group4_16_ins

Appendix B - Default Symbolic Names

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

B-13

Default Symbol Names for Special Registers

Register Number

Symbolic Name

Register 11201
Register 11202
Register 11203
Register 11204
Register 11205
Register 11206
Register 11207
Register 11208
Register 12000
Register 12001
Register 12300
Register 12301
Register 12302
Register 12303
Register 12304
Register 12305
Register 12306
Register 12307
Register 12309
Register 12310
Register 13002
Register 13003
Register 13004
Register 13008
Register 13009
Register 13010
Register 13011
Register 13012
Register 14001
Register 14002
Register 14003
Register 14004
Register 14005

groupl_8_ins
group2_8_ins
group3_8_ins
group4_8_ins
group5_8 _ins
group6_8 _ins
group7_8_ins
group8_8_ins
comm_status
dt_row_xmit
comm_mode_control
comm_baud_control
comm_inchar_count
comm_parse_control
incoming_message_parser
all_flags
comm_switch_control
comm_switch_delay
comm_switch_output
comm_format_control
millisecond_timer
ctc_rev

ctc_type

ctc_model
software_fault_output
analog_input_range
super_task
current_task_num
servo_1 position
servo_2_position
servo_3_position
servo_4_position

servo_5_position

B-14

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Register Number

Symbolic Name

Register 14006
Register 14007
Register 14008
Register 14101
Register 14102
Register 14103
Register 14104
Register 14105
Register 14106
Register 14107
Register 14108
Register 14201
Register 14202
Register 14203
Register 14204
Register 14205
Register 14206
Register 14207
Register 14208
Register 14301
Register 14302
Register 14303
Register 14304
Register 14305
Register 14306
Register 14307
Register 14308
Register 14501
Register 14502
Register 14503
Register 14504
Register 14505
Register 14506

servo_6_position
servo_7_position
servo_8_position
servo_1 error
servo_2_error
servo_3_error
servo_4 error
servo_5 error
servo_6_error
servo_7_error
servo_8 error
servo_1_velocity
servo_2_velocity
servo_3_velocity
servo_4_velocity
servo_5_velocity
servo_6_velocity
servo_7_velocity
servo_8_velocity
servo_1 status
servo_2_ status
servo_3 status
servo_4 status
servo_5 status
servo_6_status
servo_7_status
servo_8_ status
servo_1 vel feed fwd
servo_2 vel feed fwd
servo_3_vel feed fwd
servo_4 vel feed fwd
servo_5 vel feed fwd

servo_6_vel feed fwd

Appendix B - Default Symbolic Names

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

B-15

Default Symbol Names for Special Registers

Register Number

Symbolic Name

Register 14507
Register 14508
Register 14601
Register 14602
Register 14603
Register 14604
Register 14605
Register 14606
Register 14607
Register 14608
Register 14701
Register 14702
Register 14703
Register 14704
Register 14705
Register 14706
Register 14707
Register 14708
Register 14801
Register 14802
Register 14803
Register 14804
Register 14805
Register 14806
Register 14807
Register 14808

servo_7_vel feed fwd
servo_8 vel feed fwd
servo_1 decel

servo_2_ decel
servo_3_decel
servo_4_decel
servo_5_decel
servo_6_decel
servo_7_decel

servo_8 decel
servo_1_inputs
servo_2_inputs
servo_3_inputs
servo_4_inputs
servo_5_inputs
servo_6_inputs
servo_7_inputs
servo_8_inputs
servo_1 accel feed_fwd
servo_2 accel feed fwd
servo_3 accel feed fwd
servo_4 accel feed fwd
servo_5 accel feed fwd
servo_6_accel feed fwd
servo_7_accel feed fwd

servo_8 accel feed_fwd

B-16

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Glossary

Glossary

Controller Resources
CTC controllers provide the following internal controller resources you can
use when writing your Quickstep program: special and general purpose
numeric registers, counters, flags, and Data Table.

Counters
Counters allow the automatic counting of pulses from the controller’s inputs.
They work in the background and, once started, operate much like an
independent device within the controller.

Data Table
The Data Table is atwo-dimensional array of numbers that can be stored in
the controller’'s memory along with your Quickstep program. Storing this
information in the Data Table instead of within the body of a program makes
the program easier to maintain. The size of the Data Table depends on the
controller model.

Dedicated Inputs
Dedicated inputs are functions that can be programmed for certain controller
inputs. They are called Start, Stop, Reset, and Step.

Flags
Flags are memory elements within a controller that can be either set or clear
and are used to store yes/no types of information.

Multi-tasking
Multi-tasking programs in Quickstep execute multiple program modules
simultaneously. Each module can control a separate sequence of events.

Nesting
Any task in a multi-tasking program can contain other tasksinside of it.
Tasks contained within atask are called nested tasks. Nested tasks must
start and end during the execution of its parent task and follow the rules for
multiple tasks.

Numeric Registers
Numeric Registers are storage locations for numbers within your controller.
Specia purpose registers perform specific functions, depending on the
register number and the value stored in it.

For the storage capacity of the general purpose registers and a list of the
special purpose registers and their functions, refer to Register Reference
Guide, and the installation and applications guide for your controller model.

Parameter Editor
Use the Parameter editor to specify the following information:
* Themode of your controller
e The number of rows and columns in data table
» Which, if any, of thefirst four inputs are used for dedicated functions

Recursion
Recursion occurs when atask (or one of its nested subtasks) includes an
instruction to restart the same task. Eventually the controller has to keep
track of so many tasks that it crashes.

Registers (see Numeric Registers)

Glossary-2

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Specialized I/O Devices

Quickstep supports the following specialized input/output devices:
* Analog inputs and outputs
e Thumbwheel arrays
e Numeric displays

Specialized Motion Control Devices
Quickstep supports the following specialized motion control devices:
* Servo motors
e Stepping motors

Step
A Quickstep program uses steps to define each new state of amachine. A
complete program is composed of a series of steps executed in a defined
pattern. Steps usually contain the following two elements:
* Anaction that establishes the machine's new state

* One or moreinstructions for leaving the step. These instructions
establish the duration of the state.

Symbol Browser
Use the Symbol Browser to specify symbolic names for steps, numeric
constants and the following controller resources and special devices:

* Analog inputs
* Analog outputs

* Counters

e DataTable columns
* Displays

* Flags

* Inputs

* OQutputs

* Stepping motors and servos
* Numeric registers
e Thumbwheels

Symbolic Names
Symbolic names are names given to resources, such as registers, inputs, or
motors. Starting with Quickstep 2.0 you can give resources like these
symbolic names. Symbolic names can identify the function that the resource
performs. For example, a series of servo motors can be called Traverse,
Rotate, and Spindle, rather than Servo_1, Servo 2, and Servo_3.

Glossary Glossary-3

Glossary Glossary-3
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Index

Index Index-1

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Index

Symbols

16-bit access to inputs 3-39
16-bit access to outputs 3-38
32-bit access to inputs 3-39
32-bit access to outputs 3-38
8-bit access to inputs 3-39
8-bit access to outputs 3-38

A

Absolute turn
servo motor 2-19
stepping motor 2-17
Accessing resources
using the phantom register 3-14
Analog inputs
accessing
using special purpose registers 3-30
accessing 16-bit input points 3-39
accessing 32-bit input points 3-39
accessing 8-bit input points 3-39
using analog input signals 3-28
using analog inputs
for atime delay 3-30
in a relational test 3-29
using with a controller 3-28
Analog outputs
accessing
using special purpose registers 3-30
accessing 16-bit output points 3-38
accessing 32-bit output points 3-38
accessing 8-bit output points 3-38
ramp generation A-14
using for control 3-29
using with a controller 3-28
Avoiding mechanical contention
using flags 3-8

B

Boolean operators

performing bit-wise operations

using Store instructions 2-7, 3-40
performing comparisons

using Monitor instructions 2-6
used in Monitor instructions 2-6
used in Store instructions 3-40
using bit-wise Boolean algebra 3-44

C

Cancel (all other tasks)
instruction description 2-12
Clear Flag
instruction description 2-9

Column pointer

using with the Data Table 3-26
Controller

dedicated inputs on 3-34

running several with multi-tasking 1-17

stopping 2-14
Count Down

instruction description 2-13
Count Up

instruction description 2-13
Counters

assigning inputs 3-3

counting down 2-13

counting speeds 3-4

counting up 2-13

debouncing 3-4

disabling 2-13

enabling 2-13

example using 3-4

high speed counting modules 3-37

frequency counting 3-37

programming 3-3

resetting 2-13

starting 2-13

D

Data Table 3-25
using row and column pointers 3-26
using the row pointer 3-26
using to specify X/Y coordinates 3-26
using with Quickstep 3-27
Dedicated inputs
home input 3-18, 3-24
on controller 3-34
reset input functions 3-35
start input functions 3-34
step input functions 3-35
stop input functions 3-34
Delay
instruction description 2-4
Disable (counter)
instruction description 2-13
Displays
accessing
using special purpose registers 3-32
sending numbers to eight-digit display
using special purpose registers 3-32
setting decimal point for 3-32
using with a controller 3-31
Do
instruction description 2-12
Done
instruction description 2-12

Index-2

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

E

Enable (counter)
instruction description 2-13
Error
sensing servo error 3-22
Establishing a home position
for servo motor 3-24
for stepping motor 2-16, 3-18
example 3-18
Examples
cycle counting A-6
establishing a home position
for a stepping motor 3-18
programming a simple machine A-3
showing a circular buffer A-27
showing multi-tasking A-9, A-14
using an indexing table A-33
using analog inputs A-14
using analog outputs A-14
ramp generation A-14
using counters 3-4, A-8
using flags 3-9
using servo motors A-20
in velocity mode A-22
using stepping motors A-19
using the Data Table
in an iterative program A-24
using the phantom register 3-15
accessing multiple I/O points A-30
creating a circular buffer A-27
using thumbwheels A-12

F

Fault monitoring
monitoring for multiple faults 1-5, 1-16
programming a step for 1-5
with multi-tasking 1-15
Flags
clearing 2-9, 3-6
example using 3-9
instructions 2-5, 2-9
monitoring 2-5, 3-6
rotating 2-9
rotating in a shift register 3-8
setting 2-9, 3-6
shifting 2-9, 3-6, 3-7
testing and setting 2-5, 3-9
using 3-6
to avoid mechanical contention 3-8
using as a shift register 3-6
using multiple shift registers 3-8

G

Goto
instruction description 2-11

H

High speed counting modules 3-37
frequency counting 3-37
Homing
a stepping motor 2-16

If
instruction description 2-10
Indirect addressing
using phantom register 3-14
Inputs
analog
access to 16-bit output points 3-39
access to 32-bit output points 3-39
access to 8-bit output points 3-39
using analog input data 3-28
digital
assigning to counters 3-3
monitoring 2-5
normally open/closed 3-3
Instruction samples using
numeric registers 3-12
phantom register 3-15
Instructions
affecting controller resources 1-6
Cancel (all other tasks) 2-12
Clear Flag 2-9
Count Down 2-13
CountUp 2-13
counter control 2-13
Delay 2-4
Disable (counter) 2-13
Do 2-12
Done 2-12
Enable (counter) 2-13
for flags 2-9
for servo motors 2-18
for stepping motors 2-15
Goto 2-11
If 2-10
importance of order 1-7
initiating events 1-6
list of 2-2
Monitor Boolean 2-6
Monitor Flag 2-5
Monitor Input 2-5

Index

Index-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Index

Monitor Motor 2-6
Monitor Servo 2-6
monitoring 2-5
multi-tasking 2-12
Profile Motor 2-15

Profile Servo 2-18

Reset (counter) 2-13
Rotate Flag 2-9

Search and Zero Motor 2-16
Search and Zero Servo 2-19
selective execution of 1-9
Set Flag 2-9

Shift Flag 2-9

Start Counter 2-13

Stop (controller) 2-14
Stop Motor 2-17

Stop Servo 2-20

Store 2-7

Test and Set Flag 2-5
Turn Motor 2-17

Turn Servo 2-19

Zero Motor 2-16

Zero Servo 2-19

M

Monitor
instructions 2-5
Monitor Boolean
instruction description 2-6
using with flags 3-6
Monitor Flag
instruction description 2-5
Monitor Input
instruction description 2-5
Monitor Motor
instruction description 2-6
Monitor Servo
instruction description 2-6
Motors
absolute turn 2-17
establishing home position 2-16
monitoring 2-6
profile instruction 2-15
programming hints for servo motors 3-21
programming hints for stepping motors 3-19
programming servo motion 3-20
relative turn 2-17
stepping motor position 3-18
stop instruction 2-17
turn instruction 2-17
using servo motors 3-20

Multi-tasking
Cancel instruction 2-12
definition 1-11
Do instruction 1-12, 2-12
Done instruction 1-13, 2-12
ending tasks 1-13
fault-monitoring 1-15
instructions 2-12
modular programs 1-14
monitoring for multiple faults 1-16
program format 1-12
recursion 1-13
running several controllers with 1-17
starting tasks 1-12

N

Nonvolatile registers 3-11
Numeric displays
accessing
using special purpose registers 3-32
sending numbers to eight-digit display
using special purpose registers 3-32
setting decimal point for 3-32
using with a controller 3-31
Numeric registers
description 3-11
nonvolatile 3-11
sample instructions using 3-12
using 3-11

O

Outputs
analog
access to 16-bit output points 3-38
access to 32-hit output points 3-38
access to 8-bit output points 3-38
turning on and off 1-4, 1-7
using analog outputs 3-29

P

Phantom register

accessing resources 3-14

definition 3-14

example 3-15

tracking multiple resources 3-16
Position

sensing servo position 3-22
Profile Motor

instruction description 2-15
Profile Servo

instruction description 2-18

Index-4

Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Programming
creating modular programs 1-14
format of multi-tasking program 1-12
servo motors 3-21
using the Data Table 3-27
Programming hints
for servo motors 3-21
for stepping motors 3-19
using analog inputs
for atime delay 3-30
in a relational test 3-29

Q

Quickstep
language definition 1-2

R

Recursion

avoiding 1-13
Registers

definition 3-11

phantom register 3-14
Relative turn

servo motor 2-20

stepping motor 2-17
Reset (counter)

instruction description 2-13
Reset input

dedicated input functions 3-35
Rotate Flag

instruction description 2-9
Row pointer

using in with the Data Table 3-26

S

Search and Zero Motor
instruction description 2-16
Search and Zero Servo
instruction description 2-19
Searching for home
stepping motor 2-16
Servo error 3-22
using servo error parameters 3-23
Servo motors 3-20
establishing a home position 3-24
instructions for 2-18
monitoring 2-6
profile instruction 2-18, 3-20
programming hints for servo motors 3-21
programming servo motion 3-20
search and zero instruction 2-19

searching for home 2-19
sensing servo error 3-22
sensing servo position 3-22
stop instruction 2-20
turn instruction 2-19
using servo error parameters 3-23
using servo position parameters 3-23
zero instruction 2-19
Servo position 3-22
using servo position parameters 3-23
Set Flag
instruction description 2-9
Shift Flag
instruction description 2-9
Shift registers
rotating flags in 3-8
using flags 3-6
using multiple 3-8
Special purpose registers
for accessing analog inputs 3-30
for accessing analog outputs 3-30
for displays
accessing 3-32
sending numbers to eight-digit display 3-32
setting a decimal point 3-32
Start Counter
instruction description 2-13
Start input
dedicated input functions 3-34
Step
definition 1-4
example of a simple step 1-4
how it works 1-4
importance of order in 1-7
initiating events 1-6
multiple instructions in 1-5
selective execution of instructions 1-9
Step input
dedicated input functions 3-35
Stepping motors
establishing a home position 2-16, 3-18
full- or half-step mode 3-17
instructions for 2-15
profile instruction 2-15
programming hints 3-19
reading position 3-18
stop instruction 2-17
turn instruction 2-17
typical sequence for controlling 3-17
using with Quickstep 3-17
velocity profile 2-16
Stop (controller)
instruction description 2-14

Index

Index-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Index

Stop input
dedicated input functions 3-34
Stop Motor
instruction description 2-17
Stop Servo
instruction description 2-20
Stopping
the controller 2-14
Store
instruction description 2-7
performing bit-wise Boolean operations 3-40, 3-
44
Symbolic names
converting from Quickstep 1.6/1.7 2-3
default names in DEFAULTS.SYM B-2

T

Test and Set Flag

instruction description 2-5
Thumbwheels

prescaling information 3-31

uses for 3-31

using with a controller 3-31
Time delay instruction 2-4
Tracking multiple resources 3-16
Turn Motor

instruction description 2-17
Turn Servo

instruction description 2-19

V

Velocity profile

for a stepping motor 2-16
Velocity turn

servo motor 2-20

Z

Zero Motor

instruction description 2-16
Zero Servo

instruction description 2-19
Zeroing

servo motor 2-19

stepping motor 2-16

Index-6 Quickstep™ Language and Programming Guide

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

