
Doc. No. MAN-1010A

QuickstepTM Language and
 Programming Guide

Control
Technology
Corporation

Copyright © 1985-1996, 2000 Control Technology Corporation
All Rights Reserved

Printed in USA

ii
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

The information in this document is subject to change without notice. The software described in this document is
provided under license agreement and may be used or copied only in accordance with the terms of the license
agreement.

The information, drawings, and illustrations contained herein are the property of Control Technology Corporation.
No part of this manual may be reproduced or distributed by any means, electronic or mechanical, for any purpose
other than the purchaser’s personal use, without the express written consent of the Control Technology Corporation:

The following are trademarks of Control Technology Corporation:

• Quickstep
• CTC Monitor
• CTC Utilities

The American Advantage is a registered trademarks of Control Technology Corporation. MS-DOS and Windows
are trademarks of Microsoft Corporation. DeviceNet is a trademark of Allen-Bradley Company.

Contents iii

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Contents
Notes To Readers ... ix
1 Introduction

Introduction ... 1-2
What is a Step? ... 1-4

How a Simple Step Works .. 1-4
Multiple Instructions in a Step ... 1-5
Monitoring a Fault Sensor ... 1-5
Using Control Instructions ... 1-6

The Importance of Order... 1-7
Selective Execution of Instructions ... 1-9

Storing Multiple Programs ... 1-10
Multi-Tasking ..1-11

Using Multi-Tasking to Execute Several Tasks ..1-11
Format of a Multi-tasking Program ... 1-12

Starting the Tasks .. 1-12
Ending the Tasks ... 1-13
Counting the Number of Tasks ... 1-13
The Problem of Recursion .. 1-13
Avoiding Recursion ... 1-14

Using Modular Programs .. 1-14
Fault Monitoring .. 1-15
Rules for Writing Multi-tasking Programs ... 1-16

Sensing Multiple Faults ... 1-16
Running Several Machines with One Controller ... 1-17

2 Quickstep Instructions
Introduction ... 2-2
Using Symbolic Names in Quickstep Instructions .. 2-3
Delay Instructions ... 2-4
Monitor Instructions ... 2-5

Monitoring Inputs ... 2-5
Monitoring Flags.. 2-5
Monitoring Stepping Motors and Servos ... 2-6
Monitoring Boolean Statements .. 2-6

Store Instructions .. 2-7
Storing data to the Data Table ... 2-8

Flag Instructions .. 2-9
If Instructions... 2-10
Goto Instructions ..2-11

iv
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Contents

Multi-tasking Instructions .. 2-12
Counter Control Instructions ... 2-13
Stop Instructions ... 2-14
Stepping Motor Instructions .. 2-15

Profile Motor Instruction .. 2-15
Zero Motor and Search and Zero Instructions .. 2-16
Turn Motor Instruction ... 2-17
Stop Motor Instruction ... 2-17

Servo Motor Instructions ... 2-18
Profile Servo Instruction .. 2-18
Zero Servo .. 2-19
Search and Zero Servo ... 2-19
Turn Servo Instruction ... 2-19
Stop Servo Instruction ... 2-20

3 Using the Quickstep Programming Language
Introduction ... 3-2
Counters.. 3-3

Programming Counters ... 3-3
Debouncing ... 3-4

Counting Speeds ... 3-4
Example .. 3-4

Flags and Shift Registers .. 3-6
Monitoring Flags.. 3-6

Using Monitor Boolean Instructions .. 3-6
Using Shift Registers .. 3-6

Using Multiple Shift Registers ... 3-8
Rotating Flags in a Shift Register ... 3-8
Avoiding Mechanical Contention ... 3-8

Example .. 3-9
Numeric Registers ...3-11

Using Numeric Registers in Quickstep Programs ...3-11
Nonvolatile Registers ...3-11
Using Registers ... 3-12
Example .. 3-12

The Pointer and Phantom Registers .. 3-14
Accessing Digital Inputs and Outputs ... 3-15
Example .. 3-15

Programming Hints ... 3-16
Tracking Multiple Resources ... 3-16

Using Stepping Motors .. 3-17
Programming Stepping Motors ... 3-17

Example .. 3-17
Reading Stepping Motor Position.. 3-18
Establishing a Home Position ... 3-18
Programming Concepts .. 3-19

Using Servo Motors .. 3-20
Programming and Initiating Servo Motions ... 3-20

Example .. 3-21

Contents v

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Programming Notes .. 3-21
Tuning a Servo .. 3-22

Using the P Parameter .. 3-22
Using the I Parameter ... 3-23
Using the D Parameter .. 3-23

Using the Servo Position and Error Parameters ... 3-23
Establishing a Home Position ... 3-24

The Data Table .. 3-25
Accessing the Data Table Using the Row Pointer .. 3-26

Example .. 3-26
Storing Data Using the Row Pointer ... 3-26
Using Row and Column Pointers .. 3-26

Example - Using the Data Table in Quickstep Programs...................................... 3-27
Using Analog Inputs and Outputs ... 3-28

Representing Analog Signals in Quickstep ... 3-28
Using Analog Input Data ... 3-28
Using Analog Outputs ... 3-29
Programming Hints ... 3-29

Using If Instructions... 3-29
Using a Delay instruction .. 3-30

Using Special-Purpose Registers ... 3-30
Using Thumbwheel Arrays and Numeric Displays .. 3-31

Prescaling Values Automatically ... 3-31
Accessing Four-digit Displays Using Special Purpose Registers 3-32
Using Eight-digit Thumbwheels .. 3-32
Using Eight-digit Displays ... 3-32
Setting a Decimal Point ... 3-32

Using Dedicated Inputs ... 3-34
Start Input Functions ... 3-34
Stop Input Functions ... 3-34
Reset Input Functions ... 3-35
Step Input Functions ... 3-35

Using High Speed Counting Modules ... 3-37
Counting Functions Supported ... 3-37
Frequency Counting .. 3-37

8-, 16-, or 32-bit Access to Input/Output Points .. 3-38
8-, 16-, or 32-bit Output Access .. 3-38
8-, 16-, or 32-bit Input Access ... 3-39
Masking Unused Bits .. 3-39

Performing Boolean Operations on Binary Numbers ... 3-40
Performing Boolean Operation on Binary Numbers ... 3-40

AND ... 3-40
NAND .. 3-41
OR ... 3-41
NOR... 3-42
XOR... 3-42
NXOR .. 3-43
ANDNOT ... 3-43

Using Bit-wise Boolean Algebra in Your Quickstep Program................................ 3-44

vi
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Appendix A - Sample Programs
Introduction ... A-2
Program to Control a Simple Machine .. A-3
Using Registers - Cycle Counting ... A-6
Using Counters ... A-8
Using Multi-Tasking ... A-9
Using Thumbwheels and Displays .. A-12
Using Analog Inputs and Outputs ... A-14

Programming Hints ... A-18
Using Stepping Motor Instructions .. A-19
Using Servo Motor Instructions ... A-20

Programming a Servo ... A-20
Velocity Mode Example ... A-22

Using the Data Table ... A-24
Data in Data Table ... A-25

Using the Phantom Register ... A-27
Using the Phantom Register to Create a Circular Buffer .. A-27
Using the Phantom Register to Access multiple I/O Points .. A-30

Using a Multi-station Indexing Table ... A-33

Appendix B - Default Symbolic Names
Introduction ... B-2
Default Symbolic Names for Controller Resources .. B-3

Default Names for Registers ... B-3
Default Names for Counters ... B-4
Default Names for Data Table Columns ... B-4
Default Names for Flags ... B-5

Default Symbolic Names for Numbers ... B-6
Default Symbolic Names for Steps ... B-7
Default Symbolic Names for Inputs and Outputs.. B-8

Default Names for Inputs .. B-8
Default Names for Outputs ... B-8

Default Symbolic Names for Specialized I/O Devices .. B-9
Default Names for Displays .. B-9
Default Names for Thumbwheels ... B-9
Default Names for Analog Inputs .. B-9
Default Names for Digital Outputs .. B-9

Default Symbolic Names for Motion Control Devices ... B-10
Default Names for Stepping Motors .. B-10
Default Names for Servo Motors .. B-10

Default Symbolic Names for Special Registers .. B-11

Glossary
Controller Resources .. Glossary-2
Counters .. Glossary-2
Data Table ... Glossary-2
Dedicated Inputs ... Glossary-2
Flags .. Glossary-2
Multi-tasking .. Glossary-2

Contents

Contents vii

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Nesting .. Glossary-2
Numeric Registers ... Glossary-2
Parameter Editor ... Glossary-2
Recursion .. Glossary-2
Specialized I/O Devices .. Glossary-3
Specialized Motion Control Devices .. Glossary-3
Step ... Glossary-3
Symbol Browser .. Glossary-3
Symbolic Names ... Glossary-3

Index

Notes to Readers ix

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Notes To Readers
The QuickstepTM Language and Programming Guide provides the following
information:

• A description of the Quickstep programming language

• How to write multi-tasking programs

• A language reference describing Quickstep instructions

• How to write Quickstep programs that effectively use controller resources
and specialized I/O and motion control

• Sample Quickstep programs for a variety of applications

• The list of default symbol names available with the Quickstep editor

Related Documents
The following documents contain additional information

• For information on Quickstep, refer to the QuickstepTM User Guide.

• For information on general purpose and special registers, refer to the Regis-
ter Reference Guide.

• For a tutorial using Quickstep, refer to the QuickstepTM for WindowsTM

Tutorial.

• For information on your controller and its modules, refer to the appropriate
Installation and Applications Guide.

• For information on Microsoft Windows or your PC, refer to the manuals
provided by the vendor.

x
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Notes to Readers

Book conventions
The following conventions are used in this book:

ALL CAPS BOLDFACE Identifies file names and fields on the Quickstep Editor user
interface. It also identifies DOS, Windows, installation program
file names.

Boldface Indicates information you must enter, an action you must perform,
or a selection you can make on a dialog box or menu.

Italics Indicates a word requiring an appropriate substitution. For ex-
ample, replace filename with an actual file name. It can also
indicate a manual, book, or chapter title.

Text_Connected_With_Underlines Indicates symbol names used in Quickstep programs. Step names
are ALL_CAPITALS. Other symbol names can be Initial_Capitals
or lower_case.

SMALL CAPS Identifies the names of Quickstep instructions in text.

Courier font Identifies step names, comment, output changes, and Quickstep
instructions appearing in the Quickstep editor window or program
steps

ArtCode – DN-24 Identifies the file name of a particular graphic image.

How to Contact Control Technology Corporation
Control Technology Corporation is located in Massachusetts, and wer are open
from 8:30 a.m. to 5:00 p.m. eastern time. Contact us at 508 435-9595 and 800
282-5008 or Fax 508 435-2373

See us on the web at www.ctc-control.com.

Your Comments
We welcome your suggestions and comments about this or any other Control
Tech document. Comment forms are in the file called BUGRPT.WRI, which was
installed in your QSWIN directory during your Quickstep installation. you can
also email comments to techpubs@ctc-control.com.

Introduction 1-1

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Chapter 1

Introduction
Contents

Introduction 1-2
What is a Step? 1-4
Storing Multiple Programs 1-10
Multi-Tasking 1-11

1-2 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Introduction
Quickstep™, Control Technology Corporation’s (CTC) programming language,
is used to program our automation controllers. The overall format of a Quick-
step program consists of a sequence of events, described as a series of program
steps. Each step is a collection of instructions that determines the state of an
automated machine or system for an interval of time. A step can contain both
instructions which initiate motions and instructions that monitor various sensors.
Steps can also contain specific high-level instructions for functions such as
stepping motor and servo control.

The sequential format of Quickstep is very similar to the thought processes that
originally enter into the design of a new machine. New machines are usually
designed to perform a specific task or series of tasks. The task can be an assem-
bly operation, a series of machining operations, or a chemical process consisting
of a sequence of etching, depositions, and/or reactions. Machine designers take
this task and break it down into a number of discrete operations. These discrete
operations possess a natural sequence or order and must occur in that sequence.

Machine designers often plan the sequence of tasks in advance and record them
on paper in one of the following formats:

• Written narrative description
• Flow chart
• Timing diagram

Each of these approaches describes the machine’s operation in a similar man-
ner—as a series of states through which the machine proceeds as it accomplishes
its task. Quickstep mirrors the states that a machine proceeds through, while
also allowing you to program parallel, asynchronous functions.

By describing a machine’s operation as a series of states, a Quickstep program
maintains a one-to-one correspondence with the functions of the machine you
are programming.

Sequence of Events Expressed as a Narrative Description
1. Extend load cylinder. Wait for limit switch to be hit before proceeding.
2. Extend Clamps. Allow 0.3 second for clamps to be fully extended.
3. Once clamps have extended, retract load cylinder. Allow 0.5 second

for load cylinder to retract.
4. Actuate stamping ram. Wait for a limit switch.
5. Retract stamping ram. Allow 0.5 second for ram to retract.
6. Actuate ejection cylinder. Allow 0.3 second for part to be ejected.
7. Retract ejection cylinder.
8. Increment parts counter.

Multi-tasking
Programs written in
Quickstep can also
match the modular
nature of many
machines, since it
gives you the ability
to write multi-tasking
programs. Multi-
tasking executes
multiple program
modules
simultaneously; each
module can control a
separate sequence of
events. For more
information on multi-
tasking, see the
section on Multi-
tasking.

Introduction 1-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Sequence of Events Shown in a Flow Chart

Sequence of Events Shown as a Timing Diagram

1-4 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

What is a Step?

Symbolic Names
In many of the
examples shown in
this manual the
inputs, outputs,
stepping motors, etc.
have symbolic names.
Starting with
Quickstep 2.0 you
can give resources
like these symbolic
names that can
identify their
function,. For
example, an output
that turns on a
pneumatic cylinder
for a stamping press
can be called
Stamp_Press_On.
For more information
on symbolic names,
see Using Symbolic
Names in Quickstep
Instructions in
Chapter 2.

A Quickstep program uses steps to define each new state of a machine. A
complete program is made up of a series of steps executed in a defined pattern.
Steps are made up of the following two elements:

• One or more instructions changing the controller’s outputs by turning them
on or off or an instruction maintaining their current state. Turning one of the
outputs on or off usually creates one or more motions on a machine and can
establish the machine’s new state.

• One or more instructions for leaving the step. These instructions establish
the duration of that state.

Since you can program more than one instruction in a step, there can be several
possible paths for leaving a step. The path taken by the controller would depend
on the conditions sensed when the step is executed. The controller can monitor
one or more conditions on the machine (limit switches, sensors) and only
proceed to the next step once a condition is met. Another option is to program a
time delay and have the controller move to a new step after a specified amount
of time.

You can also program specialized motion control instructions, such as specifying
the velocity of a stepping or servo motor, or program instructions for various
internal controller functions, like counters, flags, and math instructions.

How a Simple Step Works
The following example shows a simple step. This step extends a pneumatic
cylinder and waits for it to strike a limit switch at the end of its travel before
proceeding to the next step.

There must be two devices on the machine connected to the controller to accom-
plish this task.

1. A solenoid valve which directs compressed air to the appropriate cylinder
port. The solenoid is controlled by one of the controller’s outputs, labeled
Clamp_Part_On in the illustration.

2. A limit switch positioned so that the pneumatic cylinder strikes the limit
switch at the end of its travel. The limit switch is connected to one of the
controller’s inputs (labeled Limit_Switch in the illustration). The limit
switch sends a signal to the controller’s input.

When the controller executes the step, it first executes the output instruction. In
this case, it turns on Clamp_Part_On. Next, it executes any remaining instruc-
tions in order. This step only has one additional instruction, monitor
Limit_Switch goto next. When the controller receives the input signal, it
proceeds to the next step.

Introduction 1-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multiple Instructions in a Step
Steps can contain multiple instructions. This example adds a fault-monitoring
function to the simple step discussed previously. The following example makes
use of two of the rules of Quickstep program execution:

1. You can program more than one instruction in a step.

2. Instructions with a destination are executed repeatedly, in the order pro-
grammed, for the duration of the step.

Using these two features we can expand the simple step example. In it, the limit
switch is used to detect the completion of a pneumatic cylinder’s stroke. If the
cylinder jammed in mid-stroke, the controller would never receive the signal
from the limit switch. It would remain in its current step forever, waiting for the
limit switch signal. By estimating the longest possible normal stroke time for
the cylinder, you can have the controller automatically sense a jam condition and
have it take appropriate action. One method of accomplishing this is to program
a DELAY instruction (time delay) in the same step of the program.

When the controller enters the step, it instantly turns on output 1, telling the
cylinder to start extending. Next, it begins executing both the MONITOR and
DELAY instructions. The instruction that is satisfied first takes the controller out
of the step. If the cylinder reaches the limit switch before the time delay elapses,
the controller continues to the next step, which is the normal operating sequence.
The time delay instruction effectively disappears at this time, because the
controller is no longer executing this step.

If the controller does not receive the signal from the limit switch on time and the
DELAY instruction times out, the controller proceeds to step JAM_DETECTED.
At step JAM_DETECTED you can program an instruction to shut down the
machine, ring an alarm, or begin an automatic unjam sequence for the machine.

Monitoring a Fault Sensor
Using the same example, we can also program additional fault sensing by
including more MONITOR instructions. To detect an over pressure condition you
can:

• Connect a pressure switch to another of the controller’s inputs.
• Add an instruction to monitor this input.

You can program the second MONITOR instruction to send the controller to a
different step. The controller monitors inputs Limit_Switch and
Pressure_Sensor at the same time it is timing the DELAY instruction. Quickstep
executes all three instructions until one of them is satisfied. This means, when
the machine reaches an over pressure condition, the controller does not wait for
the other instructions before leaving the step. The illustration on the next page
shows this step.

1-6 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

In some cases, you may need to have certain universal monitoring instructions
that are always executed by the controller, for example, an instruction to monitor
an over-temperature switch that must be monitored during an entire sequence of
events. Although you can place a MONITOR instruction in each step of your
program, an easier method of accomplishing this is by multi-tasking. For
additional information on multi-tasking, see the section on Multi-tasking.

Using Control Instructions
The previous examples explained the general format of a sequential program,
showed several simple forms of steps, and illustrated the use of MONITOR and
DELAY instructions to control the flow of a program from one step to another.
Both of these instructions force the controller to a new step when a given event
occurs.

Steps can also contain two other types of instructions:

• High-level instructions to initiate certain events which can span several
steps. For example, instructions to initiate motion on a stepping motor or
servo.

• Internal control instructions that affect the status of internal controller
resources, including math instructions.

In this example, an external thumbwheel preset, which allows an operator to dial
in a desired coordinate for a linear motion table, is connected to the controller.
The table is driven by a stepping motor. Although the controller moves the table
in units of steps, we want the operator to be able to dial in the coordinate
expressed in thousandths of an inch of travel. The following illustration shows
the setup of the controller, thumbwheel, and linear table.

What is a Step?

Controller
Resources
CTC controllers
provide the following
internal controller
resources that you
can use when writing
your Quickstep
program:
• Counters, for
functions such as
batch counting or
production counting.

• Flags, which are
memory locations
used to store yes/no
information.

• General-purpose
numeric registers
used to store
numbers.

• Special purpose
registers, which may
store numbers, but
are also reserved for
special purpose
functions.

• A Data Table, which
stores an array of
numbers to use
within a Quickstep
program.

Controller resources
are described in
Chapter 3.

Introduction 1-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Let us assume each step of the stepping motor corresponds to .0005 inch of table
travel. To obtain the appropriate number of steps to move the motor, we know
that we must multiply the coordinate position by a factor of 2. The first instruc-
tion in the program is a math instruction:

store Distance * 2 to Travel_Distance

Where:
Distance is the symbolic name for thumbwheel 1
Travel_Distance is the symbolic name for register 10

This instruction takes the current setting of thumbwheel 1 (Distance), multiplies
it by two, and stores the result in one of the controller’s internal numeric regis-
ters (Travel_Distance).

A second instruction takes the value stored in Travel_Distance and instructs the
stepping motor to move to that coordinate:

turn Motor_1 to Travel_Distance

Since we want the controller to wait for the motor to reach its new position
before the controller proceeds with its program, a third instruction monitors the
motor:

monitor Motor_1:stopped goto next

The controller waits until the motor has stopped before going to the next step.

The Importance of Order
In the previous example the value used for the TURN MOTOR instruction was
calculated in the same step as the TURN MOTOR instruction. The instruction that
performed the calculation was programmed before the TURN MOTOR instruction.
This works because the controller executes the instructions within a step in the
order in which you program them. The specific rules governing the execution of
Quickstep instructions are as follows:

• When first entering a step, the controller turns on or off any digital outputs
specified.

• The controller then executes any additional instructions in the step. It does
this in the order that they are programmed.

• Instructions without a destination, that is, instructions that do not specify
how to leave the step, are executed only once. These instructions include
mathematical calculations, storing a value to a register, turning a motor or
servo on, and motor or servo PROFILE instructions.

• Instructions with a destination are executed repetitively, in the order pro-
grammed, for the duration of the step.

• Time DELAY instructions are set up initially and checked repetitively for a
time-out as long as the controller is in the step.

• If an instruction with a destination is already satisfied when a controller first
begins to execute a step, the controller leaves the step without executing any
subsequent instructions in that step.

In the following example the value for a pressure transducer is scaled and offset
in the same step. The table below shows that the pressure transducer provides a
signal voltage ranging from 0.5 to 5.5 volts with an applied pressure ranging

Specialized
Motion Control
and I/O Devices
Quickstep combined
with CTC’s controller
hardware allows you
to program:
• Specialized motion
control devices, such
as servo and
stepping motors.

• Data acquisition
and processing for
analog I/O devices

• Specialized I/O
such as numeric
displays and
thumbwheels.

Specialized motion
control and I/O
devices are described
in Chapter 3.

1-8 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

from 0 to 500 PSIG. The analog I/O board in the controller uses a conversion
factor of 1000 counts per volt and reads this signal as a number from 500 to
5500.

Specification Value
Applied pressure 0 - 500 PSIG
Voltage output 0.5 - 5.5 volts
Analog value 500 - 5500

The following example shows how you can program a series of instructions to
display a correct pressure reading directly in PSIG.

Controller Resource Symbolic Name
Analog input 1 Pressure_Trans

Register 10 Pressure_Value

Display 1 Pressure

[31] CALCULATE_PRESSURE
 ——————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————————
 store Pressure_Trans - 500 to Pressure_Value
 store Pressure_Value/10 to Pressure_Value
 store Pressure_Value to Pressure
 if Pressure_Value >= 150 goto OVER_PRESSURE

In the step shown above, we first remove the offset to derive a numeric value
that corresponds directly to PSIG. The following math instruction takes the
value from the analog input (Pressure_Trans), subtracts 500, and stores the
result in register 10 (Pressure_Value).
store Pressure_Trans - 500 to Pressure_Value

The subtraction results in a pressure reading between 0 and 5000. To complete
the ranging of the analog signal, we must divide the number in the
Pressure_Value by 10 as follows:
store Pressure_Value / 10 to Pressure_Value

The result of the division is stored back in register 10 and takes the place of the
previous value.

The following instruction displays the pressure reading on the numeric display.
store Pressure_Value to Pressure

It is possible to take the value calculated by Pressure_Value / 10 and store it
directly into the numeric display. However, by first storing the pressure value in
register 10, we can refer to it later. An example of this is the last instruction in
the step. It tests the value for an over pressure condition and jumps to step
OVER_PRESSURE when such a condition is found.

if Pressure_Value >= 150 goto OVER_PRESSURE

What is a Step?

Introduction 1-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

NOTE: The controller processes the math calculation and the STORE instruction only once when
executing the step. Any subsequent change in pressure will not be registered until the control-
ler re-executes this step.

You can program the step so that the pressure reading will be continuously
updated by adding the following instruction to the end of the step:
[31] CALCULATE_PRESSURE
 ——————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————————
 store Pressure_Trans - 500 to Pressure_Value
 store Pressure_Value/10 to Pressure_Value
 store Pressure_Value to Pressure
 if Pressure_Value >= 150 goto OVER_PRESSURE
 goto CALCULATE_PRESSURE

where CALCULATE_PRESSURE is the name of the current step. The control-
ler exits the step once it has been executed and jumps to the same step and re-
executes it again repetitively. The controller continues the operation until the IF
instruction causes the controller to jump to step OVER_PRESSURE.

Selective Execution of Instructions
When a controller first executes a step that contains several instructions, it
executes the instructions in the order in which they appear in the step. What
happens when one of the instructions wants to immediately send the controller
to a new step? The following step is an example of this situation.

[1] MONITOR_AND_TALLY
 ——————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————————
 monitor In_1_On goto next
 count up Parts_Produced
 goto next

The first instruction monitors input 1 to determine if a sensor switch has closed
the input. This could indicate that the machine has sensed a bad part. If the
machine senses a bad part, the MONITOR instruction sends the controller to the
next step before the remaining two instructions are executed.

NOTE: The instruction goto next refers to the next step in the sequence, not the next instruction.

The second instruction in this step adds one to the count stored in counter 1
(Parts_Produced). The controller executes this instruction only if the previous
MONITOR instruction did not send it to the next step. If the counter is tallying the
number of good parts produced, only good parts are counted.

The last instruction in the step sends the controller to the next step uncondition-
ally. In either case the controller jumps to the next step, remaining in the
MONITOR_AND_TALLY step only for the time required to execute the appro-
priate instructions.

1-10 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Storing Multiple Programs
You may need to program a machine to accomplish one of several possible tasks.
For example, a machine may be required to fabricate one of three parts, A, B, or
C. Each of these parts requires a different sequence of instructions. You can
program all three of these sequences into the controller and use a manual selec-
tor switch to select the sequence you want. You can program one sequence in a
series of steps, beginning with a step called FABRICATE_PART_A. The second
sequence can be programmed in a series of steps beginning with a step called
FABRICATE_PART_B and the third sequence could begin with a step called
FABRICATE_PART_C.

To have the controller execute the correct sequence, you can connect three of the
controller’s inputs to the various points on the selector switch. Then program
three MONITOR instructions in the beginning of the program. These instructions
monitor the three inputs on the controller (See table) and jump to the correct
step.

Controller Resource Symbolic Name
Input 11 on Fab_Part_A

Input 12 on Fab_Part_B

Input 13 on Fab_Part_C

[2] MONITOR_FABRICATE_PART
 ——
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——
 monitor Fab_Part_A goto FABRICATE_PART_A
 monitor Fab_Part_B goto FABRICATE_PART_B
 monitor Fab_Part_C goto FABRICATE_PART_C

Introduction 1-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multi-Tasking
All of the previous examples have one common factor—they each consist of a
single, linear sequence of events. These examples may have shown decision
making or allowed the controller to follow one of several optional paths in the
program. For many machines this type of program is appropriate. Most ma-
chines possess a natural sequence of events that must be executed to properly
control them.

However, as machines grow in complexity, there are often multiple mechanisms
on a machine that must be sequenced asynchronously. For example, a machine
may contain the following:

• A loading mechanism to feed in a new workpiece
• An assembly station to perform an assembly operation
• An off-loading mechanism to remove the finished piece

To achieve optimum speed of operation, you may want to overlap a portion of,
or all of, the sequences for the three mechanisms.

A similar situation exists with an index-table based machine. An index table has
several workstations arranged around a rotary table, each performing specific
operations on a workpiece as it goes around the table. Each time the table is
indexed, all of the workstations must be sequenced simultaneously through their
own independent sequence of events.

Machines like these have more of the characteristics of being several indepen-
dent machines rather than one device. It is difficult to describe their combined
operations as a single linear sequence. Any attempt to do so would require a
careful analysis of the relative speeds of operation of each actuator on each
mechanism. Such a program would also create inevitable inefficiencies as one
mechanism is required to wait for another to actuate prior to proceeding with its
own sequence.

Using Multi-Tasking to Execute Several Tasks
Using Quickstep, you can program the controller to execute several tasks at
once. This is called multi-tasking. In programming a complex machine, multi-
tasking allows you to think of each mechanism as a separate machine. You can
write an independent task to control each mechanism using the standard Quick-
step format. You then write a master program that calls up several of these
independent tasks to operate simultaneously. It is as though the controller had
split into several controllers running at the same time, each controlling one of
the mechanisms.

Depending on the controller model, it can have up to 28 separate tasks running
at the same time. Refer to the installation guide for your controller for the
number of tasks it can run.

Just as you might take a machine which is mechanically complex and break it
down into modules for the sake of simplification, multi-tasking allows you to
break your program into individual tasks–each task controlling one portion of
the overall machine. Breaking down the program into tasks has the following
advantages:

• Simplifies and shortens your programming efforts
• Increases the program’s reliability (i.e., reduces the possibility of bugs)
• Makes each program easier to modify at a later date

1-12 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Format of a Multi-tasking Program
The following diagram illustrates the format of a multi-tasking program. It
shows each step of the program as a simplified block. In this instance the
machine being controlled has a loading mechanism to load a new workpiece into
position and an unloading mechanism to remove the workpiece completed on the
previous cycle. The loading and unloading mechanisms are run simultaneously,
because we assume that no mechanical conflict exists between them.

You can now write a separate program for each mechanism or task.

First write the program (task) to control the machine’s loading mechanism. In
this example, the task for the loading mechanism is only three steps long. When
writing the loading task, you only need to be concerned with the operation of the
loading mechanism, unless the possibility of mechanical interference with
another part of the machine exists. At the end of the task, a DONE instruction
indicates that it is completed.

Next, write the task to control the machine’s off-loading mechanism, placing
another DONE instruction at the end of this task.

NOTE: All controller resources and specialized motion control and I/O devices are globally accessible.

Starting the Tasks
The main program for the machine begins like a normal Quickstep program, as a
sequence of events. In the third step of the main program, we program the
instruction, do (ONLOAD OFFLOAD) goto next. This instruction causes the
main program to suspend operation at its current step and starts two separate
tasks running; one starting at step ONLOAD and one at step OFFLOAD.

The two tasks run independently as two separate programs. The effect is similar
to having two separate controllers running the two portions of the machine. The

Multi-Tasking

Nesting
Any task in a multi-
tasking program can
contain other tasks
inside of it. Tasks
contained within a
task are called nested
tasks. Nested tasks
must start and end
during the execution
of its parent task and
follow the rules for
multiple tasks.

Introduction 1-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

tasks operate asynchronously, one task may run through its steps quickly (based
on the instructions contained in the steps) and the other task may wait for a long
DELAY instruction to time out.

Individual tasks do not necessarily have to follow a sequential series of steps,
although doing so improves program clarity. A task may jump around through
any combination of steps in the program. A task may even contain subtasks
(nested tasks) by incorporating DO instructions within the task itself.

Ending the Tasks
Each of the tasks continues until it reaches a DONE instruction. When one of the
tasks executes a DONE instruction, it ceases operation and signals the original DO
instruction in the main program that the task is complete. Once all of the tasks
originally started by the DO instruction are complete, the main program contin-
ues. Since the DO instruction reads do (ONLOAD OFFLOAD) goto next, the
main program will continue with its next step.

Counting the Number of Tasks
The task limit that a controller is capable of executing is an important limit.
Violating the task limit for a controller results in a software fault, and the
controller ceases operation. In the ONLOAD/OFFLOAD program example the
controller was executing three tasks. The first task started at step 1, START.
The DO instruction at step three started two more tasks. This is a total of three
tasks. If the ONLOAD task contained additional DO instructions, those tasks
would be added to the total number of tasks the controller was running.

The Problem of Recursion
Normally, programs are written to avoid violating the controller task limit. It is
possible to write a program improperly and violate the task limit unintentionally.

The following diagram shows such a situation. At first glance, it may seem as
though only two tasks are being started by the controller’s main program. A
careful analysis of the program indicates a structural error that would ultimately
result in an infinite number of tasks running.

1-14 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

In the first step of the program the instruction do (ONLOAD OFFLOAD) goto
next starts two separate tasks as shown. However, there is no DONE instruction
at the end of each task. Although this may be allowable under some circum-
stances, in this example there is an instruction at the end of each task that returns
the controller to the first step:

monitor Onload_Complete goto BEGINNING
monitor Offload_Complete goto BEGINNING

Onload_Complete and Offload_Complete are symbolic names for inputs.

Since tasks are allowed to jump around within a program, the controller views
these instructions as continuations of their respective tasks. Each monitor
instruction independently causes its task to jump back to the step called BEGIN-
NING. Then, each task independently encounters the DO instruction in the first
step again, and each task sets up two additional tasks—one commencing at step
ONLOAD and one commencing at step OFFLOAD. Each of these two tasks
ultimately returns to the first step and in turn sets up an additional two tasks
each, and so on.

This problem is well known in computer programming and is called recursion.
Recursion results whenever a subroutine (equivalent to a task) includes an
instruction to restart the same subroutine. Eventually, the computer has to keep
track of so many subroutines that it crashes, sometimes with disastrous conse-
quences.

In CTC’s controllers this results in a software fault, leaving all outputs, and
other controller resources in the state they were in at the time of the error. Refer
to the Register Reference Guide for a description of special purpose register
13009 and its use in software fault detection.

Avoiding Recursion
With Quickstep, recursion occurs when a task or one of its subtasks encounters
the Do instructions which started it and re-executes it. Recursion can be avoided
by clearly planning what you want to accomplish.

Do you want each program to loop back on itself continuously? Then change
the MONITOR instruction to send the controller back to the beginning of that task.
For example:
monitor Onload_Complete goto ONLOAD
monitor Offload_Complete goto OFFLOAD

This avoids re-execution of the original DO instruction.

Do you want the programs to execute in parallel and, when both tasks are
completed, begin again simultaneously? Then add a step at the end of each
program with a DONE instruction to signal the end of each task. The DONE
instructions close out the tasks, signaling the original DO instruction to return to
the first step. The controller returns to the first step and re-executes the DO
instruction.

Using Modular Programs
Often a program can be written as a collection of tasks. If the construction of a
machine is highly modular, you may be able to write a separate program module
(task) for each mechanical module on the machine. The main program for the
controller becomes a series of DO instructions that start the various tasks in the
appropriate order.

Multi-Tasking

Introduction 1-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Creating segmented or modular programs is a powerful technique for simplify-
ing the programming of a complex machine. When initially debugging the
machine, you can quickly identify and rectify a programming problem in any
given area. The location in the machine where the problem is occurring points
to the appropriate program module to change. Writing modular programs also
makes it very unlikely that modifying one task has any unintended side effect on
another portion of the machine.

Fault Monitoring
Multi-tasking also allows you to perform continuous monitoring of a sensor
during a machine’s operation. By using multi-tasking it is possible to create a
separate fault-monitoring program that does nothing but watch one or more fault
sensors during the machine’s operation. Only when the controller detects a fault
condition does this program take action.

CAUTION: It is the machine designer’s responsibility to assess the possibility of human injury and
economic risk inherent in a machine’s design and function. The machine designer must
take adequate steps to protect against those risks. Under no condition should any one
system or element on a machine represent the sole protection against injury or risk.
Good design practice requires independent back up systems in such instances, prefer-
ably incorporating differing technologies in their design. The appropriateness of such
measures must be assessed by the machine designer according to generally accepted
safety practices in his or her industry.

The following illustration is an example of a fault monitoring program.

Multi-tasking starts in the first step of the program:
do (FABRICATE_PART FAULT_MONITOR) goto START

NOTE: The destination for the original DO instruction, goto start, is programmed to satisfy the format of
the DO instruction and, in this instance, has no significance in the program.

The first of the two tasks, starting at step FABRICATE_PART, is the main task
for running the machine. This task can take advantage of multi-tasking by

!

1-16 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Multi-Tasking

nesting additional subtasks within it. At the end of the task, step
RETRACT_OFFLOAD loops back to the beginning of the task without execut-
ing a DONE instruction.

At the same time the fault-monitoring task remains at step FAULT_MONITOR,
where an instruction continuously monitors a fault sensor on the machine. Only
if the fault sensor becomes active does this program jump to step
CHECK_FAULT. This step cancels all other tasks.

At step CHECK_FAULT you can program a number of different reactions to the
fault condition. In the illustration the instruction, cancel other tasks,
causes any other tasks that may be operating to cease operation. Cancel leaves
all controller resources in the states they were in just prior to the CANCEL instruc-
tion. From this time on, the controller executes only one program, the fault
monitoring program. This program can then proceed to take control over the
machine, taking it through an orderly shutdown.

Sometimes less drastic action than shutting down all tasks is desired in response
to a fault condition. For example, by programming the instruction, stop goto
FAULT_MONITOR, at step CHECK_FAULT of the program, the entire machine
would stop sequencing when a fault condition is sensed (including
FABRICATE_PART and any subtasks). When the machine’s operator corrects
the fault and starts the controller again, all of the active tasks would continue
execution from where they left off and the fault monitoring program could return
to step FAULT_MONITOR.

CAUTION: The CANCEL and STOP instructions do not stop any of the motor motions in progress; nor
do they turn off outputs that may be causing continuous motion, e.g., motor starters.

Rules for Writing Multi-tasking Programs
1. DO instructions can start up to eight tasks.

2. DO and DONE instructions must be in steps by themselves.

3. Obey the tasks limit for your controller model.

4. More than the maximum number of tasks can be included in a
program, as long as no more than the maximum number are
active at the same time.

5. A task may have other tasks nested inside of it.

6. Recursive programs should be avoided.

7. A DONE instruction signals the end of the task.

8. A CANCEL OTHER TASKS instruction or a reset input signal can be
used to force an end to multi-tasking.

Sensing Multiple Faults
If more than one fault condition is possible on a machine, the fault monitoring
program may include several instructions in its first step. Each instruction
would monitor a separate condition. If different responses are required to the
various faults, each instruction may cause the controller to jump to a different
step. One factor that must be considered in setting up this structure is the

!

Introduction 1-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

possibility of simultaneous faults and the desired priority and reaction to such a
condition.

Running Several Machines with One Controller
It is sometimes possible to use multi-tasking to control several different ma-
chines from the same controller. Although there are a number of disadvantages
to this approach, one obvious advantage is the ability to apportion the costs
associated with the controller’s capabilities over a number of machines.

You can use multi-tasking’s ability to run several programs simultaneously to
accomplish this. You must use a slightly different approach to do this. The most
important difference is that each individual program is made to loop back on
itself. It ends with some instruction, such as a monitor or time delay, that sends
it back to its beginning.

The illustration below shows several machines run from the same controller
using multi-tasking.

In some of the previous examples, the DO instruction waited for all tasks to end
before continuing with the program. When running multiple machines, you
would not want to have one of the machines, after completing its task, to wait
for all the other machines to finish before starting a new cycle. By eliminating
the DONE instruction, each program becomes one long task that never ends and
loops forever in a circle. This allows each program to proceed at its own rate of
speed without having to wait for another program to finish.

NOTE: The destination for the original DO instruction, goto start, is programmed to satisfy the format of
the DO instruction and, in this instance, has no significance in the program.

One of the major disadvantages of this approach is the dependence of a number
of machines on a single control system. This usually means that if one machine
is stopped, all the machines being run by the same controller must also be
stopped. The controller’s dedicated stop, start, reset, and single step functions
act on all of these machines simultaneously. When the economic advantages
outweigh these concerns, multi-tasking represents a viable approach to the
control of multiple machines.

Chapter 2

Quickstep Instructions
Contents

Introduction 2-2
Using Symbolic Names in Quickstep Instructions 2-3
Delay Instructions 2-4
Monitor Instructions 2-5
Store Instructions 2-7
Flag Instructions 2-9
If Instructions 2-10
Goto Instructions 2-11
Multi-tasking Instructions 2-12
Counter Control Instructions 2-13
Stop Instructions 2-14
Stepping Motor Instructions 2-15
Servo Motor Instructions 2-18

2-2
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Introduction
This chapter presents an overview of the Quickstep instructions. The
following is a list of Quickstep instructions.

• Cancel
• Clear Flag
• Count Up
• Count Down
• Delay
• Disable Counter
• Do
• Done
• Enable Counter
• Goto
• If
• Monitor Boolean
• Monitor Flag
• Monitor Input
• Monitor Motor
• Monitor Servo
• Profile Motor
• Profile Servo
• Reset Counter
• Rotate Flag
• Search and Zero Motor
• Search and Zero Servo
• Set Flag
• Shift Flag
• Start Counter
• Stop (Controller)
• Stop Motor
• Stop Servo
• Store
• Test And Set Flag
• Turn Motor
• Turn Servo
• Zero Motor
• Zero Servo

Quickstep Instructions 2-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Symbolic Names in Quickstep Instructions
In many of the examples shown in this manual the inputs, outputs, registers, etc.
have symbolic names. Starting with Quickstep 2.0 you can give resources, such
as registers, inputs, or stepping motors, symbolic names that can identify their
function. For example, an output that turns on a pneumatic cylinder for a
stamping press, can be called Stamp_Press_On. Or you can give several servo
motors different symbolic names, e.g., Transverse, Rotate, Spindle, rather than
calling them Servo_1, Servo_2, Servo_3.

You can define symbolic names for the following items:

• Steps

• Controller resources - counters, flags, numeric registers, Data Table col-
umns.

• Specialized motion control devices - servo and stepping motors.

• Specialized I/O devices - analog inputs and outputs, thumbwheels, and
numeric displays.

• Digital inputs and outputs.

• Numeric constants used in a Quickstep program, e.g., maximum speed of a
stepping motor or a temperature value.

Symbolic names are created using the Symbol Browser. For a description of the
Quickstep editor and the Symbol Browser, refer to the QuickstepTM User Guide.

Previous versions of Quickstep did not allow you to use symbolic names. When
you use the new Quickstep editor to update a version 1.6 or 1.7 Quickstep
program, it changes the names of all the controller resources to the default
symbolic names. The examples in this chapter use the default symbolic names.
The table on the following page lists the default symbolic names used in this
chapter. The Quickstep editor includes a file, DEFAUTS.SYM, which contains
default symbolic names for additional controller resources. You can use them
when writing a Quickstep program. Appendix B contains a list of the default
symbolic names.

We recommend that you write all new Quickstep programs using symbolic
names that identify their function.

Symbolic Name Controller Resource
ain_1 analog input - ain#1
aout_1 analog output - aout#1
col_1 data table column - col#1
ctr_5 counter - ctr#5
disp_5 display - disp#5
flag_3 flag - flag#3
in_3A input normally open - in#3a
in_3B input normally closed - in#3b
OUT_1_ON output on - 1+
OUT_1_OFF output off - 1-
motor_1 stepping motor - motor#1
reg_50 register - reg#50
servo_1 servo motor - servo#1
twhl_1 thumbwheel - twhl#1

2-4
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Delay Instructions
The DELAY instruction causes the controller to proceed to a new step after a
specified amount of time has passed. A time delay can be a specific amount of
time, or it can be derived from another source, such as a thumbwheel or register.

You can use any of the following devices to specify the amount of time for the
delay:

• An analog input specifying minutes, seconds, or hundredths of seconds.

• A value from registers 1 through 128 specifying minutes, seconds, or hun-
dredths of seconds.

• An integer specifying hours, minutes, seconds, or milliseconds.

• The value from the Data Table specifying minutes, seconds, or hundredths
of seconds.

• A thumbwheel specifying: hours and minutes, minutes and seconds, or
seconds and hundredths of seconds

To set a time delay for a specific time, the format of the DELAY instruction is as
follows:

delay 2 sec 300 ms goto next

This instruction sets the delay for 2.3 seconds.

When using an integer to specify a millisecond time delay, the least significant
digit should always be zero. This is because the time resolution of the controller
is in ten milliseconds.

To set a time delay using the value in a register or from an analog input, the
format of the DELAY instruction is as follows:
delay reg_15 sec goto next

delay ain_6 min goto next

To set a time delay using a thumbwheel, the format of the DELAY instruction is as
follows:
delay twhl_2 ssff goto next

The value ssff represents the four digits of the thumbwheel, ssff = seconds and
hundredths of seconds, mmss = minutes and seconds, hhmm = hours and min-
utes.

Quickstep Instructions 2-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The Monitor instructions allow the controller to monitor inputs, flags, and
stepping and servo motors. Monitor instructions can check any of the following
states:

• Check if an input is open or closed

• Check if a flag is set or clear

• Check if a stepping or servo motor is running or stopped

• Use a Boolean expression to check or monitor the state of any combination
of inputs, flags, stepping motors, and servo motors

Monitoring Inputs
MONITOR INPUT checks the status of one or more of the controller’s digital inputs.
The controller goes to a new step if a specified condition is met. For example:

monitor in_12A goto next

monitors the state of digital input 12. The switch is monitored as a normally
open switch, and the controller proceeds to the next step only when the switch
closes. You can also monitor inputs as normally closed.

monitor in_12B goto next

NOTE: To check the status of an analog input, use an IF instruction.

Monitoring Flags
MONITOR FLAG checks the state of a flag. You can detect whether the flag is set
or clear. For example,
monitor flag_12:set goto next

monitors the state of flag 12. The controller proceeds to the next step only when
the flag is set.

TEST AND SET FLAG is a special flag monitoring instruction. It is often used in
multi-tasking, when two mechanisms are contending for the same resource, for
example, two separate robotic arms that are invading the same workspace. In
this case, TEST AND SET FLAG tests a flag to see if it is clear, representing the
workspace being empty. If the flag is set, the controller does not take any action.
If the flag is clear, the controller immediately sets the flag and proceeds to the
next step.
testandset flag_12 goto next

The testing of the flag is essentially simultaneous with the setting of the flag.
This allows you to use the flag to arbitrate the use of the workspace without any
risk of collision.

Monitor Instructions

2-6
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Monitoring Stepping Motors and Servos
MONITOR MOTOR and MONITOR SERVO check the status of a motor control module.
The stepping or servo motor can be monitored to see if it is running or stopped.
The controller does not go to a new step until the control module indicates that
the motor is in the desired state.

monitor motor_2:running goto next

monitor servo_1:stopped goto next

NOTE: The definition of stopped for the purposes of the monitor instruction is that the control module
has completed its execution of the last motion. For example, the controller has no knowledge
of any continued motor motion caused by an external force on a motor.

Monitoring Boolean Statements
MONITOR BOOLEAN allows you to perform the monitoring of complex combina-
tions of inputs, flags, stepping motor, and servo motor states. Multi-level
nesting of Boolean functions is supported. You can use the following Boolean
algebra functions in a monitor statement.

• AND — Requires all listed states to be true.

• OR — Requires any one or more of the listed states to be true.

• XOR — (Exclusive or) requires exactly one of the listed states to be true.

• NAND — Requires any one or more of the listed states to be false.

• NOR — Requires all listed states to be false.

• NXOR — (Not exclusive or) requires either more than one or none of the
listed states to be true.

The following examples show how to use Boolean statements:
monitor (and in_16A in_19B in_24A) goto next

requires that inputs 16 and 24 be closed and input 19 be open for the statement
to be true.
monitor (or in_5A (and servo_1:stopped servo_2:stopped))
goto next

requires either input 5 to be closed or both servos to be stopped.

Monitor Instructions

Quickstep Instructions 2-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

A simple STORE instruction copies numeric data from one location in the control-
ler to another location. For example,
store twhl_1 to reg_307

You can use a numeric value from the following sources as input for a STORE
instruction:

• An analog input

• A column in a data table

• A counter (registers 1-8)

• A numeric register, including any special purpose registers having read
access

• The servo error of a servo motor

• The position of a servo motor

• A thumbwheel preset

• A fixed number from -2,147,483,648 to +2,147,483,647

You can store numeric data to the following destinations:

• Analog output

• Counter

• Numeric display

• Numeric register, including any special purpose registers having write
access

• Data Table row and column

In addition, a STORE instruction can perform arithmetic, Boolean, modulo, and
rotate instructions as follows:

• Perform mathematical operations between any two sources of numeric data
and store the result in any destination for numeric data.

store reg_307 + twhl_1 to reg_934

Math operations performed are addition (+), subtraction (-), multiplication
(*), and division (/)

• Perform a modulo operation. A modulo operation stores the remainder of an
integer division in any destination that accepts a numeric value.
Store 10 mod 6 reg_15

The value stored in register 15 is 4.

• Perform bit-wise Boolean algebra on numbers using Boolean STORE instruc-
tions. You can use the Boolean STORE instruction to mask data from 8-, 16-,
and 32-bit data sources.

The following instruction reads the binary value represented by the state of
the controller’s first set of 32 inputs and performs a boolean AND operation

Store Instructions

2-8
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

with the number 4095. As a result of this instruction, the binary
representation of the first 12 inputs only is stored in register 10.
store reg_10001 and 4095 to reg_10

The value in reg_10001 is: 0100 0110 1111 0100 0000 1111 1001 1101

4095 in binary is: 0000 0000 0000 0000 0000 1111 1111 1111

The resulting number
stored in register 10 is: 0000 0000 0000 0000 0000 1111 1001 1101

The following instruction performs a bit-wise Exclusive OR operation
between the binary value of the first 32 inputs and the binary value of the
second 32 inputs, storing the result in register 10. This instruction compares
the status of these two groups of inputs. Only when the two groups are
identical does register 10 contain a zero. The value in register 10 can be
tested with an IF instruction.

store reg_11001 xor reg_11002 to reg_10

The following boolean instructions can be performed: AND, OR, XOR
(Exclusive or), NAND, NOR, NXOR (Not exclusive or), and NOTAND.
For additional information on using Boolean STORE instructions see, Chapter
3, Performing Boolean Operations on Binary Numbers. For additional
examples, refer to the Application Note, Bit Level Operators and CTC
Controllers.

• Rotate the bit pattern in a register right or left one or more bits. The rotate
instruction replaces the value in a bit (either 1 or 0) with the value in the bit
preceding or following it. The first bit in the series inherits the value of the
last bit in the series. For example:

The number 33 is stored in register 75 and forms the following bit pattern:
0000 0000 0000 0000 0000 0000 0010 0001

After the controller executes the instruction store reg_75 rol 1 to
reg_75, the bit pattern in the register is as follows:

0000 0000 0000 0000 0000 0000 0100 0010

You can rotate the bit pattern several places, for example,
store reg_75 rol 4 to reg_75

Storing data to the Data Table
You can store data to a specific row and column in a Data Table using the
following set of instructions:

store 5 to reg_131 (selects row 5 of the Data Table)

store 8 to reg_132 (selects column 8 of the Data Table)

store 368 to reg_9000 (stores 368 in column 8 row 5 of the Data Table)

For 2600 series and higher controller models, you can also store data to a
specific row and column in a Data Table using the following instructions:

store 5 to reg_126 (selects row 5 of the Data Table)

store 368 to col_8 (stores 368 in column 8 row 5 of the Data Table)

For more information, see The Data Table in Chapter 3.

Store Instructions

Quickstep Instructions 2-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Flag Instructions
Flags are memory elements within a controller that can be either set or clear and
are used to store yes/no types of information. You can also use them to store
information from one part of a machine’s cycle to another or during multi-
tasking to communicate from one task to another. Flags can also be used as
elements in a shift register. There are 32 flags available in a controller.

• The SET FLAG instruction sets a flag. The flag remains set until it is cleared
or until the controller is reset or the power to it is turned off.
set flag_8

• The CLEAR FLAG instruction clears a flag that was previously set.
clear flag_8

• The SHIFT FLAG and ROTATE FLAG instructions treat a series of flags as a shift
register. They automatically move information from a flag to the next flag
within a specified range of flags. Any sequential series of flags can be
shifted, and you can establish several shift registers.

— The SHIFT FLAG instruction replaces the status of a flag (either set or
clear) with the status of the flag preceding or following it. The first flag
in the series is automatically cleared.

— The ROTATE FLAG instruction replaces the status of a flag (either set or
clear) with the status of the flag preceding or following it. The first flag
in the series inherits the status of the last flag in the series.

To shift or rotate a series of flags up
shift flag_5 >> flag_10

rotate flag_5 >> flag_10

To shift or rotate a series of flags down
shift flag_11 << flag_20

rotate flag_5 << flag_10

To shift or rotate a series of flags multiple shifts
shift flag_11 << flag_20 2 times

rotate flag_5 >> flag_19 3 times

For information on monitoring flags (MONITOR FLAG and TEST AND SET FLAG),
refer to Monitor Instructions in this chapter.

2-10
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

The IF instructions allow the controller to perform a comparison between any
two numeric quantities within the controller. If the comparison is true, the
controller goes on to a new step. For example:

if reg_15 >= twhl_2 goto next

compares the value stored in register 15 to thumbwheel 2. If the value in
register 15 is greater than or equal to the value entered on external thumbwheel
2, the controller goes to the next step

IF instructions can perform any of the following comparisons:

• Greater than, >
• Less than, <
• Greater than or equal to, >=
• Less than or equal to, <=
• Equal to, =
• Not equal to, <>

An IF instruction can draw its comparison values from the following numeric
resources:

• Analog input
• Column of a data table
• Integer from -2,147,483,648 to +2,147,483,647
• Register
• Counter
• Servo motor position or error
• Thumbwheel

For example,
if ain_2 > reg_25 goto next

if ctr_2 >= 7500 goto next

if servo_1:error >= reg_38 goto next

if servo_2:position <= col_3 goto next

If Instructions

Quickstep Instructions 2-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The GOTO instruction tells the controller which step to execute next. You can
tell the controller to proceed to any step including the current step.

The following examples are three different ways to use GOTO instructions:

• This instruction tells the controller to jump to the step named
SHUT_DOWN, where ever the step is in your program.
goto SHUT_DOWN

• A special form of the GOTO instruction tells the controller to proceed to the
next step in numeric sequence.
goto next

• It is possible to have a GOTO instruction which jumps back to the same step.
This results in the controller re-executing any instructions which normally
executed only once upon entering the step, for example STORE instructions.
goto TEST_AGAIN

This tells the controller to re-execute the step TEST_AGAIN.

You can use goto instructions to move around within a program. However, you
must take care when using GOTO instructions in programs or you can write a
recursive program. Recursion results whenever a task in a program encounters
an instruction to restart the same task.

For additional information on recursion, see the section on Multi-Tasking in
Chapter 1.

Goto Instructions

2-12
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Multi-tasking Instructions
You can control multi-tasking functions using the DO, DONE and CANCEL instruc-
tions.

The DO instruction can initiate from one to eight tasks. Each task is an indepen-
dent program beginning at the step specified in the DO instruction. If multiple
tasks are started, they run independently and asynchronously of each other. The
format of a DO instruction is:
do (FABRICATE_PART FAULT_MONITOR OVER_PRESSURE) goto START

A task continues until it encounters a DONE instruction. DONE signals the
completion of a task. After it encounters a DONE instruction for each task started
by the DO instruction, the controller proceeds to the destination specified by the
DO instruction.

A DO instruction can also loop through a task or tasks up to 99 times. For
example:

do (ONLOAD OFFLOAD FAULT_MONITOR) 50 times goto next

The controller executes all the tasks until each encounters a DONE instruction
and then begins all the tasks over again until it reaches the number of iterations
specified.

CANCEL shuts down all other tasks.

cancel other tasks

For additional information on multi-tasking, refer to the section on Multi-
Tasking in Chapter 1.

Quickstep Instructions 2-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Counter Control Instructions
The counter instructions control the eight internal counters in a controller.
These instructions can start a counter and increase or decrease the value in one
of the controller’s counters. They also reset, enable, and disable any of the
controller’s counters.

• START COUNTER initializes a counter. The counters overlay the first eight
registers (i.e., counter No. 1 = register No. 1). When starting the counter,
you can assign three of the controller’s inputs to perform the count-up,
count-down, and reset functions:
start ctr_1 up (in_5A) down (in_6B) reset (in_7A)

This initializes the counter and assigns functions to three of the controller’s
inputs. These inputs continue sending input signals to the counter until the
counter is re-initialized or disabled.

— Up (in_5A) specifies that input No. 5 is being used for the count up
function and increments the counter for each switch closure. The A
specifies that the input is a normally-open input. A normally-open input
means that the count occurs when the switch closes.

— Down (in_6B) specifies that input No. 6 is being used for a count down
function and decreases the value in the counter by one for each time the
switch opens. The B specifies that the input is a normally closed input.
A normally-closed input means that the count occurs when the switch
opens.

— Reset (in_7A) resets the value in the counter to zero when the switch
closes.
start ctr_1 up (in_5A:30) down (in_6B:30) reset (in_7A:100)

The debounce time (shown as :30) allows you to use mechanical switches
for counting, even though they normally bounce a number of times when
they actuate. Although there is no increase in reaction time, the maximum
count frequency is reduced.

NOTE: Debounce is not available in the model 2600 and 2700 series controllers. The controller
ignores the debounce parameters.

• COUNT UP adds one to the current value in the counter.
count up ctr_3

• COUNT DOWN subtracts one from the current value in the counter.
count down ctr_3

• RESET returns the value in the counter to zero.
reset ctr_3

• DISABLE temporarily disables a counter so that it does not accept any count
up, count down, or reset pulses until it is enabled.
disable ctr_3

• ENABLE reactivates a counter that was temporarily disabled.
enable ctr_3

2-14
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

The STOP instruction tells the controller to stop running the program. This
usually causes the mechanism being run by the controller to stop.

All controller resources remain in the state they were in before the controller
executed the STOP instruction. To restart the controller and maintain the current
state of the controller resources, use the start dedicated input function. For a
description of the dedicated input functions, see Using Dedicated Inputs in
Chapter 3.
stop goto stepname

When the controller is restarted following the execution of a STOP instruction,
the program will continue with the step specified in the STOP instruction. If the
program was multi-tasking at the time the STOP instruction was executed, the
other tasks also continue from where they have stopped.

WARNING! Stepping and servo motor motions which were in progress at the time the controller
executed the Stop instruction will continue to completion. In the event of a velocity mode
instruction, a motor will continue turning indefinitely. Also, digital or analog outputs retain
their current state, which may result in a continuous on state for a mechanism. All such
conditions should be evaluated for possible dangers when using the STOP instruction.

Stop Instructions

!

Quickstep Instructions 2-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Stepping Motor Instructions
Using the stepping motor instructions, you can set the motion parameters for a
stepping motor, start it turning, and specify when and how it will stop. You can
also establish a zero or home reference position for a stepping motor. The
stepping motor instructions are:

• Profile Motor
• Turn Motor
• Zero Motor
• Search and Zero Motor
• Stop Motor
• Monitor Motor (described in the section Monitor Instructions)

You can define motion parameters for up to 16 stepping motors.

NOTE: Currently, the stepping motor instructions are used only with the model 2205 Stepping Motor
Control Module. Other stepping motor control modules use the more flexible servo motor
instructions. Refer to the Installation and Applications Guide for your stepping motor for more
information

For information about stepping motor applications and special functions, see
Using Stepping Motors in Chapter 3. For programming examples, see Appendix
A.

Profile Motor Instruction
The PROFILE MOTOR instruction sets the motion parameters for a stepping motor
as follows:

• Stepping Mode — Specifies either half-step mode or full-step mode with
one or two coils on. You can only use this parameter to specify the stepping
mode using the on-board drivers of the model 2205. We recommend using
half-step mode when using an on-board driver since it is smoother and has
less resonance.

When using an external drive, the external drive determines the stepping
mode.

• Base Speed (basespeed)– defines the speed, in steps per second, at which the
motor motion begins. The motor must be capable of virtually instantaneous
acceleration to this speed.

• Maximum Speed (maxspeed) – defines the speed, in steps per second, at
which the motor ceases accelerating during a motion. The maximum speed
is maintained until the stepping motor control module calculates that the
motor must begin to decelerate.

• Acceleration Factor (accel) – determines the rate at which the motor acceler-
ates to maximum speed. It is expressed as a relative factor from 1 to 500.
500 represents instantaneous acceleration. Typical values range from 200 to
475.

• Deceleration Factor (deceleration) – determines the rate at which the motor
decelerates to a stop. It is expressed as a relative factor from 1 to 500. 500
represents instantaneous deceleration. Typical values range from 200 to
475.

2-16
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

The following illustration shows the velocity profile for a stepping motor.

Any of the numeric parameters for a stepping motor can be drawn from any of
the controller’s numeric resources, instead of being expressed as a fixed number.
For additional information, refer to the section on the STORE instruction.

The following example is for a PROFILE MOTOR instruction for a motor using half
step mode:
profile motor_2 (half) basespeed=reg_200 maxspeed=reg_201
 accel=reg_202 decel=reg_203

The following example is for a PROFILE MOTOR instruction for a motor using full
step mode with two coils on:

profile motor_1 (2 coils) basespeed=reg_10 maxspeed=reg_11
 accel=reg_12 decel=reg_13

An alternative form of a PROFILE MOTOR instruction allows you to establish the
zero position of the motor as its present position.

profile and zero motor_1 (2 coils) basespeed=reg_10
 maxspeed=reg_11 accel=reg_12 decel=reg_13

The PROFILE MOTOR instruction does not start the motor motion. To initiate
motion use the TURN MOTOR instruction. You may respecify the motor profile
parameters any number of times in the same program, but only when the motor
is stopped. If you do not wait until it stops, a software fault results.

Zero Motor and Search and Zero Instructions
The ZERO MOTOR and SEARCH AND ZERO MOTOR instructions set a zero or home
reference position for a stepping motor as follows:

• The ZERO MOTOR instruction sets the current position of the stepping motor
as its zero or home reference position. The stepping motor must be stopped
when the controller executes this instruction.
zero motor_1

• The SEARCH AND ZERO MOTOR instruction starts the motor turning in either a
clockwise or counter clockwise direction at the base speed until the
controller’s motor control module senses a contact closure on the home limit

Stepping Motor Instructions

Quickstep Instructions 2-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

!

switch input. At that time, the motor stops and the current position is set as
the zero point. You can specify whether the motor turns in a clockwise or
counter clockwise direction.
search cw and zero motor_1

Turn Motor Instruction
TURN MOTOR instructions initiate motor motion and define either the distance to
be traveled or the new desired coordinate position. The controller must have
executed a profile instruction at some time before the first turn instruction for
any given axis. If it hasn’t, the controller reports a software fault stating “motor
not ready.” The motor uses the parameters from the last-executed PROFILE
MOTOR instruction for that axis.

The TURN MOTOR instruction defines the distance the motor travels using one of
the two following methods:

• Relative — Turns the motor either clockwise or counter clockwise a speci-
fied number of steps from the current motor position.

turn motor_5 ccw 750 steps

This instruction has the motor move 750 steps in the counter clockwise
direction. The current position of the motor is irrelevant to this instruction,
since the distance of the motor motion is defined relative to the motor’s
current position. However, even in relative moves the controller keeps track
of the absolute position of the motor.

• Absolute — Turns the motor a calculated number of steps based on the
distance from a predetermined zero or home position. This type of turn
instruction is more powerful, especially for applications involving the
positioning of an actuator. Using an absolute turn instruction the stepping
motor control module maintains the motor’s current absolute position in
memory. For example,
turn motor_1 to 1500

This instruction has the motor turn to a position 1500 steps clockwise from a
preestablished reference (zero or home) position. Since the new position is
expressed in terms of an absolute coordinate, this form of instruction
relieves the designer of the task of maintaining knowledge of the motor’s
current position and calculating the required motion to reach a new position.

NOTE: Do not issue PROFILE or TURN MOTOR, ZERO, or SEARCH AND ZERO instruction when a stepping
motor is in motion. Program a monitor motor:stopped instruction before any new instruc-
tion for the motor. Failure to do so may result in a CPU software fault, halting execution of the
program.

Stop Motor Instruction
The STOP MOTOR instruction stops the generation of pulses to a stepping motor.
Use this instruction with caution, since the inertial load often carries the motor
forward and consequently the absolute position may be lost.
stop motor_2

WARNING: Do not use a STOP MOTOR instruction to implement an emergency stop function where
danger to human safety or substantial economic damage exists. Such functions should
be implemented with independent, external systems.

2-18
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Servo Motor Instructions
Using the servo motor instructions, you can set the motion parameters for a
servo motor, start it turning, and specify when and how it will stop. You can
also establish a zero or home reference position for a servo motor. The servo
motor instructions are:

• Profile Servo
• Turn Servo
• Zero Servo
• Search and Zero Servo
• Stop Servo
• Monitor Servo (described in the section Monitor Instructions)

You can define motion parameters for up to 16 servo motors.

The Model 2206 Stepping Motor Control Module also uses servo motor instruc-
tions. For information about servo motor applications and special functions, see
Using Servo Motors in Chapter 3. For programming examples, see Appendix A.

Profile Servo Instruction
The Profile Servo instruction sets the motion parameters for a servo as follows:

• Maximum Speed (max) — Establishes the maximum speed of the servo. It
is defined in encoder pulse edges (steps) per second (fully decoded).

NOTE: The highest permissible maximum speed varies according to the module used. Refer to the
installation guide for your module.

• Acceleration Rate (accel)— Specifies the acceleration rate of the servo.
Defined in encoder pulse edges (steps) per second per second (steps/sec2).
This parameter also sets the deceleration rate.
If you want the acceleration and deceleration values to be different, store the
deceleration value to a special purpose register. The following example sets
the deceleration rate:
profile servo_1 max=50000 accel=100000
store 20000 to reg_15006 (axis No. 1 deceleration register)

• P (Proportional) Filter - Specifies the factor applied to the sensed position
error to create a correction signal. It is expressed as a multiplication factor
from 0 to 255.

• I (Integral) and D (Derivative) Filters - Determine the characteristics of the
built-in digital compensation filter.

NOTE: Check the Applications Guide for your servo control module. Some servo modules give you
additional compensation filter choices.

• Holding Mode — Specifies the status of the servo when stopped, using one
of the following parameters:

— Servo at position - Once the servo reaches the desired position, the
actuator will continuously seek this position. If the actuator is forced
from its position, the servo control module sends a correction signal to
attempt to correct the perceived error.

Quickstep Instructions 2-19

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

— Deadband of __ at position - The servo control module senses position
errors but does not correct them unless the error is out of the range of
the Deadband.

— Off at position - Once the servo reaches position no further corrective
action occurs. This allows manual adjustment or another external force
to change the position of the servo.

— None - Indicates that the controller should use the holding mode speci-
fied in a previous PROFILE SERVO instruction.

The PROFILE SERVO instruction does not start the servo motion. To initiate motion
use the TURN SERVO instruction. You may respecify the servo profile parameters
any number of times in the same program. Any of the numeric parameters for a
servo motor can be drawn from any of the controller’s numeric resources,
instead of being expressed as a fixed number. For additional information, refer
to the section on the STORE instruction.

Unlike a stepping motor, you can execute a new PROFILE SERVO instruction while
the servo is still in motion. You can change any parameter except the accelera-
tion rate.

profile servo_3 servo at position maxspeed=15000 accel=35000
P=10 I=95 D=50

Zero Servo
The ZERO SERVO instruction sets the current position of the servo as its zero or
home reference position.
zero servo_1

Search and Zero Servo
The SEARCH AND ZERO SERVO instruction sets a zero or home reference position
for a servo. The SEARCH AND ZERO SERVO instruction starts the servo turning at
the rate specified in the PROFILE SERVO instruction until the servo control module
senses a contact transition on its home limit switch input (dedicated input).
Depending on the model of the servo control module you have, the instruction
functions differently. For examples showing how to establish and find a home
position, see Using Servo Motors in Chapter 3.

search and zero servo_1

Turn Servo Instruction
The TURN SERVO instructions initiate a new servo motion. The controller must
have executed a PROFILE SERVO instruction to define the motion parameters.
TURN SERVO defines the distance the servo travels using one of the following
methods:

• Absolute — Turns the servo a calculated number of steps based on the
distance from a predetermined zero position. For example,
turn servo_1 to 1500

turn servo_2 to 1500 on_start_switch

The second absolute distance instruction also requires a contact closure on
the servo module’s dedicated start input before the servo motion begins.

NOTE: step = encoder signal transition

2-20
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

• Relative — Turns the servo clockwise or counter clockwise a specified
number of steps from the current motor position. For example,

turn servo_5 cw 70000 steps

• Velocity — Begins continuous clockwise or counter clockwise motion. The
servo remains in motion until the controller executes a STOP SERVO instruc-
tion or the servo control module senses a stop input signal. For example,

turn servo_5 ccw

NOTE: Do not issue another TURN SERVO instruction for a servo while the servo is still in motion. If the
servo is still turning, the controller reports a software fault (servo not ready) and halts execution
of the program. Before issuing another turn instruction, you should program a monitor
servo:stopped instruction prior to any subsequent turn instruction.

Stop Servo Instruction
The STOP SERVO instruction brings the servo to a halt. You can choose one of the
following methods to stop the servo:

• Soft Stop — Causes the servo to stop at the deceleration rate specified in the
last profile instruction.

stop (soft) servo_2

• Hard Stop — Causes the controller to attempt to stop the servo instantly.
However, because of momentum (caused by the inertial load), the servo does
not stop instantly and consequently the absolute position may be lost and
instability may result.

stop (hard) servo_1

In either case, you should use a monitor instruction before issuing another turn
instruction.

WARNING: Do not use a STOP SERVO instruction to implement an emergency stop function where
danger to human safety or substantial economic damage exists. Such functions should
be implemented with independent, external systems.

Servo Motor Instructions

!

Chapter 3

Using the Quickstep
Programming Language

Contents

Introduction 3-2
Counters 3-3
Flags and Shift Registers 3-6
Numeric Registers 3-11
The Pointer and Phantom Registers 3-14
Using Stepping Motors 3-17
Using Servo Motors 3-20
The Data Table 3-25
Using Analog Inputs and Outputs 3-28
Using Thumbwheel Arrays and Numeric Displays 3-31
Using Dedicated Inputs 3-34
Using High Speed Counting Modules 3-37
8-, 16-, or 32-bit Access to Input/Output Points 3-38
Performing Boolean Operations on Binary Numbers 3-40

3-2
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Introduction
CTC’s automation controllers support high-level instructions for a number of
internal resources, specialized I/O, and motion control devices to make writing
an automation program with Quickstep easier. These resources include:

• Counters
• Flags
• Numeric registers
• Data Table
• Special purpose registers
• Stepping motor control modules
• Servo motor control modules
• Analog input/output modules
• Specialized input/output features
• Thumbwheel array and numeric display interface modules
• Dedicated inputs on the controller
• High-speed counting modules

Using the Quickstep Programming Language 3-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Counters
CTC controllers can be programmed to automatically count pulses from the
controller’s inputs. You can use the first eight numeric registers as counters, and
each counter can be programmed to accept input signals from three of the
controller’s inputs.

Counters work in the background. Once started, a counter operates much like an
external, independent device within the controller. You can assign counting
inputs. The counter continuously monitors the inputs for counts, while the
controller proceeds on through subsequent steps of its program. You can assign
any of the controller’s inputs to a counter.

Possible uses for counters include:

• In packaging applications, counting a product passing by a sensor.

• Using a counter wheel to count the linear footage of a material being me-
tered out.

• Detecting the motion of a workpiece over a specific distance.

• Tracking the quantity of a product in a holding area.

Programming Counters
Counter control instructions can be programmed to perform the following
functions:

• Start counter — initializes a counter, resets it to zero, and, optionally,
assigns inputs to the counter.

• Count up — adds one to the accumulated count.

• Count down — subtracts one from the accumulated count.

• Reset — resets the accumulated count to zero.

• Disable — disables a counter temporarily so that it does not accept any
count up or count down pulses.

• Enable — reactivates a counter that was temporarily disabled.

The maximum range of a counter is -2,147,483,648 to +2,147,483,647.

Each counter input can be selected to take effect on a normally-open or nor-
mally-closed basis. A normally-open operation means that the count occurs
when the switch closes, and a normally-closed operation means that the count
occurs when the switch opens.

Since counters are treated similarly to numeric registers (they overlap with the
first eight numeric registers), you can use any instruction that references a
numeric register to reference a counter. For example, you can display the value
of a counter on an external numeric display:

store ctr_3 to dis_1

Once a counter is started with a START COUNTER instruction, it continues to run,
and its total accumulated count can be tested at any time with an IF instruction.
if ctr_1 >= 1500 goto next

3-4
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Debouncing
You can program an independent debounce interval for each counter input.
Debouncing allows the counter to register the multiple pulses typically received
from a mechanical switch contact as a single count.

NOTE: Debounce is available in 2200XM and 2800 series controllers only.

When a mechanical switch closes, the switch contacts will bounce for a period
of time (typically from one to 15 milliseconds). The bouncing is due to the
imperfect electromechanical coupling that occurs when two pieces of metal
come together under spring tension.

Debouncing allows a programmable interval from one to 250 milliseconds for a
switch closure to settle. No degradation of reaction time occurs when using
debouncing; a contact closure is instantly recognized and registered by the
counter. However, from that time forward no further counts are allowed until
the debounce time has expired, which allows the switch to settle.

Counting Speeds
One advantage of the internal counters is that they can attain greater counting
rates than those attained from numeric registers. This faster counting rate is
obtained because the controller handles the counters as an independent activity,
unrelated to the execution of your Quickstep program.

The counting speed capabilities are related to the number of inputs assigned to
all counters at any given time. This includes the count up, count down, and reset
inputs of active counters. The following table lists the maximum counting rates:

1 to 3 inputs: 500 Hz (assumes a 50% duty cycle)
4 to 6 inputs: 250 Hz
7 to 8 inputs: 166 Hz

If your application requires a higher counting speed, you can obtain a separate
high speed counter module.

Example
The following example uses a counter in a simplified application involving the
metering of a fixed amount of material. In this application output 1 is used to
control the motor that feeds the material.
[1] SET_INITIAL_STATUS
 ;;; This step contains instructions that set the
 ;;; initial conditions for each iteration of our
 ;;; counter. The controller turns off all the
 ;;; digital outputs. It then starts the counter so
 ;;; it can begin measuring the material once the
 ;;; motor starts in the next step. The last
 ;;; instruction is a 2.1 second time delay. When
 ;;; the delay is up, the controller moves to the
 ;;; next step.
 ;;;
 ;;; Travel = counter 1
 ;;; Count_up = input 30
 ;;; Count_Dn = input 31
 ;;; Reset_Inp = input 32
 ;;; Feed_Motor_On = output 1 on
 ;;; Feed_Motor_Off = output 1 off

Counters

Using the Quickstep Programming Language 3-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 ;;; Cut_On = output 2 on
 ;;;
 ——————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 ——————————————————————————————
 start Travel up(Count_Up) down(Count_Dn) reset
 (Reset_Inp)
 delay 2 sec 100 ms goto next

[2] START_MOTOR
 ;;; In this step we turn on the output that
 ;;; controls the feed motor for the material. The
 ;;; If instructions continuously monitors the
 ;;; counter, and when it reaches or exceeds 1500,
 ;;; the controller proceeds to the next step.
 ;;;
 ——————————————————————————————
 Feed_Motor_On
 ——————————————————————————————
 if Travel >= 1500 goto next

[3] DELAY
 ;;; In this step the controller turns the output
 ;;; that controls the feed motor off, and, after a
 ;;; 1 second delay, it proceeds to the next step.
 ;;;
 ——————————————————————————————
 Feed_Motor_Off
 ——————————————————————————————
 delay 1 sec goto next

[4] CUT
 ;;; In this step the controller turns on output 2
 ;;; to cut the material and goes to the first step
 ;;; in the program. At the first step, the
 ;;; controller turns off all the outputs, restarts
 ;;; the counter, and waits for the time delay.
 ;;;
 ——————————————————————————————
 Cut_On
 ——————————————————————————————
 monitor Limit_Contact goto SET_INITIAL_STATUS

This example illustrates two important points:

1. The START COUNTER instruction automatically zeros the counter, and no
additional instruction is necessary to reset the counter before each new
cycle.

This also means, if your application requires a continuous count throughout
multiple cycles, the START COUNTER instruction must be outside the main
program cycle to avoid resetting the counter.

2. When testing a counter with an IF instruction, you should use a greater than
or equal (if ctr_1 >= 1500) comparison. Sometimes due to a rapid
counting rate, more than one count is registered between two successive
tests of the counter by the controller, and the target count is exceeded. The
>= comparison still allows the test to be met.

3-6
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Flags and Shift Registers
Flags are memory locations within the controller that can store yes/no types of
information. CTC controllers have 32 flags.

At any given time flags are either set or clear. Using Quickstep instructions you
can specify a flag’s state as either set or clear and, in a subsequent instruction,
change its state. Other instructions can monitor the state of a flag and send the
controller to a new step if the flag is in the specified state. Quickstep also
provides instructions to shift the data within a group of flags, allowing you to
program the flags as a shift register.

Possible uses for flags are:

• Storing status information from one portion of a machine’s cycle to another.

• Communicating information from one task to another when multi-tasking.

• Implementing a shift register for progressive assembly machines, e.g., index
tables.

• Setting up handshaking when using computer data communications.

Flags are very straightforward in function. Once the state of a flag is changed
with either a SET FLAG or CLEAR FLAG instruction, the flag remains in that state
until a subsequent instruction changes its state or power is removed from the
controller. When a controller is powered up, it automatically clears all flags.
Resetting the controller or downloading a new program also resets all the flags.

You can use the information stored in a flag during one portion of a program’s
operation to affect the course of a later portion of the program. For example,
you can set a flag in one step, program an instruction in a later step to monitor
the flag, and proceed to a new step depending on the state of the flag.

Monitoring Flags
You can check a flag and determine whether the flag is in a specified state, either
set or clear. If the test is met, the instruction sends the controller’s program to a
new step. For example,
monitor flag_18:set goto next

Using Monitor Boolean Instructions
The MONITOR BOOLEAN instruction allows you to monitor combinations of flags
or combinations of flags, inputs, and motor states (running or stopped). MONI-
TOR BOOLEAN supports nested combinations using the Boolean algebra functions.
The following is a sample instruction:

monitor (or (and flag_5:set Motor_1:stopped)
 (and flag_12:set Motor_2:stopped)) goto next

This instruction requires one of two conditions to be true. Either flag 5 must be
set and motor 1 be stopped, or flag 12 must be set and motor 2 be stopped.

Using Shift Registers
Shift registers consist of a sequential series of flags, (e.g., flags 5 through 10)
and can be used to track the status of a series of different workpieces. After
executing a shift instruction, the first flag in the range specified will be clear and
the data in the last flag in the range will be lost. The format of a SHIFT FLAG
instruction is

shift flag_20 >> flag_24

Using the Quickstep Programming Language 3-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

You can program multiple shifts with a single instruction:
shift flag_20 >> flag_24 3 times

The arrows within the instruction indicate the direction of data travel. It is
possible to program a shift instruction that shifts the data in descending order:
shift flag_15 << flag_20

Shift registers are often used with machines that perform progressive operations
on workpieces simultaneously. An index table, for example, can have a number
of workstations designed to perform a series of progressive operations on a
workpiece as it travels around a rotary table. Typically, at any given time there
is a workpiece at each station. After all workstations have completed their
cycles, the table rotates, carrying each workpiece to the next station in sequence.

In progressive operation machines there is often a requirement to remember
some status information for each part in process, e.g., good part/bad part or type
A part/type B part. Remembering this information is made more complex
because the workpieces are continuously moving from station to station, new
parts are being fed onto the table, and completed parts are being removed from
the table.

Shift registers provide a mechanism for tracking the information along with the
workpieces in process. To track the information you must first assign a flag, in
sequence, for each successive workstation that contains a workpiece. The status
of the flag, either set or clear, indicates the status of the workpiece residing in
the associated station.

At the point in the program where the workpieces are advanced to the next
workstation, you program an instruction such as shift flags 1>>8. This instruc-
tion causes the information within flags 1 through 8 to shift one position. In this
manner, the controller transfers the status of flag 1 into flag 2, the status of flag
2 is transferred into flag 3, and so on.

If the status of a part is initially determined and loaded into the first flag being
used, the information will follow the part throughout all subsequent operations.
You can test the information at any workstation by using a MONITOR FLAG
instruction to monitor the flag associated with that workstation.

3-8
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Multiple Shift Registers
Since the action of a SHIFT FLAG instruction is limited to the range of flags
specified in the instruction, you can create more than one shift register within
the controller. For example, if flags 1 through 8 are used to store one piece of
information for parts at eight workstations, you can use flags 9 though 16 to
store a second piece of information for those same parts.

HINT: Using flags 11 through 18 may be easier to remember.

Each time the parts are indexed within the machine two shift instructions are
then executed:
shift flags 1>>8

shift flags 9>>16

Rotating Flags in a Shift Register
ROTATE FLAG, like SHIFT FLAG, sets up a series of flags as a shift register. How-
ever, when the program executes a ROTATE FLAG instruction, the data from the
last flag in the range specified is returned to the first flag in the range. The data
travels in a circle and no data is lost as a result of the instruction. The format of
a ROTATE FLAG instruction is:
rotate flag_20 >> flag_24

As with SHIFT FLAG you can also program multiple shifts and indicate the direc-
tion of data travel:

rotate flag_20 >> flag_24 2 times

rotate flag_15 << flag_20

Avoiding Mechanical Contention
Flags can also be used to avoid contention in instances where two or more
mechanisms might, at some time, conflict with each other mechanically. An
example of this is in a multi-tasking program that controls two pick-and-place
mechanisms moving within the same work space in a machine. If the mecha-
nisms are triggered asynchronously, a situation may arise where they would
collide.

To avoid this, you can use a flag to indicate when the workplace is occupied.
Each program controlling one of the pick-and-place mechanisms would be
required to monitor this flag prior to entering the work space. The program
would then set the flag, indicating that it will be occupying the work space.
Once the mechanism is finished, the program would clear the flag.

Flags and Shift Registers

Using the Quickstep Programming Language 3-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Quickstep provides a special instruction that eliminates the very slight possibil-
ity of the following scenario: Task A monitors a flag, finds it clear and before
setting the flag, a second task, Task B, also monitors the flag and finds it clear.

To eliminate this possibility, use the TEST AND SET Flag instruction. In this case,
Task A monitors a flag and, if the flag is clear, automatically sets it. Task B
cannot access the flag between the testing of the flag by Task A and its subse-
quent setting. The program can proceed without any chance of mechanical
contention.

Example
The following example uses a flag to communicate information between two
tasks in a multi-tasking program. The flag insures that one of the tasks does not
proceed before the other task reaches a given step.

[1] INITIALIZE
 ;;; This step sets up the initial conditions for a
 ;;; program that cuts and places a piece of
 ;;; material on a stamping press. The cutting and
 ;;; placing operations take longer that the
 ;;; stamping press. The flag signals the stamping
 ;;; press that the material is in place. The first
 ;;; step turns off all digital outputs, monitors
 ;;; two inputs to make sure everything is ready,
 ;;; and proceeds to the next step.
 ;;;
 ;;; Part_In_Place = flag 1
 ;;; Stamp_Arm_Up = input 5 open
 ;;; Feed_Part = motor 3
 ;;; Stamp_Press_On = output 5 on
 ;;; Stamp_Press_Off = output 5 off
 ;;;
 ——————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 ——————————————————————————————
 monitor (and Stamp_Arm_Up Feed_Part:stopped) goto

next

[2] START_TASKS
 ;;; This step starts the multi-tasking sequence.
 ;;;
 ——————————————————————————————

 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 do (CUT_AND_PLACE STAMP_PART) goto START

[10] CUT_AND_PLACE
 ;;; This is the first step of a multi-step task.
 ;;; For the purposes of our example we are not
 ;;; interested in what happens here until step 20
 ;;; where the flag is set.
 ——————————————————————————————
 Out_1_On
 ——————————————————————————————
 monitor In_1A goto next

Steps 11 - 19 not shown here

3-10
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

[20] SET_FLAG
 ;;; This step sets flag Part_In_Place. This
 ;;; notifies task STAMP_PART to proceed with its
 ;;; next step which is stamping the part.
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 set Part_In_Place
 goto CUT_AND_PLACE

[50] STAMP_PART
 ;;; This step starts the task that controls the
 ;;; stamp press. It begins with a monitor flag
 ;;; instruction. Once the flag is set, the
 ;;; controller proceeds to the next step in the
 ;;; task.
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 monitor Part_In_Place:set goto next

[51] ACTIVATE_STAMPING_MECHANISM
 ;;; This step turns on the output that operates the
 ;;; stamp press. For the purposes of the example we
 ;;; will not show any more steps in this task.
 ;;;
 ——————————————————————————————
 Stamp_Press_On
 ——————————————————————————————
 delay 2 sec 500 ms goto next

Flags and Shift Registers

Using the Quickstep Programming Language 3-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Numeric Registers
Numeric registers are storage locations within the controller for numbers. They
are capable of storing numbers from -2,147,483,648 to +2,147,483,647. The
controller can use the numbers stored in numeric registers in arithmetic opera-
tions. There are two types of registers: general purpose registers and special
purpose registers. Special purpose registers can store numbers, but are reserved
for special functions.

CTC controllers have two types of general purpose registers: volatile and
nonvolatile. Volatile registers lose their data when power is removed from the
controller. Nonvolatile registers retain their data when power is removed from
the controller.

The number of volatile registers differs depending on the model of your control-
ler. For information on this, refer to your installation guide. For a list of special
purpose registers, refer to the Register Reference Guide.

Possible uses for numeric registers are

• Storing intermediate results from mathematical equations.

• Maintaining counts of program cycles, parts processed, etc.

• Storing learned (experienced) parameters within intelligent adaptive pro-
grams, e.g., motor positions.

• Maintaining machine history information (e.g., total cycles) in nonvolatile
registers.

Using Numeric Registers in Quickstep Programs
A broad array of instructions are available for storing numbers into registers and
retrieving them. These instructions range from the STORE instruction (store
thwl_3 to reg_10) to motion control instructions (profile servo_1
maxspeed=reg_15).

You can program any instruction that incorporates numeric data to derive data
from a numeric register. This allows you to store calculated data in a register
(store ain_5 * 100 to reg_10) and then use it in a subsequent instruction
(turn Motor_1 ccw reg_10 steps).

Quickstep allows you to use the same register as both an operand in a math-
ematical calculation and as the destination for the result (store reg_20 + 1
to reg_20).

When operating parameters (e.g., motor speed and positions, time delays) for a
machine are transferred from an external computer, the numeric registers are a
convenient location for transfer of the information. The computer can load the
data into a specific register and an instruction in the controller’s program can
reference that register (delay reg_15 sec goto next).

Nonvolatile Registers
Data stored in nonvolatile registers is maintained even during power-down
periods. This allows you to store long-term data, such as weekly, monthly, or
lifetime cycle counts.

CAUTION: The provision for maintaining data in nonvolatile registers varies by controller model.
Some controllers use lithium cell batteries. Refer to the specifications for your controller
for battery life information.!

3-12
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

A potential use of nonvolatile registers is to write a program that is capable of
fine-tuning certain parameters (time delays, motor speeds) and sensing the effect
on the process being controlled. You can automatically store optimum, experi-
mentally-determined values and continuously update them in nonvolatile regis-
ters. These parameters could potentially automatically adjust the machine to
accommodate variations in tooling, lubrication, etc. over a long period of time.

You can also use the nonvolatile registers to store parameters from an external
device, such as a computer, which are changed infrequently.

Using Registers
The following paragraphs are examples showing different types of instructions
using registers.

• Transferring numeric information from one location to another within the
controller.
store reg_15 to disp_1
store ain_3 to reg_10

• Performing a mathematical operation and storing the result in a register.
store twhl_1 * 25 to reg_10
store reg_45 + 500 to reg_45

• Performing a relational test (>, <, =, >=, <=, <>) using the value in a regis-
ter.
if reg_36 >= 1500 goto next
if reg_51 < reg_50 goto next

• Specifying a time delay.
delay reg_14 sec goto next

Only registers 1 through 128 can be used for time delays.

• Storing the operating parameters for a stepping motor or servo motor.
profile Motor_1 (half) basespeed=reg_10 maxspeed=
 reg_11 accel=reg_12 decel=reg_13

These parameters can be calculated in a computer and transferred to the
controller.

• Specifying the number of steps for TURN MOTOR or TURN SERVO instruction,
if desired.
For a relative turn:
turn Motor_1 ccw reg_38 steps

For an absolute turn:
turn Servo_2 to reg_18

Example
The following program is designed to interact with an external computer, using
one of the controller’s registers as a means of communicating new positions for
a servo motor.

[1] INITIALIZE
 ;;; In this program the computer can communicate a
 ;;; new coordinate position for the servo using
 ;;; either the serial protocols or an Ethernet
 ;;; connection. The new coordinate is stored in a

Numeric Registers

Using the Quickstep Programming Language 3-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 ;;; register. After it has sent the coordinate, the
 ;;; computer sets a flag, indicating that the data
 ;;; is ready.
 ;;;
 ;;; The first step sets up the profile for the
 ;;; servo motion, using data stored in several
 ;;; nonvolatile registers. This data can be stored
 ;;; by the designer of the program and tuned as
 ;;; required via serial or network communication
 ;;; ports.
 ;;;
 ;;; Servo_1 = servo 1
 ;;; New_Pos = flag 1
 ;;; Servo_Pos = register 25
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 profile Servo_1 servo at position maxspeed=Reg_501
 accel=Reg_502 P=Reg_503 I=Reg_504 D=Reg_505
 search and zero Servo_1
 goto next

[2] WAIT_FOR HANDSHAKE
 ;;; At this step, the controller is waiting for the
 ;;; external computer to set the flag, indicating
 ;;; that there is a new servo position waiting in
 ;;; register Servo_Pos.
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 monitor New_Pos:set goto next

[3] MOVE_SERVO
 ;;; Here, the controller knows that the new
 ;;; position information is available, it initiates
 ;;; the servo motion.
 ;;; First, we must range the value in register
 ;;; Servo_Pos. The data from the computer is
 ;;; expressed in thousandths of an inch of linear
 ;;; travel, but we’ve previously calculated that
 ;;; the servo must turn 4 steps to move its
 ;;; actuator 0.001 inch. So first, we multiply the
 ;;; number in register Servo_Pos by 4.
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 store Servo_Pos * 4 to Servo_Pos
 turn Servo_1 to Servo_Pos
 clear New_Pos
 monitor Servo_1:stopped goto WAIT_FOR_HANDSHAKE

3-14
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

The Pointer and Phantom Registers
The pointer and phantom registers are a pair of special-purpose registers that
you can use to access most of the controller’s resources. The pointer and
phantom registers are registers 127 and 128 and are used in conjunction with
each other. Register 128 is the phantom register, and register 127 acts as its
pointer. Register 128 is called the phantom register because it does not actually
exist as a physical register; it acts as a window through which other resources
are accessed.

Any instruction referring to register 128 actually accesses another of the
controller’s resources, for example, an input or a flag. By storing the number of
a general or special purpose register in the pointer register, the phantom register
can then access the controller resource being pointed to. The specific resource
being accessed is determined by the number of the register stored in the pointer
register. Using this approach you can use this feature to access any of the
controller’s inputs, outputs, numeric displays, the position of a stepping motor,
or other resources.

One of the major uses of the pointer and phantom registers is to allow iterative
(repetitive loop) programs to access a sequential array of inputs, outputs, regis-
ters, etc. When requirements exist for performing the same operations on a
number of I/O points, this technique allows you to dramatically shorten pro-
grams. Possible applications include automatic testing of switches and other
electrical devices or monitoring of a number of identical workstations.

The following table is a partial list of special purpose registers you can use to
reference controller resources. The first column in the table is the number stored
in register 127, and the second is the controller resource accessed. Refer to the
Register Reference Guide for a more complete listing of special purpose regis-
ters.

Store in Register 127 Access in Register 128
1 - 1000 Numeric registers 1 - 1000
1001 - 1999 Outputs 1 - 999
2001 - 3024 Inputs 1 - 1024
7001 - 7016 The position of stepping motors 1 -16
8001 - 8256 Analog output 1 - 256 settings
10001 - 10032 Groups of 32 outputs as a binary number
11001 - 11032 Groups of 32 inputs as a binary number
13201 - 13232 Flags 1 - 32

Special purpose registers 1001 through 1999 reference the controller’s outputs
from output 1 to 999, respectively. Storing 1018 in register 127 specifies output
18 and storing the number 1 in the phantom register (register 128) turns on the
output. Storing 0 in register 128, turns the output off. The following instruc-
tions turn output 18 on.

store 1018 to Pointer
store 1 to Phantom

In the instructions shown in this section, register 127 has the symbolic name
Pointer, and register 128 is named Phantom.

This technique is known as indirect addressing, because the location being
addressed is not explicitly stated in the instruction being executed. Since the
pointer register (register 127) can be incremented as part of a programmed loop,
you can write a program to go through a series of sequential I/O points, perform-
ing the same operation on each set of I/O.

Using the Quickstep Programming Language 3-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

You can use the phantom register to access any numeric register. For example,
storing 115 in register 127, tells the phantom register to access register 115. You
can use any of the instructions that access the controller’s general purpose
registers to access the phantom register. To the controller, the phantom register
looks like any other register. The difference is that the phantom register is
automatically steered to the resource indicated in the numeric code previously
stored in register 127. The following sample instructions show how to use the
phantom register.
store Reg_10 to Phantom

store Phantom to Aout_3

if Phantom <> 0 goto next

if Ain_1 >= Phantom goto next

turn Motor_1 to Phantom

delay Phantom sec goto next

Accessing Digital Inputs and Outputs
Even though inputs and outputs are bi-stable (either on or off) their states are
expressed as a number when accessed via the phantom register. The number 1
indicates that the input or output is on and the number 0 indicates that it is off.
Inputs can only be read via the phantom register, not changed. Outputs can be
either read or changed via the phantom register.

Example
The following example uses the phantom register for an output scanning opera-
tion.
[1] INITIALIZE
 ;;; This program example uses the phantom register
 ;;; in a program loop. The program sequentially
 ;;; turns on, then off, each of the controller’s
 ;;; first 32 outputs.
 ;;; This step stores the number of the special
 ;;; purpose register which corresponds to output 1
 ;;; (1001) to the pointer register. It then
 ;;; proceeds into the program loop.
 ;;;
 ;;; Pointer = Register 127
 ;;; Phantom = Register 128
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 store 1001 to Pointer
 goto next

[2] OUTPUT_ON
 ;;; The program loop starts here. The first time
 ;;; this step is executed, the pointer register
 ;;; contains the value 1001, meaning that it is
 ;;; pointing to digital output 1.
 ;;; By storing the value 1 to the phantom register
 ;;; we are, in effect, turning output 1 ON.
 ;;;
 ;;; The second time through this loop, the pointer
 ;;; register will point to output 2, so that is
 ;;; the output which is turned on. Each successive

3-16
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 ;;; iteration of the program loop turns on the next
 ;;; output in the sequence.
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 store 1 to Phantom
 delay 1 sec goto next

[3] OUTPUT_OFF
 ;;; This step first turns off the output we turned
 ;;; on in the previous step. Since the phantom
 ;;; register is still pointing to the same output
 ;;; we turned on in the previous step, we can do
 ;;; this by storing the value 0 into the phantom
 ;;; register.
 ;;;
 ;;; Then, before moving to the next output to be
 ;;; cycled, we have the program test to see if
 ;;; we’ve reached the last output in our sequence.
 ;;; The If instruction checks to see if we’ve just
 ;;; cycled output 32 on and off and, if so, takes
 ;;; us out of the loop. If not, the store
 ;;; instruction increments the pointer register
 ;;; and returns to step OUTPUT_ON.
 ;;;
 ——————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——————————————————————————————
 store 0 to Phantom
 if Pointer >= 1032 goto DO_SOMETHING_ELSE
 store Pointer + 1 to Pointer
 goto OUTPUT_ON

Programming Hints
When a program loop is written, there is usually some condition programmed for
leaving the loop. The IF instruction in step OUTPUT_OFF tests the pointer
register to determine if it is pointing to output 32.

Tracking Multiple Resources
In instances where the I/O points are being accessed in a program loop, you may
need to maintain more than one pointer for the phantom register. For example,
each pass through a program loop could require the actuation of three outputs
and the monitoring of three inputs, all of which require indexing for each new
cycle.

You can accomplish this by using some of the general purpose numeric registers
for storing a pointer for each I/O point to be accessed. Just prior to the required
access, the program stores the number from that register into register 127. At the
end of each cycle, all of the general-purpose registers being used to store point-
ers can be incremented individually.

The Pointer and Phantom Registers

Using the Quickstep Programming Language 3-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Stepping Motors
Quickstep provides direct support for the control of stepping motors through a
series of stepping motor modules that plug directly into your controller and are
programmed using Quickstep instructions. The stepping motor instructions are
high-level instructions and allow you to:

• Set or change stepping motor motion parameters
• Establish a home or zero position for the motor
• Start the motor in motion
• Stop the motor motion

Quickstep supports relative and absolute turn instructions.

The stepping motor instructions can derive some or all of their parameters from
any of the controller’s numeric resources. For a description of the stepping
motor instructions, see Chapter 2, Stepping Motor Instructions. Some stepping
motor modules must be programmed using servo motor instructions. Refer to the
Installation and Applications Guide for your stepping motor module.

Since the stepping motor control modules contain independent processors, the
controller can continue executing a program during a turn instruction, even
though the motor may still be in motion. This gives you more flexibility for
multi-axis applications or for the preparation of tooling when a workpiece is in
motion. The modules also keep track of the motor’s position at all times,
allowing you to program absolute (coordinate-based) positioning instructions.

When using on-board motor drivers, the modules automatically generate the
sequence of pulses necessary to turn a stepping motor in either full-step or half-
step mode.

HINT: We recommend using half step mode for most applications, since it results in smoother opera-
tion of the motor.

Programming Stepping Motors
A typical sequence for controlling a stepping motor is as follows:

• Initialize the motion parameters using a PROFILE MOTOR instruction.

• If the absolute position of the motor is important, home the motor using
either the ZERO MOTOR or SEARCH AND ZERO MOTOR instruction.

• Initiate motor motion using a TURN MOTOR instruction.

• Wait for the motor motion to stop.

Example
The following sample program shows the typical sequence for stepping motor
motion and control described previously. For an additional example using
stepping motors, see the sample programs in Appendix A.
[1] INITIALIZE
 ;;; The profile instruction provides initial operating
 ;;; parameters for the motor. We’ll then search for the
 ;;; motor’s home position. Once this is found and the
 ;;; motor stops, we’ll proceed to the next step.
 ;;;
 —————————————————————————————————————-
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————-

3-18
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 profile Motor_1 (half) basespeed=200 maxspeed=500
 accel=400 decel=400
 search ccw and zero Motor_1
 monitor Motor_1:stopped goto Next

[2] TURN_MOTOR
 ;;; Here, we’ll start the motor turning using an
 ;;; absolute turn instruction. The motor will move to
 ;;; a position 1000 steps clockwise from the home
 ;;; position sensed in the previous step.
 ;;;
 —————————————————————————————————————-
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————-
 turn Motor_1 to 1000
 monitor Motor_1:stopped goto REST_OF_SEQUENCE

Subsequent TURN MOTOR instructions will use the motion parameters established
in the previous profile instruction for that axis. You can program new profile
instructions to create different speeds or acceleration/deceleration rates for
different moves as many times as necessary during a program. One method of
changing parameters in a profile is to place the profile instruction in a program
loop that references a register or Data Table for various motion parameters. This
is a convenient technique for programming different parameters for a long series
of motions.

When a motor is in motion, the controller should not execute another turn or
profile instruction for that motor or a software fault will result. After program-
ming a TURN MOTOR instruction, you should have the controller execute a
MONITOR MOTOR instruction to see if the motor is stopped prior to any subse-
quent turn or profile instructions.

Reading Stepping Motor Position
CTC controllers provide a series of special-purpose registers that display the
position of a stepping motor. The register numbers are 7001 through 7016 for
motor axes 1 to 16. Any instruction that can access a numeric register (e.g.,
STORE) can access these registers.

When using a Model 2205 Stepping Motor Control Module, access these regis-
ters when the associated motor is stopped. If the motor is still running, the
controller returns a value of -1 for the position.

Establishing a Home Position
The SEARCH AND ZERO instruction establishes a home position for a stepping
motor. Using the SEARCH AND ZERO instruction you can start the motor turning in
either a clockwise or counterclockwise direction. The stepping motor continues
turning in that direction until a switch closure is sensed on the motor module’s
home input. To get a motor in the home position consistently, perform a multi-
step homing sequence. Search and zero the motor once; then search and zero the
motor again at a slower speed. Re-homing the motor a second time at the slower
speed provides a more consistent home position. The following example shows
how to search and zero a motor and find the home position consistently:
[55] BEGIN_HOME_SEQUENCE
 ;;; Begin initial home sequence for motor 1
 ——
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——

Using Stepping Motors

Using the Quickstep Programming Language 3-19

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 profile motor_1 (half) basespeed=800 maxspeed= 2000
 accel=400 decel=400
 search ccw and zero motor_1
 monitor motor_1 stopped goto next

[56] MOVE_OFF_HOME
 ;;; Move off the home switch in order to
 ;;; re-home the motor
 ——
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——
 turn motor_1 to 50
 monitor motor_1 stopped goto next

[57] FIND_HOME
 ;;; Set the profile for slower speed then
 ;;; re-home motor
 ——
 <NO CHANGE IN DIGITAL OUTPUTS>
 ——
 profile motor_1 (half) basespeed=100 maxspeed=200
 accel=400 decel=400
 search ccw and zero motor_1
 monitor motor_1 stopped goto next

Programming Concepts
The following list contains hints and notes that may be helpful in understanding
some of the concepts involved in writing stepping motor control programs using
Quickstep.

• The PROFILE MOTOR instruction can also derive parameter values from a
changeable source, such as an operator interface or a thumbwheel. The
actual motion parameters in use are only updated when the profile instruc-
tion is re-executed. If you wanted to update parameters each time through
the loop, you would need to include the PROFILE MOTOR instruction within
the program loop.

• Although, it is common practice to include a MONITOR MOTOR instruction in
each step with a motor motion instruction, this is not a general requirement.
MONITOR MOTOR instructions can serve two purposes:

1. To avoid sending the motor a new motion instruction while the previous
motion is still under way (This can cause a CPU software fault).

2. To avoid mechanical conflict (e.g., insuring that the motor has stopped
prior to sending the stamping press down).

• In programs involving batch production of many workpieces, CTC recom-
mends that you SEARCH AND ZERO the motor each cycle to insure that me-
chanical interference hasn’t caused the motor to lose position. If the addi-
tional time required to rehome the motor every cycle is a problem, add a
cycle counter to the program to jump to a SEARCH AND ZERO instruction every
nth cycle, minimizing the number of potentially defective workpieces.

• When using the controller’s dedicated stop function, any stepping motor
motions that have already been initiated will continue to their completion. If
this is undesirable, you can program a separate task to create a customized
stop function that invokes a STOP MOTOR instruction.

3-20
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Servo Motors
Quickstep provides direct support for the control of servo motors through a
series of servo control modules that plug directly into your controller and are
programmed using Quickstep instructions. The servo instructions are high-level
instructions and can derive some or all of their parameters from any of the
controller’s numeric resources. They allow you to:

• Set or change servo motion parameters
• Establish a home or zero position for the servo
• Program relative, absolute, and continuous velocity turn instructions
• Start the servo in motion
• Stop the servo motion

The PROFILE SERVO instruction gives you control of acceleration, deceleration,
velocity, and servo closed loop gain characteristics. CTC’s servo control mod-
ules contain a programmable compensation filter which provides program
control over the stability characteristics of the servo and allows you to write
programs to automatically compensate for changes in the dynamics of the servo
system.

Since our servo control modules contain independent microprocessors, the
controller’s program can continue execution after a turn instruction, even though
the servo may still be in motion. This provides freedom for multi-axis applica-
tions or for the preparation of tooling while a workpiece is still in motion. In
addition, the controller can read the servo error and instantaneous servo position
even while the servo is in motion, providing a useful tool for sensing perfor-
mance.

Some stepping motor modules must be programmed using servo motor instruc-
tions. Refer to the Installation and Applications Guide for your stepping motor
module.

Programming and Initiating Servo Motions
The two major instructions for setting up and initiating servo motions are
PROFILE SERVO and TURN SERVO. The PROFILE SERVO instruction establishes the
following motion parameters: holding mode, maximum speed, acceleration rate,
and proportional, integral, and differential compensation filters. All the numeric
parameters in a PROFILE SERVO instruction can be derived from any of the
controller’s numeric resources, which facilitates several important capabilities:

• Tuning a servo using data in numeric registers, from an operator interface,
from a Data Table, etc.

• Modifying the servo parameters by observing the servo performance and
automatically modifying certain parameters.

• Modifying servo parameters with an external PC using CTCMON.

The TURN SERVO instruction initiates servo motion. There are three different
modes of servo motion:

• Relative – the servo turns a specified number of steps clockwise or counter-
clockwise from the servo’s current position. For example,
turn servo_1 ccw 500 steps

NOTE: A step refers to one edge transition on either encoder input (A or B) for that axis. For example,
a 500 line encoder generates 2000 steps.

Using the Quickstep Programming Language 3-21

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

• Absolute – the servo turns to a new absolute, or coordinate, position based
on some predetermined zero reference point. For example,
turn servo_1 to 500

Once a zero or home reference location is set, all subsequent absolute
instructions specify a coordinate position based on the zero position. The
servo control module automatically determines the direction and distance to
turn the actuator to the new position.

• Velocity – Begins continuous clockwise or counterclockwise motion. The
servo remains in motion until the controller executes a Stop Servo instruc-
tion or the servo control module senses a Stop input signal. For example,
turn servo_5 cw

Example
The following sample program shows the typical sequence for servo motor
control. For additional examples, see the sample programs in Appendix A.
[1] INITIALIZE
 ;;; The Profile command establishes the initial
 ;;; motion parameters for the servo. We then use
 ;;; the Search and Zero command to find the servo’s
 ;;; home reference position. The Monitor command
 ;;; determines when the servo has sensed home and
 ;;; come to a stop.
 ;;;
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile servo_1 servo at position maxspeed=2000
 accel=500 P=8 I=250 D=219
 search and zero servo_1
 monitor servo_1:stopped goto Next

[2] MOVE_THE_SERVO
 ;;; The Turn instruction below is an “absolute”
 ;;; turn; in other words, the servo will turn to a
 ;;; position 5100 steps forward from the predeter-
 ;;; mined home position. Once again, we’ll wait for
 ;;; the motion to be complete before continuing.
 ;;; Alternatively, you may continue with the
 ;;; program without waiting by substituting a
 ;;; goto next instruction.
 ;;;
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 turn servo_1 to 5100
 monitor servo_1:stopped goto Next

Programming Notes
Once the controller has executed a turn instruction for a specific axis, no subse-
quent turn instruction can be executed for that axis until the first motion has
ended. Executing a second turn instruction results in a software fault halting the
execution of the program.

Unlike the profile instruction for stepping motors, the controller can execute a
new PROFILE SERVO instruction for a specific axis when the servo is still in
motion. The new PROFILE SERVO instruction can change any parameter except the
acceleration rate.

3-22
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

You can use this programming technique when operating a servo in velocity
mode to make periodic changes in the velocity of the servo actuator. A PROFILE
SERVO instruction specifying a new maximum speed causes the servo to acceler-
ate or decelerate to the new speed. For example, if the current maximum speed
is stored in a numeric register, incremental changes in speed could be pro-
grammed with instructions such as:
store reg_10 + 400 to reg_10
profile servo_1 maxspeed=reg_10

This type of change could be made in response to any condition the controller is
capable of sensing or deriving.

Tuning a Servo
All servos have some form of sensor, typically an encoder, that provides position
and velocity feedback to the controller. The servo controller compares the
servo’s current position to a calculated ideal instantaneous position and, based
on the difference, sends a corrective signal to the actuator. CTC’s servo control
modules use the on-board microprocessor to perform this comparison.

The ideal position mentioned previously is not the ultimate target position for
the complete servo motion being executed. Instead, it is the position where the
servo motor should be at that instant to successfully execute the desired motion
profile. This motion profile takes into account the desired acceleration and
deceleration characteristics of the actuator in the real, mechanical world.

Once the difference between the ideal and actual positions (instantaneous error)
is known, a correction signal is sent to the actuator. The strength of this correc-
tion signal, for a given amount of error, is a critical parameter in any servo
system. The correction signal is determined, in part, by a multiplication factor
applied to the error. This factor, called the system gain, is specified in the Servo
Profile instruction as the P parameter.

Using the P Parameter
If the P parameter or gain is set too high, the correction signal sent to the actua-
tor causes it to overshoot the ideal position. This results in a sensed error in the
opposite direction that, in turn, is disproportionately corrected. The result of this
instability may be continuous oscillation around the ideal position.

If the P parameter is set too low, the resulting correction signal is insufficient to
fully correct the position error. The result is a slow, inaccurate servo system.
Because of this, there is a trade-off between accuracy and stability.

Using Servo Motors

Using the Quickstep Programming Language 3-23

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

By applying a filter to the sensed error signal, you can maintain stability at a
higher gain factor. The filter can dampen the tendency to oscillate while allow-
ing a high DC gain and results in high accuracy. The microprocessor in the
servo control module implements a filter for this purpose.

Using the I Parameter
The additional parameters used in programming this filter are the I (integral) and
D (differential) parameters. The I parameter is useful to obtain increased
accuracy at low frequencies, or when stopped. The I factor integrates, or builds
up, a corrective signal in response to steady-state error. A greater I factor will
cause the filter to build up a corrective signal for even small amounts of error,
greatly increasing the terminal accuracy of each move.

Using the D Parameter
The D parameter, on the other hand, senses and responds to rapidly changing
rates of error. It is therefore most useful in increasing system response to
varying loads and frictions at high speeds.

Using the P, I, and D parameters to tune a servo system requires knowledge of
servo system basics. CTC has application notes available to assist in the pro-
cess, as well as tutorials on servo theory to provide some necessary background
information. We encourage you to take advantage of this information.

Some models of CTC servo control modules have advanced filters offering a
choice of compensation techniques, including feed forward compensation. For
more information about these functions, refer to the installation guide for your
control module.

When using the Servo Profile command in conjunction with a model 2206
Stepping Motor Control Module, the P, I, and D parameters do not apply and
may be ignored.

Using the Servo Position and Error Parameters
The instantaneous position and error of a servo can be easily accessed by your
Quickstep program. This information provides an important set of tools for
tuning, control, and diagnostics.

A few of the ways in which this information can be used include:

• The servo position may be used to trigger events. For example, you can
commence a servo motion in velocity mode, then trigger a change in velocity
or perhaps a motion on another axis when the servo reaches a specific
position. This may be done with an instruction such as:
if servo_1:position >= 15000 goto next

A number of such instructions may be used throughout a servo move to
trigger a variety of events.

• The servo error may be used as a tuning aid. By observing the servo error
throughout a motion (e.g., store servo_1:error to disp_2) you can
detect portions of a move where excessive error is building. For example, if
error is high during acceleration, you may be attempting to accelerate at a
rate faster than your motor can accommodate. If, on the other hand, the
error starts building as you reach maximum speed, and then continues to
build, you may be attempting to run faster than your motor allows. Such
problems often masquerade as instability; observing the servo error can help
you determine what is really happening.

3-24
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

• Often, excessive servo error can be used to indicate a jam condition. If a
physical obstacle prevents a servo from keeping pace with your motion
command, error will build quickly. This may be detected with a fault
monitoring program containing an instruction such as:
if servo_1:error >= 100 goto JAM_DETECTED

Establishing a Home Position
The SEARCH AND ZERO instruction establishes a home position for a servo. Each
servo axis on a servo control module has a dedicated home input that is used in
conjunction with the SEARCH AND ZERO instruction to set a home position for that
axis. The precise function of this instruction depends on the servo control
module being used. For information on using the SEARCH AND ZERO SERVO
instruction, refer to the instalation and applications guide for your servo module.

Using Servo Motors

Using the Quickstep Programming Language 3-25

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

The Data Table
The Data Table is a two-dimensional array of numbers that can be stored in
memory along with your Quickstep program. The numbers in a Data Table can
range from 0 to 65,535. For the maximum allowable size of a Data Table, refer
to the specifications for the controller model you are using. The following
illustration shows an example Data Table.

Storing information in the Data Table can make your program easier to maintain
by keeping related numeric parameters together in an organized format. You can
change the data in a Data Table by using the Data Table editor (part of the
Quickstep Editor), by instructions in a program, or by remote loading of data
from an external computer as supported by the CTC serial protocols or by using
CTCMON.

There are two major uses for the Data Table:

• In iterative (repetitive loop) programs, you can store parameters which must
change for each iteration in rows of the Data Table. Each time through the
loop, your program would “point” to the next row to obtain its data.

• Flexible assembly machines must often be reconfigured to manufacture a
variety of products. The Data Table allows you to store the parameters for
multiple products in the rows of the table. To make a specific product, you
point to the appropriate row.

An additional use of the Data Table is to store results information for each
workpiece being produced as your program runs. This information may then be
transferred to a remote computer on a batch basis.

How you use a Data Table is determined by the references to it within your
Quickstep program. The data itself may be used as motor motion parameters
and coordinates, analog set points, time delay durations, and other manufactur-
ing parameters. There is also a special function in most CTC controllers for
sending a row of the Data Table out through the controller’s serial port as an
ASCII message.

3-26
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Accessing the Data Table Using the Row Pointer
In many applications, you will want to use information from the Data Table on a
row-by-row basis. The easiest way to do this is by using the row pointer,
register 126. The number stored in this register determines the row from which
you’ll obtain data when you access the Data Table using col_1, col_2, etc. For
instance, the following sequence of instructions results in servo_1 turning to the
position stored in Data Table row 15, column 2:

store 15 to reg_126
turn servo_1 to col_2

The benefit of using this approach is that you can select the desired row of the
Data Table at one point in your program. You can then program a number of
subsequent instructions to use data from the various columns of that row.

Example
One use for this technique is for programming an X-Y table, for positioning a
workpiece using two servo motors controlling the X and Y axes of motion. The
sets of coordinates for these axes can be stored in successive rows of the Data
Table, using column 1 for the X coordinate and column 2 for the Y coordinate.

After initially pointing to row 1, a short program loop could be written that
would:

1. Send servo_1 to the position in col_1 and send servo_2 to the position in
col_2.

2. Perform the inspection, drilling or some other function on the workpiece at
the new location.

3. Move the row pointer to the next row by adding 1 to the value in register
126.

4. Return to the beginning of the loop to process the next row.

Using the Data Table, what could have been a lengthy program with position
information scattered throughout, has become a very compact loop. The pro-
gram stores all the position information separately where it can be easily main-
tained.

Storing Data Using the Row Pointer
For 2600 series and higher controllers, you can store data to a specific row of a
data table using the row pointer. The following instructions store a value (368)
in row 5, column 8 of the Data Table:

store 5 to reg_126
store 368 to col_8

Using Row and Column Pointers
In the example using the row pointer, it varied for each new cycle and the
column designation was fixed. You can also reference the Data Table so that
both the row and column numbers are expressed as variables. Register 131
points to the active row and register 132 points to the active column. You then
use a special purpose register (register 9000) to access the target Data Table

The Data Table

Using the Quickstep Programming Language 3-27

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

location. The following instructions store the position of a servo motor in the
fourth row, third column of a Data Table:
store 4 to reg_131
store 3 to reg_132
store servo_1:pos to reg_9000

Example - Using the Data Table in Quickstep Programs
A broad array of instructions can obtain and use the numeric data stored in the
Data Table, for example:
store col_1 to dis_1
profile servo_1 maxspeed=col_8

The following example uses numeric values from the Data Table in math calcu-
lation:

store col_1 + 500 to reg_10
turn Motor_1 ccw reg_10 steps

STORE instructions can perform a math function and store the result in any
numeric destination for use in a subsequent instruction. This allows you to store
data in the Data Table in engineering units (e.g., inches of travel, degrees C).
Later, your program can convert it into units required by the controller for motor
motions, analog values, etc. This can increase the maintainability of your
program.

A program can also use an IF instruction to test a value in the Data Table against
another source of numeric data. If the test is satisfied, the instruction takes the
controller to a new step.
if ain_1 >= col_1 goto next
if servo_1:pos < col_3 goto next

You can use a value in the Data Table to generate a time delay, with the number
in table representing time in units of minutes, seconds, or hundredths of seconds.

delay col_4 sec goto next

You can derive any or all of the operating parameters for a stepping or servo
motor.
profile Motor_2 (half) basespeed=col_1 maxspeed=col_2
 accel=col_3 decel=col_4

In a relative turn instruction:

turn servo_2 ccw col_1 steps

In a absolute turn instruction:
turn Motor_1 to col_1

For programming examples using the Data Table, see Appendix A.

For information on using the Data Table for message transmission, refer to the
Application Note, ASCII Message Transmitting with CTC Controllers.

3-28
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Analog Inputs and Outputs
Analog signals are signals in which information is carried in the form of a
voltage value (or, sometimes, a current value). While digital signals are either
on or off at any given time, analog signals can vary continuously within a range.

Quickstep allows analog data to be accessed through a variety of analog input
and output modules. Modules are available with resolution ranging from 10-bit
(1 part in 1024) to 15-bit (1 part in 32,768), and with a number of different
voltage range options. Possible uses for analog input and output points include:

• Monitoring and/or set-point control of temperatures, pressures, levels, etc.

• Acquiring data for statistical process control.

• Controlling analog actuators, e.g., proportionate solenoid valves, motor
speed controls, etc.

• Programmable control of mass flow controllers.

Representing Analog Signals in Quickstep
Microprocessors are digital devices and can only process analog information
when it is expressed in the form of numeric data. An analog input module
converts an input voltage into a numeric representation using a process called
analog-to-digital (A/D) conversion.

For example, a module with 12-bit resolution is capable of resolving 1 part in
4096. If the allowable input voltage range is 0 to +10 volts, the module can
sense a change as small as 2.44 mv (.00244 volt). Although the numeric value
created directly by the conversion is a number from 0 to 4095, the controller
automatically ranges this value into a number from 0 to 10,000 to make pro-
gramming more convenient. A voltage level of 2.5 volts is represented by the
value 2,500.

NOTE: Some high-resolution modules will represent 2.5 volts as 2,500,000. Refer to the installation
and applications guide for your analog I/O module.

Using Analog Input Data
Any instruction that uses numeric data can use analog input data. For example,
the value of an analog input can be frozen by storing it to a numeric register
using a STORE instruction, store ain_1 to reg_10. You can use a math
instruction to scale the analog input value and store the result to a numeric
display, store ain_1 * 25 to dis_1.

NOTE: Such a transfer only occurs once each time this instruction is executed. No permanent rela-
tionship is established between the analog input and the display. To continuously refresh the
displayed data, the instruction would have to be continuously executed in a program loop.

You can also test an analog value by comparing it to another source of numeric
data using an IF instruction, if ain_1 >= reg_10 goto next.

Motion control instructions such as turn or profile can also derive numeric data
from analog input values. Usually a math instruction is necessary to scale the
analog data into an appropriate range of values.

Using the Quickstep Programming Language 3-29

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Analog Outputs
Analog outputs create a voltage level which performs some controlling function
in the process or machine being controlled. For example, you can use an analog
output to control the intensity of a heater (using a proportionate controller) or
the feed rate of a vibratory feeder. Analog outputs can also be used to control
the speed of a motor drive system or provide control signals for mass flow
controllers.

As with analog inputs, analog output values are represented numerically with
values that translate easily to voltage levels. For example, a value of 5000 sent
to an analog output will result in a voltage level of 5 volts appearing on that
output. This may be done with a STORE instruction, for example:

store 5000 to aout_1

You can use any source of numeric data to derive the number sent to an analog
output. For example, the instruction, store reg_10 to aout_1, reads the
value from register 10 and creates a proportional voltage level at analog output
1.

NOTE: As with analog inputs, such an instruction only acts once and does not create any ongoing
relationship between the register and the analog output. To continuously update the analog
output, the instruction must be placed in a program loop that continuously re-executes it.

You can use a math instruction to calculate a numeric value and send the value
to an analog output, for example:
store thwl_1 * 25 to aout_1

You can use one or more such math instructions to convert a value expressed in
engineering units to the desired voltage level that must appear at an analog
output.

Using various combinations of time delay, input monitoring and math instruc-
tions, you can establish complex interrelationships between analog or digital
inputs and analog outputs. You can even program analog ramping via the
creation of a program loop that, based on a timed interval, gradually increases an
analog output value.

For a programming example, see Appendix A.

Programming Hints
Using If Instructions
The If instruction allows any source of numeric data, including an analog input,
to be tested with any of the six possible relational tests, greater than (>), less
than (<), equal to (=), greater than or equal (>=), less than or equal (<=), not
equal to (<>). If a test is satisfied, the instruction takes the controller to a new
step of its program.
if ain_5 >= 1500 goto next
if ain_1 < ain_2 goto next

The value from an analog input can be tested against any other numeric value
accessible to the controller.

3-30
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using a Delay instruction
You can use the value from an analog input to generate a time delay with the
numeric value representing time in units of hours, minutes, seconds, or hun-
dredths of a second:

delay ain_1 sec goto next

For typical applications, math commands would first be used to scale the value
appropriately, storing the intermediate result in a register:

store ain_1 - 500 to reg_10
delay reg_10 sec goto next

Using Special-Purpose Registers
The controller can also access analog outputs via a set of special-purpose
registers. This allows you to use the Phantom register to indirectly address the
analog outputs in a repetitive loop. References to registers 8001 to 8256 actu-
ally access analog outputs 1 through 256, respectively. References to registers
8501 to 8756 give you read only access analog inputs 1 through 256, respec-
tively.

Using Analog Inputs and Outputs

Using the Quickstep Programming Language 3-31

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Thumbwheel Arrays and Numeric Displays
Quickstep supports high-level access to thumbwheel arrays and numeric display
modules. These devices are connected to your controller via a thumbwheel and
display interface module. The interface modules allow you to avoid significant
programming effort and the use of large quantities of
I/O. With this approach, thumbwheels and displays may be used with any
Quickstep instruction that requires or provides numeric data.

Possible uses of thumbwheels and displays include:

• Entering and reading numeric parameters.

• Entering and displaying batch counts or footage counts.

• Entering and displaying analog information, such as pressure, weight, and
temperature.

• Entering motor motion parameters such as velocity or distance, for runtime
tuning of operation.

• Modifying motion parameters for initial set-up of a servo or stepping motor
system.

Examples of instructions referencing thumbwheels and displays are shown
below. The controller automatically handles all of the scanning of digits and
decoding of data, simplifying the programming effort required.
store thwh_1 + 500 to reg_15

turn Motor_1 ccw thwl_1 steps

store ctr_1 to dis_1

Prescaling Values Automatically
Frequently the numeric information used in a control program is not expressed
in units that are convenient for the operator of an automated machine. For
example, the motor motions are expressed in steps within the controller’s
program, while the machine’s operator may think in terms of thousandths of an
inch.

You can use math instructions to prescale values derived from thumbwheel
arrays or rescale values sent to numeric displays. For example, in a case where a
stepping motor must be driven 2 steps for each thousandth of an inch of resulting
linear travel on a machine, the following sequence of instructions would allow
the operator to enter the motion as thousandths of an inch:
store twhl_1 *2 to reg_10
turn Motor_1 cw reg_10 steps

Register 10 stores the result of the multiplication until it is used by the TURN
MOTOR instruction. You can program both instructions in the same step, as long
as the math instruction is first.

Sometimes a program requires more than one math instruction to properly scale
a value. For example, a pressure transducer provides a 0.5 to 5.5 Volt signal
which represents a pressure range from 0 to 500 PSIG. This signal is read by the
analog input of the controller as a number from 500 (0.5 Volt) to 5500 (5.5
Volts). For information on analog inputs, see Using Analog Inputs and Outputs.

3-32
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

To display this value in units of PSIG, we need to offset and scale the value to
properly range it. This could be accomplished using the following instructions:
store ain_1 - 500 to reg_20
store reg_20 / 10 to disp_1

The first instruction reads the signal from analog input 1 and then removes the
offset of 500 prior to storing it in register 20. The second instruction ranges the
value in register 20 to a number from 0 to 500 by dividing the number by 10.
The result of this math operation is then sent to the display.

For programming examples showing thumbwheel arrays and displays, see
Appendix A.

Accessing Four-digit Displays Using Special Purpose Registers
You can also access a numeric display by storing a number to special purpose
registers 3001 to 3016 (representing displays 1 through 16). This allows the
displays to be accessed using the Phantom register or from a remote computer
using CTC’s serial communications protocols or CTCMON.

For example, store 3820 to reg_3002, displays the number 3820 in
numeric display 2.

Using Eight-digit Thumbwheels
The controller views eight-digit thumbwheels and numeric displays as a pair of
four-digit devices. Because of this you must read the number from an eight-digit
thumbwheel as two separate four-digit numbers.

In the following example, the most significant four digits of the thumbwheel
array are connected in position twhl_1, and the least significant four digits are
connected in position twhl_2.
store twhl_1 * 1000 to reg_10
store reg_10 + twhl_2 to reg_10

Register 10 then contains the eight-digit value read from the thumbwheel array.

Using Eight-digit Displays
A series of special purpose registers (registers 4001 to 4016) provide access to
eight-digit numeric displays. Any two successive four-digit display connections
may be used to connect an eight-digit numeric display.

Register 4001 automatically accesses an eight-digit display connected in posi-
tions disp_1 and disp_2. To access an eight-digit display connected in positions
disp_2 and disp_3, register 4002 would be used, and so on.

The following example sends the current count stored in counter 1 to an eight-
digit display connected in positions disp_3 and disp_4:
store ctr_1 to reg_4003

Registers 4001 to 4016 are write-only registers. The information in them cannot
be read by subsequent instructions.

Setting a Decimal Point
A fixed decimal point may be displayed on any four- or eight-digit numeric
display. This is accomplished by using special purpose registers 6001 to 6016,
representing four-digit displays 1 through 16.

Using Thumbwheel Arrays and Numeric Displays

Using the Quickstep Programming Language 3-33

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

For example, the instruction, store 3 to reg_6002, displays a decimal point
on display 2 in the third position. Therefore, the number 9999 would appear on
the display as 9.999.

When setting a decimal point on an eight-digit display, use the register corre-
sponding to the least significant four digits. For example, to display a decimal
point in the fifth position of an eight-digit display connected in positions disp_1
and disp_2, use the instruction:
store 5 to reg_6001

In this case, the number 1234567 would appear as 12.34567.

When using a decimal point, the display automatically shows zeros for unused
digits to the right of the decimal point, e.g., .00012.

3-34
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Dedicated Inputs
You can assign the first four inputs connected to your controller as dedicated
functions. They are as follows:

• Start – Starts or continues execution of a program

• Stop – Stops the execution of a program in place

• Reset – Re-initializes the controller and starts executing the program at the
first step

• Step – Advances the controller one step in the program

These functions are enabled as part of the programming process, using the
Parameter editor. Once programmed, they are triggered automatically when an
external switch connected to the appropriate input closes. The inputs are active
at every step of your Quickstep program, subject to the priorities and rules listed
for each input. (See the following paragraphs.)

Start Input Functions
The Start input causes the controller to begin or continue the execution of its
program from its current step onward. If multiple tasks are active, all tasks start
executing again. The Start input only functions when the controller is stopped:

• At power-up
• In response to a stop instruction
• In response to stop signal from the dedicated Stop input

If, during the execution of a program, the controller is stopped and then restarted
using the dedicated Start input, each task continues based on the following
priorities:

• If there is a MONITOR instruction whose conditions are already satisfied when
the controller is restarted, the controller jumps to the step destination
specified by that instruction. If there is more than one such instruction, the
first one occurring in the step takes precedence.

• If there are no MONITOR instructions satisfied in the step, any DELAY instruc-
tion in the step is instantly timed out, and the controller jumps to the step
specified by the DELAY instruction

The controller ignores the dedicated Start input when:

• It is already running
• The Stop input has a continuous switch closure applied
• The dedicated Reset input has a continuous switch closure applied

If you do not select Start on Input #1 from the Parameter editor, the controller
automatically wakes-up running at step one of its program when power is
applied.

Stop Input Functions
The Stop input causes the controller to stop executing its program. Any tasks
currently running are suspended at their current step, and no further progress in
any of these tasks takes place.

When the Stop input halts the controller, the following rules apply:

• Any stepping motor or servo motions that have begun will continue to
completion. A velocity mode instruction will continue indefinitely.

Using the Quickstep Programming Language 3-35

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

• The controller will begin executing its program, in the step that was active,
when you restart the computer after a Stop input. If you also triggered the
Reset input, the controller begins executing its program at the first step
when it is restarted.

When the Stop input is active, the Start and Step inputs are inactive, but the
Reset input is active.

WARNING! In any circumstances where human injury or substantial economic damage is possible,
you must use a separate, overriding method to implement emergency stop functions.
Never use an automation controller to implement back-up safety circuits. Refer to the
Application Note, Thinking about Safety, for further information.

Reset Input Functions
The Reset input re-initializes the controller. The Reset input is active whether
the controller is stopped or running. Triggering the Reset input causes the
following actions:

• Cancels all tasks, and the controller returns to first step of the program.

• Turns off all outputs, and then turns on only those specified in first step of
the program.

• Resets all volatile general-purpose registers and counters to zero.

• Terminates all counters previously established with Start Counter instruc-
tions.

• Blanks all numeric displays.

• Clears all flags.

• Stops all stepping motors.

• Resets all high-speed counting modules

• Resets, i.e., de-profiles, all servos.

• Turns off the outputs of any customization boards in the system.

The controller remains in the state described above as long as the reset input is
held active. The Reset input functions as follows:

• If the controller is running at the time of the reset, it continues to run from
the first step in the program when the reset signal is removed.

• If the controller is stopped at the time of the reset, it remains stopped, but at
the first step in its program.

• If the controller receives a Stop input signal when the Reset input is active,
the controller stops.

• When the Reset input is active, the controller ignores the Start and Step
inputs.

Step Input Functions
The Step input performs a jog function, allowing the controller to advance one
step in its program. If multiple tasks are running, each task is allowed to ad-
vance one step. The Step input is active only when the controller is stopped, and
the controller automatically stops again once the single step has been executed.

!

3-36
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

The Step input does not function when the controller is running or when the
either the Reset or Stop inputs are held active.

After the Step input is toggled, the controller makes one pass through the current
step of each active task. The Step input functions as follows:

• If the current step contains one or more MONITOR instructions that are
satisfied, the first such MONITOR instruction causes the controller to proceed
to a new step.

• If no MONITOR instructions are satisfied and a DELAY instruction exists within
the step, the time delay is instantly timed out and the controller jumps to the
specified step.

• If any tasks are allowed to proceed to a new step as the result of the Step
input, the controller executes the output instructions and other instructions
in the new step, but does not execute any instructions capable of taking the
controller on to another step.

If any task does not contain instructions that, according to the above rules, allow
it to proceed at the instant the Step input signal is applied, the opportunity to
proceed to the next step is lost for that task until the Step input is released and
pressed once again. The Step input does not arm the controller to proceed at
some future time. It only allows it to proceed, if permitted by specific instruc-
tions within a step, during the instant the Step input is first activated.

WARNING! If your program relies upon the sensing of an input condition to stop the progress of an
actuator, using the Step function could cause a dangerous situation. An example is a
step which triggers a hydraulic valve causing a cylinder to begin extending, and which
also contains a MONITOR instruction sensing a limit switch to stop the motion by proceed-
ing to a new step. If the Step input is used to advance into such a step, the valve would
be actuated, but the MONITOR instruction would not be activated until the Step input is
released and actuated again. This may cause damage or a safety hazard.

Using Dedicated Inputs

!

Using the Quickstep Programming Language 3-37

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using High Speed Counting Modules
High Speed Counting Modules provide hardware support for count rates faster
than that possible using the software counters described earlier. These modules
also support quadrature counting, used to automatically track the position of
encoders and similar devices.

Counting Functions Supported
The high speed counting modules support two counting functions: continuous
totalizing or frequency counting (which can also be used for speed sensing).
These functions are accessible from your Quickstep program using special
purpose registers.

Up to eight counting channels can be present in a given controller. The current
value of a high speed counter can be accessed using registers 5001 through 5008
for counters 1 through 8 respectively. You can also preset the counters to a
specific value by storing a number to these registers, or reset the counter by
storing zero to the associated register:
store 1234567 to reg_5001

store 0 to reg_5005

These registers can be accessed with any instruction which can be used with
numeric registers.

Frequency Counting
The first high speed counter (only) may be configured as a frequency counter.
This will cause the counter to be sampled over a fixed number of milliseconds,
from 1 to 60,000 (one minute).

To enable this mode of operation, store the sample period to register 5501. Any
subsequent reading of register 5501 will return the number of pulses received
during the last sample period. For example, the following instruction sets the
sample period to 10 milliseconds:
store 10 to reg_5501

The counter may be returned to normal operation by storing 0 to register 5501.

NOTE: Frequency counting is not available in 2200 and 2200XM controllers.

3-38
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

8-, 16-, or 32-bit Access to Input/Output Points
Normally, digital inputs and outputs are accessed individually using the specific
instructions provided for that purpose. Sometimes, however, you may wish to
access a group of consecutive I/O points, treating the bits represented by these I/
O points as a binary value. The two major applications for this capability are:

• Communicating with an external intelligent system (for example, a digital
thermometer) that provides or requires data in the form of a parallel word up
to 32 bits wide.

• Allowing an external computer to communicate output information to the
controller in the form of 8-, 16-, or 32-bit numbers. This can result in
shorter data transmission time.

Quickstep provides this type of binary access to groups of 8, 16, or 32 I/O points
via a group of special-purpose registers.

8-, 16-, or 32-bit Output Access
Outputs may be set in groups of 8, 16, or 32 by storing a number to one of the
following special purpose registers:

• For 32-bit access, store a number (–2,147,483,648 to +2,147,483,647) to
registers 10001 to 10032.

• For 16-bit access, store a number (0 to 65535) to registers 10101 to 10164.

• For 8-bit access, store a number (0 to 255) to registers 10201 to 10328.

For example, storing a number to register 10001 causes a binary representation
of that number to appear on the first 32 outputs within the controller. Similarly,
register 10002 affects outputs 33 through 64; register 10003 affects outputs 65
through 96; and so on.

In each instance, the smallest-numbered output receives the least-significant bit
of the binary value. The binary weighting of each output is shown in the follow-
ing illustration.

NOTE: The numeric value stored to registers 10001 through 10032 (32-bit access) must be expressed
as a two’s-complement signed integer from
–2,147,483,648 to +2,147,483,647. For a description of two’s complement notation, see page
3-54.

You can also read the current status of the outputs from these same registers.

Using the Quickstep Programming Language 3-39

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

8-, 16-, or 32-bit Input Access
The controller’s inputs can also be accessed in groups of 8, 16, or 32 by using
one of the following special-purpose registers:

• For 32-bit access to inputs, use registers 11001 to 11032.
• For 16-bit access to inputs, use registers 11101 to 11164.
• For 8-bit access to inputs, use registers 11201 to 11328.

For example, the number you read from register 11001 will be a 32-bit binary
representation of the first 32 inputs within the controller. This value will be
expressed in signed two’s-complement. Reading a number from register 11002
accesses inputs 33 through 64; register 11003 accesses inputs 65 through 96; and
so on. As with outputs, the inputs are read with the smallest-numbered input
represented by the least-significant binary bit.

Masking Unused Bits
The number of inputs you wish to read, or outputs you wish to change, may not
always be exactly equal to 8, 16, or 32. In such cases, you can use Boolean math
operators (AND, OR, XOR, NAND, NOR, NXOR) to mask the bits you do not
wish to affect. For example:
store reg_11101 and 4095 to reg_10

The above instruction first obtains the binary representation of inputs 1 through
16, but the upper 4 bits are then cleared by using the AND operator with the
number 4095. The number 4095, expressed in binary, is
0000 1111 1111 1111.

You can also use Boolean operators to set, clear, or toggle certain outputs. For
instance:

store reg_10201 or 15 to reg_10201

This instruction reads the current status of the first 8 outputs in your controller,
then forces the lowest 4 bits (representing outputs 1 through 4) to be on. The
number 15, in binary, is 0000 1111. The result of this instruction is stored
immediately back to the first 8 outputs. Therefore, outputs 5 through 8 remain
unchanged, but outputs 1 through 4 are forced on.

Similarly, you can toggle a set of outputs with an instruction such as:
store reg_10201 xor 8 to reg_10201

Since the effect of the XOR operator is to invert any bit that combines with 1,
and to leave alone any bit that combines with 0, this instruction causes output
4’s state to change The number 8, expressed in binary, is 0000 1000, a pattern
with only the fourth bit set.

IMPORTANT! The above instructions will read, modify, and then write back a value from a bank of
outputs. This will work in Quickstep because no other task or external communication is
allowed to affect the outputs during the execution of an individual step. Use extreme
caution, however, in programs that read a bank of outputs in one step, and then store the
information back in another step. If any outside influence has changed an output state in
the interim, the write operation will undo that change, which can potentially cause unex-
pected operations to occur.

3-40
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Performing Boolean Operations on Binary Numbers
Performing Boolean Operation on Binary Numbers

Quickstep can perform bit-wise Boolean operations on binary numbers. Bit-
wise Boolean instructions perform a bit-wise comparison between the identically
positioned bits in two numeric expressions.

The STORE instruction can perform the following Boolean operations on 32-bit
binary numbers.

• AND
• OR
• XOR
• NOR
• NXOR
• NAND
• ANDNOT

AND
Using a Boolean AND instruction to perform a bit-wise comparison gives the
following results:

Bit in first Bit in second
operand operand Result

0 0 0

0 1 0

1 0 0

1 1 1

Boolean AND instructions can be expressed in either of the following formats:

Store Reg_15 and Reg_16 to Reg_17
Store Reg_15 & Reg_16 to Reg_17

This instruction does the following:

1. Takes the first operand, the value in register 15, and expresses it as a 32-bit
binary number using two's-complement notation. For a description of two’s
complement notation, see page 3-54.

2. Logically ANDs the first operand on a bit-wise basis to the second operand,
the value in register 16 (also expressed as a 32-bit binary number using
two's-complement notation).

3. Stores the result in register 17.

The value in register 15 is: 0000 0000 0000 0000 0000 0000 0110 0101

The value in register 16 is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 0000 0000 0000 0000 0000 0000 0110 0001

Using the Quickstep Programming Language 3-41

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

NAND
NAND means NOT AND. A Boolean NAND operation is the opposite of a
Boolean AND operation and gives the following results:

Bit in first Bit in second
operand operand Result

0 0 1

0 1 1

1 0 1

1 1 0

Boolean NAND instructions are expressed in the following format:

Store Reg_15 nand Reg_16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs a logical NAND
operation on them and then stores the result in register 17.

The value in register 15 is: 0000 0000 0000 0000 0000 0000 0110 0101

The value in register 16 is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 1111 1111 1111 1111 1111 1111 1001 1110

OR
Using a Boolean OR instruction to perform a bit-wise comparison gives the
following results:

Bit in first Bit in second
operand operand Result

0 0 0

0 1 1

1 0 1

1 1 1

Boolean OR instructions can be expressed in either of the following formats:
Store Reg_15 or Reg_16 to Reg_17
Store Reg_15 | Reg_16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs a logical OR operation
on them and then stores the result in register 17.

The value in register 15 is: 0000 0000 0000 0000 0000 0000 0110 0101

The value in register 16 is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 0000 0000 0000 0000 0000 0000 0111 0111

3-42
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

NOR
NOR means NOT OR. A Boolean NOR operation is the opposite of a Boolean
OR operation and gives the following results:

Bit in first Bit in second
operand operand Result

0 0 1

0 1 0

1 0 0

1 1 0

Boolean NOR instructions are expressed in the following format:

Store Reg_15 nor Reg_16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs a logical NOR opera-
tion on them and then stores the result in register 17.

The value in register 15 is: 0000 0000 0000 0000 0000 0000 0110 0101

The value in register 16 is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 1111 1111 1111 1111 1111 1111 1000 1000

XOR
XOR means Exclusive OR. A Boolean XOR operation gives the following
results:

Bit in first Bit in second
operand operand Result

0 0 0

0 1 1

1 0 1

1 1 0

Boolean XOR instructions can be expressed in either of the following formats:
Store Reg_15 xor Reg_16 to Reg_17
Store Reg_15 ^ Reg_16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs a logical XOR opera-
tion on them and then stores the result in register 17.

The value in register 15 is: 0000 0000 0000 0000 0000 0000 0110 0101

The value in register 16 is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 0000 0000 0000 0000 0000 0000 0001 0110

Performing Boolean Operations on Binary Numbers

Using the Quickstep Programming Language 3-43

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

NXOR
NXOR means Not Exclusive OR. A Boolean NXOR operation gives the follow-
ing results:

Bit in first Bit in second
operand operand Result

0 0 1

0 1 0

1 0 0

1 1 1

Boolean NXOR instructions are expressed in the following format:

Store Reg_15 nxor Reg_16 to Reg_17

The instruction expresses the values in registers 15 and 16 as 32-bit binary
numbers using two's-complement notation and performs a logical NXOR opera-
tion on them and then stores the result in register 17.

The value in register 15 is: 0000 0000 0000 0000 0000 0000 0110 0101

The value in register 16 is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 1111 1111 1111 1111 1111 1111 1110 1001

ANDNOT
ANDNOT is a combination of two boolean operations AND and NOT. This
STORE instruction
Store Reg_15 andnot Reg_16 to Reg_17

does the following:

1. Takes the second operand, the value in register 16, expresses it as a 32-bit
binary number using two's-complement notation, and then inverts that
number.

This means that 0000 0000 0000 0000 0000 0000 0111 0011 becomes 1111
1111 1111 1111 1111 1111 1000 1100.

2. Takes the first operand, the value in register 15, and expresses it as a 32-bit
binary number using two's-complement notation

3. Logically ANDs the first operand on a bit-wise basis to the inverted second
operand.

4. Stores the result in register 17.

The value in register 15 is: 0000 0000 0000 0000 0000 0000 0110 0101

The value in register 16 is: 0000 0000 0000 0000 0000 0000 0111 0011

The value stored
to register 17 is: 0000 0000 0000 0000 0000 0000 0000 0100

3-44
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Second
Bit in first Bit in second operand
operand operand Inverted Result

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

NOTE: Two’s complement is a method of representing signed binary numbers, where: 0000 0000
0000 0000 0000 0000 0000 0000 represents zero
and 0111 1111 1111 1111 1111 1111 1111 1111 represents 2,147,483, 647.

Negative one is represented by: 1111 1111 1111 1111 1111 1111 1111 1111 and the most nega-
tive number -2,147,483, 648 is represented by:
1000 0000 0000 0000 0000 0000 0000 0000

Using Bit-wise Boolean Algebra in Your Quickstep Program
You can use Boolean STORE instructions to perform bit-wise Boolean algebra on
numbers in order to mask data from 8-, 16-, and 32-bit data sources. The
following example reads the binary value represented by the state of the
controller’s first set of 32 inputs and performs a boolean AND operation with the
number 4095. As a result of this instruction, the binary representation of the
first 12 inputs only is stored in register 10.

store reg_11001 and 4095 to reg_10

The value in reg_11001 is: 0100 0110 1111 0100 0000 1111 1001 1101

4095 in binary is: 0000 0000 0000 0000 0000 1111 1111 1111

The resulting number
stored in register 10 is: 0000 0000 0000 0000 0000 1111 1001 1101

NOTE: For additional information and examples, refer to the Application Note, Bit Level Operators and
CTC Controllers.

Performing Boolean Operations on Binary Numbers

Appendix A

Sample Programs
Contents

Introduction A-2
Program to Control a Simple Machine A-3
Using Registers - Cycle Counting A-6
Using Counters A-8
Using Multi-Tasking A-9
Using Thumbwheels and Displays A-12
Using Analog Inputs and Outputs A-14
Using Stepping Motor Instructions A-19
Using Servo Motor Instructions A-20
Using the Data Table A-24
Using the Phantom Register A-27
Using a Multi-station Indexing Table A-33

A-2
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Introduction
This appendix contains a series of sample programs. Each program contains
extensive comments describing the program and the functions preformed in each
step.

The sample programs are as follows:

• Program to control a simple machine

• Using registers - cycle counting

• Using counters

• Multi-tasking example

• Using thumbwheels and displays

• Using analog inputs and outputs

• tepping motor control - using stepping motor instructions

• Servo motor control - using servo instructions

• Servo motor control - velocity mode example

• Using the Data Table in an iterative program (to store motor coordinates)

• Using a circular buffer and the phantom register

• Accessing multiple I/O points using the phantom register

• Program showing a multi-station Indexing table

Copies of the sample programs are available in the QSWIN directory and are in
a self-extracting compressed file named SAMPLES.EXE. SAMPLES.EXE
places the files in the directory that the EXE file is located in. If you want the
samples in subdirectory, create the subdirectory and place SAMPLES.EXE in
that directory before extracting the sample files.

IMPORTANT! These programs are not intended to be complete working programs for any specific
machine. Instead, they are intended to illustrate programming concepts that can be used
in certain programs and must be combined with sound engineering practices to achieve
adequate levels of functionality and safety

Appendix A - Sample Programs A-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Program to Control a Simple Machine
[1] INITIALIZE
 ;;; This program illustrates some of the basic
 ;;; concepts of writing automation programs using
 ;;; Quickstep.
 ;;;
 ;;; This text constitutes a comment for step 1.
 ;;; Comments may be used to explain what is happening
 ;;; in a step, to provide information about the status
 ;;; of your machine, and to document the use of
 ;;; registers, flags, etc. Use comments; six months
 ;;; later you’ll be glad you did.
 ;;;
 ;;; Notice the name at the top of this step: INITIALIZE.
 ;;; Use of step names is highly recommended; future
 ;;; versions of Quickstep will require step names.
 ;;; Later in the program, if you wish to return to
 ;;; this step, you can use the instruction goto INITIALIZE.
 ;;; Extensive use of such labels makes your program more
 ;;; readable.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 0 to Part_Counter
 delay 1 sec goto Next

[2] BEGIN_SEQUENCE
 ;;; The two horizontal lines below delineate any
 ;;; changes made to the controller’s digital outputs
 ;;; during this step. These output changes take place
 ;;; as soon as the controller enters the step.
 ;;;
 ;;; Outputs can have two symbolic names. One symbolic
 ;;; name is for turning the output on; the other is for
 ;;; turning it off. In this program, outputs use the symbol
 ;;; names Output_n_On to indicate an instruction to
 ;;; turn an output, and Output_n_Off to indicate an
 ;;; instruction to turn an output off. (n is the
 ;;; number of the output.)
 ;;;
 ;;; Of course, normally you would name these output
 ;;; changes to reflect the operation they perform on
 ;;; your machine.
 —————————————————————————————————————
 Output_15_On
 —————————————————————————————————————
 delay 1 sec goto Next

[3] LOAD_PART
 ;;; In this step, an output is turned on to actuate a
 ;;; pneumatic cylinder, loading a new part into the
 ;;; machine being controlled.
 ;;;
 ;;; Two instructions are programmed below; one
 ;;; represents the normal path of the program (delay 1
 ;;; sec goto next), the other looks for a fault
 ;;; condition via a sensor:
 ;;; monitor Fault_Sensor goto FAULT_DETECTED.
 ;;;
 ;;; This further illustrates the value of step names.

A-4
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 ;;; The name FAULT_DETECTED implies that this second
 ;;; instruction is for fault detection, making the
 ;;; program more self-explanatory.
 —————————————————————————————————————
 Output_1_On
 —————————————————————————————————————
 delay 1 sec goto Next
 monitor Fault_Sensor goto FAULT_DETECTED

[4] CLAMP_PART
 ;;; In this step, the output which was turned on in
 ;;; the previous step is now turned off, and five
 ;;; other outputs are turned on, simultaneously
 ;;; actuating five clamping cylinders.
 ;;;
 ;;; The monitor instruction below requires five
 ;;; separate limit switch inputs to be closed before
 ;;; proceeding to the next step. These limit switches
 ;;; are located at the end of each clamping cylinder,
 ;;; and are used to confirm their full actuation. The
 ;;; input names “Limit_A”, etc., may be programmed to
 ;;; refer to input as either normally-open or
 ;;; normally-closed. Symbolic names are defined using
 ;;; the Symbol Browser.
 —————————————————————————————————————
 Output_1_Off
 Output_5_On
 Output_6_On
 Output_7_On
 Output_8_On
 Output_9_On
 —————————————————————————————————————
 monitor (and Limit_A Limit_B Limit_C Limit_D Limit_E) goto Next

[5] STAMP_PART
 ;;; In this step, a stamping ram is actuated by
 ;;; turning on output 10. Because we want the “on”
 ;;; time of this operation to be adjustable by the
 ;;; machine’s operator, we have programmed a time
 ;;; delay referring to a thumbwheel switch.
 ;;;
 ;;; In the instruction below, the four-digit thumbwheel
 ;;; array is interpreted as two digits of seconds and
 ;;; two digits of fractions of a second (ssff), allowing
 ;;; the setting of time delays from 1/100 second
 ;;; (0001) to 99.99 seconds (9999).
 —————————————————————————————————————
 Output_10_On
 —————————————————————————————————————
 delay thwl_1 ssff goto Next

[6] UNCLAMP
 ;;; This step simultaneously retracts the stamping ram
 ;;; (output 10) and retracts the clamps. Notice how
 ;;; much more readable this step would be if these
 ;;; output operations had explanatory names. Such
 ;;; names may be assigned using the Symbol Browser.
 —————————————————————————————————————
 Output_5_Off
 Output_6_Off
 Output_7_Off

Program to Control a Simple Machine

Appendix A - Sample Programs A-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 Output_8_Off
 Output_9_Off
 Output_10_Off
 —————————————————————————————————————
 delay 1 sec goto Next

[7] EJECT
 ;;; This step actuates an eject cylinder using output 11,
 ;;; ejecting the completed part.
 ;;; In addition, the value in a numeric register named
 ;;; Part_Counter is incremented; this counts the part
 ;;; just produced. The updated count is then stored
 ;;; to a display which has been named Part_Count_Display.
 —————————————————————————————————————
 Output_11_On
 —————————————————————————————————————
 store Part_Counter + 1 to Part_Counter
 store Part_Counter to Part_Count_Display
 delay 1 sec goto Next

[8] END_SEQUENCE
 ;;; In this step, the eject cylinder is retracted. We
 ;;; then return to the beginning of the cycle to start
 ;;; over again.
 —————————————————————————————————————
 Output_11_Off
 —————————————————————————————————————
 delay 1 sec goto BEGIN_SEQUENCE

[9] FAULT_DETECTED
 ;;; The controller only executes this step if a fault
 ;;; condition is sensed. Here, we stop the controller
 ;;; and turn on a fault indicator light attached to
 ;;; output 12.
 ;;;
 ;;; When the controller is restarted by the operator, the
 ;;; program will return to the step called INITIALIZE.
 —————————————————————————————————————
 Fault_Indicator_On
 —————————————————————————————————————
 stop goto INITIALIZE

A-6
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Registers - Cycle Counting
[1] INITIALIZE
 ;;; This program illustrates some of the uses of
 ;;; numeric registers.
 ;;;
 ;;; In this program, a register named Cycle_Ctr is
 ;;; used as a cycle counter; after 100 cycles, the
 ;;; machine will be told to shut down.
 ;;;
 ;;; In addition, a nonvolatile register named
 ;;; Lifetime_Cycle_Ctr is used as a lifetime cycle
 ;;; counter for the machine. This information will be
 ;;; retained even when power is removed from the machine,
 ;;; and is useful for maintenance, etc.
 ;;;
 ;;; In this first step, we will initialize the machine
 ;;; by turning all of the controller’s outputs off,
 ;;; and storing 0 to register Cycle_Ctr. We do not
 ;;; initialize register Lifetime_Cycle_Ctr, because we
 ;;; want it to retain its previous count.
 ;;;
 ;;; NOTE: the above initializations are not necessary
 ;;; on power-up, as the controller automatically
 ;;; turns its outputs off and zeros all volatile
 ;;; registers when power is first applied. However,
 ;;; we are occasionally jumping back to this step
 ;;; from within the program, and these initializations
 ;;; are necessary under those circumstances.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 0 to Cycle_Ctr
 goto Next

[2] BEGIN_CYCLE
 ;;; This step will be the start of a cycle for the
 ;;; machine we are controlling. No detail will be
 ;;; given, as the machine is hypothetical.
 —————————————————————————————————————
 Output_1_On
 Output_18_On
 Output_5_On
 —————————————————————————————————————
 monitor (and Limit_Switch_C Limit_Switch_A Limit_Switch_B) goto Next

[3] MID_CYCLE
 ;;; The program for the hypothetical machine continues...
 —————————————————————————————————————
 Output_18_Off
 Output_15_On
 Output_5_Off
 —————————————————————————————————————
 delay 200 ms goto Next

[4] END_OF_CYCLE
 ;;; This is the last step of our machine’s cycle. Here,
 ;;; we will count the finished part just produced by
 ;;; adding one to Cycle_Ctr, as well as
 ;;; Lifetime_Cycle_Ctr. Then, we’ll test Cycle_Ctr to
 ;;; determine if more parts should be produced in this

Appendix A - Sample Programs A-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 ;;; lot (“if Cycle_Ctr >= 100 goto END_OF_BATCH”). If
 ;;; we have not yet made 100 parts, then the program
 ;;; returns to the beginning of the cycle.
 —————————————————————————————————————
 Output_15_Off
 Output_1_Off
 —————————————————————————————————————
 store Cycle_Ctr + 1 to Cycle_Ctr
 store Lifetime_Cycle_Ctr + 1 to Lifetime_Cycle_Ctr
 if Cycle_Ctr >=100 goto END_OF_BATCH
 goto BEGIN_CYCLE

[10] END_OF_BATCH
 ;;; Having made a batch of 100 parts, we will now wait
 ;;; until the operator of the machine removes the
 ;;; finished parts and restarts the machine.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 stop goto INITIALIZE

A-8
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Counters
[1] INITIALIZE
 ;;; This program illustrates the use of counters.
 ;;; Although any register may be used as a counter, the
 ;;; first 8 numeric registers may be configured to
 ;;; perform automatic counting of pulses appearing on
 ;;; any of the controller’s inputs. To do this, the
 ;;; counters must first be initialized with a Start
 ;;; Counter instruction.
 ;;;
 ;;; The program uses counters in a conveyor/palletizer
 ;;; application. Counter 1 counts items on a conveyor
 ;;; belt; when 10 items have gone by, we trigger a
 ;;; palletizing sequence (not shown here).
 ;;;
 ;;; NOTE: when a counter is initialized, we may specify
 ;;; inputs for counting up and down, as well as for
 ;;; resetting the counter to zero.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 start Counter_1 up (Item_Sense_Input) down (Manual_Down_Count_Input)
 reset (Manual_Count_Reset)
 goto Next

[2] WAIT_FOR_TEN
 ;;; In this step, we will start the conveyor by turning
 ;;; on output 1 (Conveyor_On), reset our counter to zero
 ;;; (via programmed instruction), and then wait for the
 ;;; counter to count ten items before jumping to the
 ;;; next step.
 —————————————————————————————————————
 Conveyor_On
 —————————————————————————————————————
 reset Counter_1
 if Counter_1 >=10 goto Next

[3] STOP_CONVEYOR
 ;;; Here, we have already sensed ten items on the
 ;;; conveyor, so we will stop the conveyor motor by
 ;;; turning output 1 off (Conveyor_Off), and then
 ;;; continue to our palletizing program (not shown here).
 —————————————————————————————————————
 Conveyor_Off
 —————————————————————————————————————
 goto PALLETIZE

Appendix A - Sample Programs A-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using Multi-Tasking
[1] INITIALIZE
 ;;; This program illustrates one of the uses of
 ;;; multi-tasking. As an example, we’ll use a program
 ;;; for an automatic riveting machine.
 ;;;
 ;;; On this machine, a vibratory feed system is used to
 ;;; feed rivets into a singulator to feed exactly one
 ;;; rivet into the machine at a time. At the same time,
 ;;; using a pick-and-place robot, we are feeding a new
 ;;; workpiece into the machine to be riveted. The machine
 ;;; has been designed to allow these two operations to
 ;;; occur simultaneously, so we will use two
 ;;; simultaneous, independent tasks to control them.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 goto Next

[2] START_CYCLE
 ;;; Here, we will just check to make sure the machine
 ;;; is not out of rivets, or out of workpieces, by
 ;;; checking two proximity sensors (Rivet_Supply and
 ;;; Parts_Supply) before proceeding.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor (and Rivet_Supply Parts_Supply) goto Next
 goto SHUT_DOWN

[3] START_TASKS
 ;;; In this step, we will start two separate programs
 ;;; by using the do instruction to commence multi-
 ;;; tasking. The first program, starting at the step
 ;;; labelled FEED_RIVET, feeds a rivet into the
 ;;; machine. The second task, starting at a step
 ;;; labelled FEED_PART, operates the pick-and-place
 ;;; robot to feed a new workpiece into the machine.
 ;;;
 ;;; Only after both of these tasks are done, does the
 ;;; main program continue on to the next step.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 do (FEED_RIVET FEED_PART) goto Next

[4] CHECK_BEFORE_TRIP
 ;;; In this step, we’ll perform a final check of the
 ;;; machine’s status before tripping the riveting press.
 ;;; Two sensors, on inputs Rivet_Loaded and Part_Loaded,
 ;;; are checked to insure the presence of both a rivet
 ;;; and a workpiece in the press.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor (and Rivet_Loaded Part_Loaded) goto Next
 goto SHUT_DOWN

A-10
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

[5] TRIP_PRESS
 ;;; In this step we fire the riveting press by turning
 ;;; on output 1, Rivet_Press_On.
 —————————————————————————————————————
 Rivet_Press_On
 —————————————————————————————————————
 delay 250 ms goto Next

[6] END_OF_CYCLE
 —————————————————————————————————————
 Rivet_Press_Off
 —————————————————————————————————————
 goto START_CYCLE

[10] FEED_RIVET
 ;;; This is the beginning of a short program (“task”) that
 ;;; feeds a rivet into the riveting head of our machine.
 ;;; This program operates a singulator, which separates a
 ;;; continuous line of rivets from a vibratory feed into
 ;;; an individual rivet to be fed. We start by operating
 ;;; a hold-back cylinder, actuated via a solenoid valve
 ;;; (output 2, Hold_Back_On)
 —————————————————————————————————————
 Hold_Back_On
 —————————————————————————————————————
 delay 250 ms goto Next

[11] DROP_RIVET
 ;;; The hold-back cylinder will retain all but the first
 ;;; rivet in line. Now, by actuating another valve, we
 ;;; will retract the drop cylinder, allowing the first
 ;;; rivet to fall into the riveting head.
 —————————————————————————————————————
 Drop_Rivet_On
 —————————————————————————————————————
 delay 350 ms goto Next

[12] RIVET_FED
 ;;; Now that the rivet has dropped, we can return both
 ;;; singulation cylinders to their original position.
 ;;; This is the end of the FEED_RIVET task, as indicated
 ;;; by the instruction “done”.
 —————————————————————————————————————
 Hold_Back_Off
 Drop_Rivet_Off
 —————————————————————————————————————
 done

[50] FEED_PART
 ;;; This is the beginning of a program to operate a
 ;;; pick-and-place robot which will feed a new workpiece
 ;;; into our riveter. In this step, we will operate a
 ;;; gripper to grasp a new workpiece.
 —————————————————————————————————————
 Gripper_On
 —————————————————————————————————————
 delay 200 ms goto Next

Using Multi-Tasking

Appendix A - Sample Programs A-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[51] EXTEND_PART
 ;;; In this step, we trigger a horizontal motion of the
 ;;; robot grasping the part. We’ll wait for a limit
 ;;; switch, Arm_Extended, to confirm the completion of
 ;;; this motion.
 —————————————————————————————————————
 Extend_Arm
 —————————————————————————————————————
 monitor Arm_Extended goto Next

[52] LOWER_PART
 ;;; In this step, we will lower the part into a holding
 ;;; fixture. Once again a limit switch, Part_Lowered,
 ;;; indicates completion of the motion.
 —————————————————————————————————————
 Lower_Arm
 —————————————————————————————————————
 monitor Part_Lowered goto Next

[53] RELEASE_PART
 ;;; Now, we can release the gripper, dropping the part
 ;;; into its fixture. Due to the design of our robot,
 ;;; we may simultaneously raise the gripper.
 —————————————————————————————————————
 Gripper_Off
 Raise_Arm
 —————————————————————————————————————
 monitor Part_In_Place goto Next

[54] RETRACT_ARM
 ;;; Having released the part, we may now retract the
 ;;; pick-and-place arm to its rest position.
 —————————————————————————————————————
 Retract
 —————————————————————————————————————
 done

[100] SHUT_DOWN
 ;;; A fault has been detected, so we'll turn off all
 ;;; outputs and stop the controller. First, we'll
 ;;; terminate multitasking by executing a cancel other
 ;;; tasks instruction.
 ;;;
 ;;; When the operator restarts the controller, the program
 ;;; will jump back to the beginning. Because we've ended
 ;;; multitasking, this will not cause recursion.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 cancel other tasks
 stop goto INITIALIZE

A-12
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Thumbwheels and Displays
[1] INITIALIZE
 ;;; This program illustrates the use of thumbwheels and
 ;;; numeric displays.
 ;;;
 ;;; Thumbwheels allow manual entry of numeric parameters,
 ;;; while displays allow numeric information to be viewed
 ;;; by the operator of a machine.
 ;;;
 ;;; This sample program uses two thumbwheel arrays and
 ;;; a numeric display to control a cut-off machine. A
 ;;; stepping motor is used to meter out a certain length
 ;;; of material, after which a cutter is triggered. We
 ;;; want the operator to be able to dial in the desired
 ;;; length of material, as well as the quantity of parts
 ;;; to be cut before shutting down.
 ;;;
 ;;; The first step sets up the stepping motor (Feed_Motor)
 ;;; with a profile instruction, and initializes the
 ;;; Part_Counter (a numeric register) to zero.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Feed_Motor (half) basespeed=100 maxspeed=7500 accel=420
 decel=420
 store 0 to Part_Counter
 goto Next

[2] FEED_MATERIAL
 ;;; The machine’s operator dials the desired material
 ;;; length into thumbwheel 1, but this length is expressed
 ;;; in inches. Since we know that the stepping motor must
 ;;; turn 50 steps in order to feed one inch of material,
 ;;; we will multiply this value by 50. The resulting
 ;;; value is temporarily stored in Travel, for use in the
 ;;; following turn motor instruction.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Material_Length * 50 to Travel
 turn Feed_Motor cw Travel steps
 monitor Feed_Motor:stopped goto Next

[3] CUT_OFF
 ;;; In this step, we will cut off the material fed in the
 ;;; previous step by actuating a cutter. A time delay is
 ;;; programmed which should be sufficient to allow the
 ;;; cutter to complete its travel.
 —————————————————————————————————————
 Cutter_On
 —————————————————————————————————————
 delay 500 ms goto Next

[4] RETRACT_CUTTER
 ;;; Now we will retract the cutter by turning off the
 ;;; output. At the same time, we will count the part just
 ;;; cut (by adding one into Part_Counter), and display the
 ;;; current count to the operator (store Part_Counter to
 ;;; Parts_Count_Display).
 ;;;
 ;;; This count is then compared with a value dialed into
 ;;; a second thumbwheel (Batch_Total) to determine if the

Appendix A - Sample Programs A-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 ;;; proper number of parts has been made. If so, we will
 ;;; shut down the machine (END_OF_BATCH), otherwise we’ll
 ;;; return to feed another part.
 —————————————————————————————————————
 Cutter_Off
 —————————————————————————————————————
 store Part_Counter + 1 to Part_Counter
 store Part_Counter to Parts_Count_Display
 if Part_Counter >=Batch_Total goto END_OF_BATCH
 goto FEED_MATERIAL

[5] END_OF_BATCH
 ;;; Now we have completed the desired number of parts; the
 ;;; stop instruction causes the controller to stop until
 ;;; the operator presses the START switch connected to the
 ;;; controller’s input 1.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 stop goto INITIALIZE

A-14
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Analog Inputs and Outputs
[1] SET_INITIAL_CONDITIONS
 ;;; This program demonstrates the use of analog I/O
 ;;; instructions, using two independent tasks.
 ;;;
 ;;; The first task controls a temperature by taking an
 ;;; analog output through a timed ramp. This ramp is
 ;;; generated by a series of programmed commands which
 ;;; determine the initial value, the rate of increase,
 ;;; and the terminal value.
 ;;;
 ;;; The other task continuously monitors a pressure
 ;;; transducer connected to an analog input. The input
 ;;; value is ranged into engineering units from 0 to 100
 ;;; PSIG, and is displayed on a numeric display. In
 ;;; addition, the peak pressure value is maintained and
 ;;; displayed on a second numeric display. If the pressure
 ;;; goes above a fixed limit (75 PSIG), the temperature
 ;;; control value is sent to zero, and the entire process
 ;;; is stopped.
 ;;;
 ;;; This step contains three instructions that perform
 ;;; certain initialization functions within the
 ;;; controller. The analog output, used to control the
 ;;; process temperature, is initially set to zero volts.
 ;;; Both the numeric register used to accumulate the peak
 ;;; pressure reading and the numeric display that displays
 ;;; the actual pressure reading are also initialized to
 ;;; zero. The last instruction in this step sends the
 ;;; controller to step 2.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 0 to Temp_Control
 store 0 to Peak_Value
 store 0 to Current_Pressure_Display
 goto Next

[2] START_TASKS
 ;;; This step begins multi-tasking and starts two tasks:
 ;;; TEMP_PROCESS and MONITOR_PRESSURE.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 do (TEMP_PROCESS MONITOR_PRESSURE) goto SET_INITIAL_CONDITIONS

[10] TEMP_PROCESS
 ;;; This task controls the ramping of the analog output
 ;;; (see the ramping sequence shown in the accompanying
 ;;; illustration). Storing 1000 to the register called
 ;;; Process_Temp sets the initial value at 1 volt. This
 ;;; value will be stored to the analog output controlling
 ;;; temperature, Temp_Control, and incremented in
 ;;; subsequent steps to create the desired ramp.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 1000 to Process_Temp
 goto Next

Appendix A - Sample Programs A-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Ramp Sequence Used to Generate Ramp

7.5 volts

5 volts

1 volt

0 volt
1 minute
to repeat

16 seconds
5 minutes 10 seconds

[11] BEGIN_ANALOG_RAMP
 ;;; This step creates the initial analog ramp. The
 ;;; controller updates the temperature control value
 ;;; by storing the Process_Temp setting to the analog
 ;;; output called Temp_Control.
 ;;;
 ;;; This step goes on to increase the Process_Temp
 ;;; setting via a store instruction which adds 25 to the
 ;;; register. This does not change the voltage at the
 ;;; analog output yet.
 ;;;
 ;;; The next instruction in this step tests the value in
 ;;; the register to determine if our ramp is complete,
 ;;; having reached a value of 5000 volts. If so, the
 ;;; program will proceed to the next step.
 ;;;
 ;;; Otherwise, the time delay instruction will ultimately
 ;;; time out. However, the destination of the time delay
 ;;; instruction is this same step, so the controller
 ;;; executes it as if it were a new step. This time the
 ;;; new, updated value in Process_Temp is stored to the
 ;;; analog output, resulting in an increase in voltage.
 ;;;
 ;;; Then as before the controller increments the value in
 ;;; Process_Temp and the time delay begins. This process
 ;;; continues, with the voltage increasing by 25 mv each
 ;;; 100 ms, until the if instruction is satisfied,
 ;;; indicating that the 5 volt level has been reached.
 ;;;
 ;;; Two factors dictate the slope of the ramp being
 ;;; generated; the time delay duration (which determines
 ;;; the update interval) and the amount added to the
 ;;; voltage value each time the step is re-executed. By
 ;;; modifying the instructions within this step, you can
 ;;; create ramps of various slopes.

A-16
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Process_Temp to Temp_Control
 store Process_Temp + 25 to Process_Temp
 if Process_Temp > 5000 goto Next
 delay 100 ms goto BEGIN_ANALOG_RAMP

[12] DELAY
 ;;; After the voltage of analog output Temp_Control has
 ;;; ramped from 1 to 5 volts, the step uses a delay
 ;;; instruction to maintain this level for a period of
 ;;; five minutes. Such an operation is sometimes called
 ;;; a soak interval.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 delay 5 min goto Next

[13] STEP_FUNCTION
 ;;; As shown in the ramp illustration, the program
 ;;; executes a step function which increases the voltage
 ;;; to a level of 7.5 volts for a period of ten seconds.
 ;;; The store instruction shown below sends the number
 ;;; 7500, representing 7.5 volts, to the analog output.
 ;;; The delay instruction generates the required ten
 ;;; second time delay.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 7500 to Temp_Control
 delay 10 sec goto Next

[14] TEMP_PROCESS_END
 ;;; This is the last step in the ramp generation. It
 ;;; completes the process by returning the analog output
 ;;; to a value of zero volts and, after a one minute time
 ;;; delay, returns to step TEMP_PROCESS.
 ;;;
 ;;; Note the absence of a “done” instruction. In this
 ;;; case, each task simply loops back upon itself,
 ;;; continuously executing its intended function.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 0 to Temp_Control
 delay 1 min goto TEMP_PROCESS

[100] MONITOR_PRESSURE
 ;;; This task operates in parallel with the ramping
 ;;; program. It continuously monitors a pressure
 ;;; transducer connected to analog input Transducer_Input.
 ;;; The current and peak pressures are displayed for the
 ;;; system’s operator, and the pressure is tested to
 ;;; insure that a predefined limit is never exceeded.
 ;;;
 ;;; The pressure transducer provides an output signal
 ;;; ranging from 0.5 to 5.5 volts in response to an
 ;;; applied pressure of 0 to 100 PSIG. The analog input
 ;;; reports this range as a number from 500 (0.5 V.) to
 ;;; 5500 (5.5 V.). The conversion math necessary to
 ;;; convert these values into units of PSIG is:

Using Analog Inputs and Outputs

Appendix A - Sample Programs A-17

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 ;;;
 ;;; Pressure_PSIG = (Transducer_Input - 500) / 50
 ;;;
 ;;; Two successive instructions are used to perform this
 ;;; math. The first instruction reads the current value
 ;;; of Transducer_Input, subtracts the offset of 500,
 ;;; and stores the result in register Intermediate_Val.
 ;;; The second instruction divides that result by 50, then
 ;;; stores the finished value in register Pressure_PSIG.
 ;;;
 ;;; Note that the intermediate value could have been
 ;;; stored in Pressure_PSIG, since it would have been
 ;;; immediately replaced with the final value.
 ;;;
 ;;; The third instruction updates the reading on the
 ;;; Current_Pressure_Display by storing our new pressure
 ;;; value to it.
 ;;;
 ;;; The “if” instruction will then test to see if the
 ;;; new pressure exceeds the Peak_Value we’ve previously
 ;;; stored. If so, the program will continue to the
 ;;; next step to store the new Peak_Value.
 ;;;
 ;;; Otherwise, the instruction “goto MONITOR_PRESSURE”
 ;;; will cause the current step to be re-executed.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Transducer_Input - 500 to Intermediate_Val
 store Intermediate_Val / 50 to Pressure_PSIG
 store Pressure_PSIG to Current_Pressure_Display
 if Pressure_PSIG > Peak_Value goto Next
 goto MONITOR_PRESSURE

[101] UPDATE_PEAK_VALUE
 ;;; If we’ve reached this step, the current pressure
 ;;; exceeds the previous peak reading stored in Peak_Value.
 ;;; Therefore, we will update Peak_Value by storing the
 ;;; current Pressure_PSIG to it, and also update the
 ;;; Peak_Pressure_Display with the same value.
 ;;;
 ;;; Each time a new peak pressure is sensed, it is also
 ;;; checked to determine if it has exceeded a maximum
 ;;; limit of 75 PSIG. If the pressure is over this limit,
 ;;; the controller jumps to step OVER_PRESSURE.
 ;;;
 ;;; WARNING: No single device, including a programmable
 ;;; controller, should be the sole device responsible
 ;;; for detecting a fault condition that could result
 ;;; in human injury or substantial economic damage.
 ;;; Proper design practice dictates the use of appropriate
 ;;; judgment in the design of backup safety systems.
 ;;; This is the responsibility of the machine designer.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Pressure_PSIG to Peak_Value
 store Peak_Value to Peak_Pressure_Display
 if Pressure_PSIG >=75 goto OVER_PRESSURE
 goto MONITOR_PRESSURE

A-18
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

WARNING! No single device, including a programmable controller, should be the sole device respon-
sible for detecting a fault condition that could result in human injury or substantial eco-
nomic damage. Proper design practice dictates the use of appropriate judgment in the
design of backup safety systems. This is the responsibility of the machine designer.

[250] OVER_PRESSURE
 ;;; This step cancels the other tasks and sets the
 ;;; temperature control to zero. The program then goes to
 ;;; the next step.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 cancel other tasks
 store 0 to Temp_Control
 goto Next

[251] PRESSURE_CHECK
 ;;; This step returns the controller to MONITOR_PRESSURE
 ;;; where the controller will continue to update the
 ;;; operator displays. The operator will then have to
 ;;; press a reset switch to return to the first step in
 ;;; the program and restart the sequence.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 goto MONITOR_PRESSURE

Programming Hints
Because of the goto MONITOR_PRESSURE instruction in step
MONITOR_PRESSURE, the display program in step continuously cycles and
constantly updates the pressure reading. Without this instruction, the pressure
value would only be displayed once, upon first entering the step and not be
updated as the pressure changed.

!

Using Analog Inputs and Outputs

Appendix A - Sample Programs A-19

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[1] INITIALIZE
 ;;; This program illustrates the use of the stepping motor
 ;;; instructions. In this step, we’ll execute a profile
 ;;; instruction to establish the initial motion parameters
 ;;; for the motor. A turn instruction may not be executed
 ;;; until this initial profile has been established.
 ;;;
 ;;; Next, a “search ccw and zero” instruction tells the
 ;;; motor to begin turning slowly in the counter-clockwise
 ;;; direction, searching for a “home” limit switch. This
 ;;; limit switch, connected to the stepping motor control
 ;;; board, establishes a reference point for future
 ;;; motions. The motor automatically stops when this
 ;;; home position has been sensed.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Motor_1 (half) basespeed=100 maxspeed=7500 accel=400 decel=400
 search ccw and zero Motor_1
 monitor Motor_1:stopped goto Next

[2] FIRST_POSITION
 ;;; In this step, we send the stepping motor to its first
 ;;; position, using an absolute turn motor instruction.
 ;;; This instruction sends the motor to a coordinate
 ;;; position based on the previously established “home”
 ;;; zero position.
 ;;; The “monitor motor#1:stopped” instruction will take
 ;;; the controller to the next step only when the stepping
 ;;; motor board has finished sending pulses to the motor.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 turn Motor_1 to 12500
 monitor Motor_1:stopped goto Next

[3] SECOND_POSITION
 ;;; This step sends the motor to a second position, still
 ;;; based on the originally-established home position.
 ;;;
 ;;; After the motor motion is complete, the controller
 ;;; returns to the previous step to repeat the motor’s
 ;;; two-position sequence.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 turn Motor_1 to 5000
 monitor Motor_1:stopped goto FIRST_POSITION

Using Stepping Motor Instructions

A-20
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using Servo Motor Instructions
Programming a Servo
[1] INITIALIZE
 ;;; This program illustrates the programming of SERVO
 ;;; instructions by setting up a simple back-and-forth
 ;;; servo motion.
 ;;;
 ;;; The speed of this motion is determined by a
 ;;; numeric register called Servo_Speed, allowing the
 ;;; speed to be tuned while the program is executing.
 ;;; An additional task will continuously update a
 ;;; numeric display with the instantaneous servo error,
 ;;; allowing us to view the servo’s accuracy.
 ;;;
 ;;; In this first step, an initial value is stored in
 ;;; the register Servo_Speed, to be used further on
 ;;; in the program. Also, a profile instruction
 ;;; establishes initial motion parameters, including
 ;;; a slow max_speed setting to be used for homing the
 ;;; servo.
 ;;;
 ;;; The search and zero instruction causes the servo to
 ;;; turn until a signal is received from a limit sensor,
 ;;; attached to the servo control module’s HOME input.
 ;;; Refer to the module’s Installation Guide for specific
 ;;; information. Finally, the monitor instruction senses
 ;;; when the servo has reached its home position and come
 ;;; to a stop.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 20000 to Servo_Speed
 profile Servo_1 servo at position maxspeed=1000 accel=250000 P=10 I=253
 D=237
 search and zero Servo_1
 monitor Servo_1:stopped goto Next

[2] START_TASKS
 ;;; This step starts two tasks running; one task will
 ;;; sequence the servo motions, while the other will
 ;;; monitor servo error.
 ;;;
 ;;; NOTE: Neither of the tasks contain Done instructions;
 ;;; rather, they each loop back on themselves in normal
 ;;; operation. Therefore, the destination of this
 ;;; instruction, “goto INITIALIZE”, will never be taken.
 ;;; It is there simply to satisfy the form of the Do
 ;;; instruction.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 do (MAIN_PROGRAM FAULT_MONITOR) goto INITIALIZE

[10] MAIN_PROGRAM
 ;;; This begins a simple 2-step task, sequencing the
 ;;; servo back-and-forth between two positions.
 ;;;
 ;;; Before commencing each new motion, we re-profile
 ;;; the servo to allow any changes which may have been
 ;;; made to the register Servo_Speed to take effect.
 ;;; This register may be modified using the CTCMON

Appendix A - Sample Programs A-21

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 ;;; controller monitoring utility, or by using an
 ;;; operator interface terminal or HMI software
 ;;; communicating with the controller. Any such change
 ;;; will not take effect, however, until the next cycle
 ;;; when the profile instruction is executed.
 ;;;
 ;;; The turn instruction commences a 100,000 step
 ;;; motion. The monitor instruction will sense when
 ;;; the motion is complete and send the controller to
 ;;; the next step of the program.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Servo_1 maxspeed=Servo_Speed
 turn Servo_1 cw 100000 steps
 monitor Servo_1:stopped goto Next

[11] SERVO_RETURN
 ;;; This step works similarly, except that the motion
 ;;; is initiated in the counter-clockwise direction.
 ;;;
 ;;; Once again, we allow any changes in the register
 ;;; Servo_Speed to take effect.
 ;;;
 ;;; When the motion is complete, this task will jump
 ;;; back to step MAIN_PROGRAM to begin another cycle.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Servo_1 maxspeed=Servo_Speed
 turn Servo_1 ccw 100000 steps
 monitor Servo_1:stopped goto MAIN_PROGRAM

[50] FAULT_MONITOR
 ;;; This task normally remains looping at this one
 ;;; step. The Store instruction updates a numeric
 ;;; display, named “Servo_Error_Disp”, with the
 ;;; instantaneous error of Servo_1. This error value
 ;;; is also tested and, if it is excessive, the task
 ;;; will jump to the step called SHUT_DOWN.
 ;;;
 ;;; The Store instruction would normally only execute
 ;;; once upon entering this step. To create a continuous
 ;;; update, the “goto FAULT_MONITOR” instruction causes
 ;;; the step to re-execute, thus updating the display
 ;;; again.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Servo_1:error to Servo_Error_Disp
 if Servo_1:error >=100 goto SHUT_DOWN
 goto FAULT_MONITOR

[51] SHUT_DOWN
 ;;; In this step, a servo error of 100 or greater has
 ;;; been sensed, so we shut down the servo and halt
 ;;; the controller.
 ;;;
 ;;; First, however, we must cancel the other task to
 ;;; avoid having it restart a new servo motion.
 ;;;

A-22
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 ;;; When the controller is restarted, the program will
 ;;; jump back to the step INITIALIZE. Note that,
 ;;; because we have cancelled multitasking at this point,
 ;;; this will not cause recursion.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 cancel other tasks
 stop (hard) Servo_1
 stop goto INITIALIZE

Velocity Mode Example
[1] INITIALIZE
 ;;; This program illustrates the control of a servo in
 ;;; velocity mode.
 ;;;
 ;;; The primary goal of this mode of operation is to
 ;;; control the servo speed through a long or continuous
 ;;; motion. Quickstep supports this mode with a
 ;;; continuous “turn” command, as well as the capability
 ;;; to modify servo parameters on-the-fly.
 ;;;
 ;;; In this initial step, we’ll set starting parameters
 ;;; for the servo using a Profile command, then search
 ;;; for a home reference position.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Servo_1 servo at position maxspeed=20000 accel=250000 P=10 I=253
 D=237
 search and zero Servo_1
 monitor Servo_1:stopped goto Next

[2] START_MOTION
 ;;; This step starts a continuous servo motion using
 ;;; a velocity-mode servo instruction:
 ;;;
 ;;; turn Servo_1 cw
 ;;;
 ;;; We will remain in this step until the servo reaches
 ;;; a position 25000 steps from its zero or home position.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 turn Servo_1 cw
 if Servo_1:position >=25000 goto Next

[3] SLOW_DOWN
 ;;; Having reached position 25000, we will now
 ;;; decelerate the servo to 10000 steps/sec by
 ;;; re-profiling.
 ;;;
 ;;; We then remain in this step until the servo
 ;;; reaches a position 75000 steps from its home
 ;;; position.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Servo_1 maxspeed=10000
 if Servo_1:position >=75000 goto Next

Using Servo Motor Instructions

Appendix A - Sample Programs A-23

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[4] SPEED_UP
 ;;; Now, we’ll accelerate the servo to a rate of
 ;;; 100000 steps/sec.
 ;;;
 ;;; We then remain in this step until the servo
 ;;; reaches a position 200000 steps from its zero or home
 ;;; position. Once this position has been attained,
 ;;; we’ll go on to the next step.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Servo_1 maxspeed=100000
 if Servo_1:position >=200000 goto Next

[5] OUTPUT_ON
 ;;; In this step we’ll cause some action to take place
 ;;; on our machine by turning on Output 1. We are not
 ;;; changing the servo speed at this point.
 ;;;
 ;;; This step illustrates how you can program various
 ;;; events at specific servo positions. Analog output
 ;;; voltages, secondary motor instructions, and many
 ;;; other types of events could be triggered at various
 ;;; points in the servo’s motion.
 ;;;
 ;;; Once the servo reaches a position 250,000 steps from
 ;;; home, our program continues at the following step.
 —————————————————————————————————————
 Output_1_On
 —————————————————————————————————————
 if Servo_1:position >=250000 goto Next

[6] ALL_DONE
 ;;; Having reached servo position 250000, we begin
 ;;; decelerating to a stop through the use of a soft
 ;;; stop instruction.
 ;;;
 ;;; The second stop instruction will stop the
 ;;; controller’s execution of the program, until the
 ;;; operator restarts it.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 stop (soft) Servo_1
 stop goto INITIALIZE

A-24
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using the Data Table
[1] INITIALIZE
 ;;; This program uses a DATA TABLE to store information
 ;;; for an iterative (repeating) program. The program
 ;;; controls a drilling machine, where the workpiece is
 ;;; held on an X-Y table allowing it to be automatically
 ;;; positioned.
 ;;;
 ;;; We wish to drill a number of holes in the workpiece,
 ;;; and have the speed of each move independently
 ;;; programmable. We also want a programmable delay
 ;;; after each drilling operation.
 ;;;
 ;;; To accomplish these goals, we’ll store the data for
 ;;; these holes, including speeds and delays, in a data
 ;;; table. This will result in a much shorter and simpler
 ;;; program, as well as keeping all of this data in one
 ;;; place.
 ;;;
 ;;; Each data table row will contain the data for one
 ;;; drilling operation, as follows:
 ;;; column 1 = X-axis position (motor 1)
 ;;; column 2 = Y-axis position (motor 2)
 ;;; column 3 = Time delay (1/100ths second)
 ;;; column 4 = Motor speed (steps/second)
 ;;;
 ;;; In this step, we point to the first row of the
 ;;; data table by storing 1 to the register named
 ;;; Data_Tbl_Ptr (register 126). We also set up the
 ;;; initial motion profile for each motor, and have
 ;;; both motors search for their home positions.
 ;;;
 ;;; Note that if the motors do not find home within
 ;;; 20 seconds, the delay instruction shuts the machine
 ;;; down automatically.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 1 to Data_Tbl_Ptr
 profile X_Axis (half) basespeed=100 maxspeed=2500 accel=400 decel=400
 profile Y_Axis (half) basespeed=100 maxspeed=2500 accel=400 decel=400
 search ccw and zero X_Axis
 search ccw and zero Y_Axis
 monitor (and X_Axis:stopped Y_Axis:stopped) goto Next
 delay 20 sec goto ALL_DONE

[2] NEW_POSITION
 ;;; This is the beginning of the drilling loop. In this
 ;;; step, we establish a profile for both motors, with
 ;;; their speeds based on column #4 of the Data Table.
 ;;;
 ;;; Then, we tell the motors to turn to the positions
 ;;; specified in columns 1 and 2 of the current row of
 ;;; the Data Table.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile X_Axis (half) basespeed=100 maxspeed=Col_4 accel=400 decel=400
 profile Y_Axis (half) basespeed=100 maxspeed=Col_4 accel=400 decel=400
 turn X_Axis to Col_1
 turn Y_Axis to Col_2
 monitor (and X_Axis:stopped Y_Axis:stopped) goto Next

Appendix A - Sample Programs A-25

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[3] DRILL_HOLE
 ;;; Here, we are at a new position to be drilled, so
 ;;; the drill is sent down by actuating an air cylinder,
 ;;; controlled by one of the controller’s digital outputs.
 —————————————————————————————————————
 Extend_Drill
 —————————————————————————————————————
 delay 3 sec goto Next

[4] RETRACT
 ;;; In this step, we retract the drill.
 ;;;
 ;;; We also add one to the register Data_Tbl_Ptr
 ;;; (register 126), so that we are pointing to the next
 ;;; row of the data table. This points to the next set
 ;;; of coordinates to be drilled.
 ;;;
 ;;; The If instruction below will test to determine if the
 ;;; last row has been encountered; if so, the program
 ;;; jumps out of its loop and stops.
 ;;;
 ;;; If the program has not encountered the last row of the
 ;;; Data Table, it returns to step NEW_POSITION to drill
 ;;; another hole. Note that the delay instruction in this
 ;;; step derives its value from column 3 of the data table.
 —————————————————————————————————————
 Retract_Drill
 —————————————————————————————————————
 delay Col_3 sec/100 goto NEW_POSITION
 store Data_Tbl_Ptr + 1 to Data_Tbl_Ptr
 if Data_Tbl_Ptr >=26 goto ALL_DONE

[10] ALL_DONE
 ;;; In this step, we have either completed a workpiece, or
 ;;; have shut down because the motors never found
 ;;; their home position. In case the motors never found
 ;;; home, we will execute a stop motor instruction for
 ;;; each motor.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 stop X_Axis
 stop Y_Axis
 stop goto INITIALIZE

Data in Data Table
Row Columns

1 2 3 4
1 100 2500 20 2000
2 100 2600 10 2000
3 200 2100 20 2000
4 200 2500 50 2000
5 200 2600 20 2000
6 200 3000 25 2000
7 375 1500 25 2000

A-26
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Row Columns
1 2 3 4

8 375 2500 25 2000
9 375 3500 25 2000
10 500 1500 20 2000
11 500 2500 20 2000
12 500 3500 20 2000
13 500 4500 10 2000
14 750 500 20 1000
15 750 750 20 1000
16 750 1000 20 1000
17 750 1250 50 1000
18 750 1500 20 1000
19 750 1750 20 1000
20 750 2000 20 1000
21 750 2250 20 1000
22 750 2500 20 1000
23 750 2750 20 1000
24 750 3000 20 1000
25 750 3250 20 1000

Using the Data Table

Appendix A - Sample Programs A-27

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using the Phantom Register
Using the Phantom Register to Create a Circular Buffer
[1] INITIALIZE
 ;;; This program demonstrates the use of the PHANTOM
 ;;; REGISTER to create a circular buffer. This circular
 ;;; buffer is used to store a continuous stream of data
 ;;; relating to a continuous flow of parts through a
 ;;; machine.
 ;;;
 ;;; The circular buffer consists of a series of numeric
 ;;; registers; this series must be long enough to
 ;;; accommodate the maximum possible number of parts
 ;;; within the machine at one time. Two additional
 ;;; registers are used as pointers. These pointers keep
 ;;; track of which register to use next (i.e.; the next
 ;;; empty register) and which register contains the oldest
 ;;; active data (i.e.; where to find the data applicable
 ;;; to the oldest part on the machine).
 ;;;
 ;;; Each time the data for a new part is stored in the
 ;;; next empty register the Next_Empty_Ptr is incremented
 ;;; to point to the following register. Because we do not
 ;;; have an infinite number of registers available, we
 ;;; must always test the pointer after incrementing it to
 ;;; make sure that it is not pointing to a register
 ;;; outside of the circular buffer. If it is, we set the
 ;;; pointer to point back at the beginning of the circular
 ;;; buffer, where we will then start overwriting old data.
 ;;; As long as we have made the circular buffer large
 ;;; enough, this will not be a problem, because this data
 ;;; will no longer be in use.
 ;;;
 ;;; The Oldest_Ptr is maintained so as to point to the
 ;;; register containing the data for the oldest part on
 ;;; the machine. Presumably, this is the data which will
 ;;; next be used by the process for which we have
 ;;; originally stored the data. When our process has made
 ;;; use of the data, it is no longer needed, and the
 ;;; Oldest_Ptr may be moved to point to the next
 ;;; register location. Once again, if the pointer has
 ;;; moved beyond the end of the circular buffer, we must
 ;;; set it to point back to the beginning of the buffer.
 ;;;
 ;;; In this manner, the two pointers chase each other
 ;;; around the circular buffer. A continuous flow of
 ;;; information is accommodated, and a variable number of
 ;;; data elements may be contained between the two
 ;;; pointers.
 ;;; In this first step, we will initialize both of the
 ;;; pointers to point to the beginning of the circular
 ;;; buffer. At this point, the buffer contains no data.
 ;;;
 ;;; register 10 = Bake_Time
 ;;; register 127 = Phantom_Ptr
 ;;; register 128 = Phantom_Reg
 ;;; registers 501 through 550 are used for the
 ;;; circular buffer.
 ;;; register 600 = Oldest_Ptr
 ;;; register 601 = Next_Empty_Ptr

A-28
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 501 to Oldest_Ptr
 store 501 to Next_Empty_Ptr
 goto Next

[2] START_TASKS
 ;;; In this step, we will start two separate tasks:
 ;;;
 ;;; The first task, called MEASURE, takes a
 ;;; measurement of new parts coming into the machine.
 ;;; Each measurement will be stored in the next empty
 ;;; location of the circular buffer.
 ;;;
 ;;; The second task, called PROCESS, bakes the part
 ;;; for a time duration proportionate to the
 ;;; measurement originally taken of that part. The
 ;;; measurement data will be drawn from the circular
 ;;; buffer location indicated by Oldest_Ptr.
 ;;;
 ;;; There may be a variable number of parts in transit
 ;;; between the Measure station and the Process
 ;;; station.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 do (MEASURE PROCESS) goto INITIALIZE

[10] MEASURE
 ;;; This is the beginning of the part measuring task.
 ;;;
 ;;; In this step, we’ll wait for a part to appear (as
 ;;; sensed by a limit switch), then proceed to the
 ;;; next step where the measurement will be taken.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor Part_In_Place goto Next

[11] STORE_DATA
 ;;; In this step, the measurement of the new part is
 ;;; stored in the next empty location of the
 ;;; circular buffer. We prepare for this by storing the
 ;;; number of the next empty register (Next_Empty_Ptr)
 ;;; to Phantom_Ptr. The measurement (Transducer) data is
 ;;; then stored into the phantom register, and lands in
 ;;; the next empty location of the circular buffer.
 ;;;
 ;;; We then must increment Next_Empty_Ptr to point to the
 ;;; next register, and test it to see if it has moved
 ;;; beyond the limits we have established for the
 ;;; circular buffer. If so, we’ll reset the pointer
 ;;; to point to register 501, which is the first
 ;;; register of the circular buffer.
 ;;;
 ;;; NOTE: In many applications, it would be advisable to
 ;;; test that the Next_Empty_Ptr never overruns the
 ;;; Oldest_Ptr. This would mean that the buffer has
 ;;; overflowed and data is being lost.

Using the Phantom Register

Appendix A - Sample Programs A-29

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Next_Empty_Ptr to Phantom_Ptr
 store Transducer to Phantom_Reg
 store Next_Empty_Ptr + 1 to Next_Empty_Ptr
 if Next_Empty_Ptr <=550 goto Next
 store 501 to Next_Empty_Ptr
 goto Next

[12] PART_GONE
 ;;; In this step, we’ll simply wait for the part to move
 ;;; out of the measurement station, at which time we can
 ;;; return to the beginning of this task to wait for
 ;;; another part.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor No_Part_In_Place goto MEASURE

[20] PROCESS
 ;;; This is the beginning of the task which controls
 ;;; the baking of the parts in the machine. In this
 ;;; step, we’ll wait for a part to enter the baking
 ;;; area, as sensed by a limit switch.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor Part_In_Bake goto Next

[21] BAKE_DATA
 ;;; Here, we’ll extract the data originally stored for
 ;;; the part now in the baking area.
 ;;;
 ;;; We have carefully maintained Oldest_Ptr, so we know
 ;;; that the part which has now entered the baking area
 ;;; is the part whose data is in the register being
 ;;; pointed to. To extract this data, we’ll store
 ;;; Oldest_Ptr into the phantom register pointer, then
 ;;; read the data itself from the phantom register
 ;;; (register 128). This data is stored temporarily in
 ;;; register Bake_Time, to be used in the next step.
 ;;;
 ;;; Having used this data, we must then adjust the
 ;;; Oldest_Ptr to point to the next location. As with
 ;;; the Next_Empty_Ptr, we must test Oldest_Ptr after we
 ;;; have incremented it to insure that it has not gone
 ;;; beyond the limits of our circular buffer. If it has,
 ;;; we’ll reset Oldest_Ptr to point to the beginning of
 ;;; the buffer (i.e.; register 501).
 ;;;
 ;;; NOTE: In some applications, it may be advisable to
 ;;; test the new value of Oldest_Ptr to insure that it
 ;;; never passes Next_Empty_Ptr. This would mean that
 ;;; one or more parts have been “lost” and the measurement
 ;;; data is now out of sync.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Oldest_Ptr to Phantom_Ptr
 store Phantom_Reg to Bake_Time

A-30
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 store Oldest_Ptr + 1 to Oldest_Ptr
 if Oldest_Ptr <=550 goto Next
 store 501 to Oldest_Ptr
 goto Next

[22] BAKE
 ;;; Here, we’ll turn on the heating elements, and wait for
 ;;; an amount of time proportionate to the data which we
 ;;; extracted in the previous step and stored in register
 ;;; Bake_Time. NOTE: the data is first ranged by division
 ;;; and addition; this just illustrates the implementation
 ;;; of a possible transfer function between measurement
 ;;; and bake duration.
 —————————————————————————————————————
 Bake_Part_On
 —————————————————————————————————————
 store Bake_Time / 55 to Bake_Time
 store Bake_Time + 12 to Bake_Time
 delay Bake_Time min goto Next

[23] AFTER_BAKE
 ;;; In this step, we’ll just wait for the part to
 ;;; clear the limit switch with which we originally
 ;;; sensed it.
 —————————————————————————————————————
 Bake_Part_Off
 —————————————————————————————————————
 monitor No_Part_In_Bake goto PROCESS

Using the Phantom Register to Access multiple I/O Points
[1] INITIALIZE_REGISTERS
 ;;; This program illustrates the use of the PHANTOM
 ;;; REGISTER to perform the same operation on ten
 ;;; different groups of I/O points, using a single copy
 ;;; of a program. These I/O points could relate to ten
 ;;; separate but identical workstations.
 ;;;
 ;;; The program controls the workstations via the phantom
 ;;; register, changing pointers to point to each
 ;;; successive workstation, and then repeating the cycle.
 ;;; We have created an arbitrary control program,
 ;;; consisting of:
 ;;;
 ;;; * Turning on two outputs
 ;;; * Waiting for a limit switch before proceeding
 ;;; * Turning off both outputs
 ;;; * Waiting for a second limit switch.
 ;;;
 ;;; Since this task accesses more than one I/O point
 ;;; during each cycle and there is only one set of pointer
 ;;; and phantom registers, we need to maintain a series of
 ;;; pointers in general-purpose numeric registers. Just
 ;;; prior to the required access to a given I/O point the
 ;;; program transfers the pointer value from the general-
 ;;; purpose register into the pointer register.
 ;;;
 ;;; This step stores initial pointer values in registers
 ;;; 10, 11, 12, and 13. The value being stored in register
 ;;; Output_A_Ptr, 1010, will point to output number 10

Using the Phantom Register

Appendix A - Sample Programs A-31

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 ;;; when this value is stored to the phantom register
 ;;; pointer. Similarly, the value 1020 (stored in
 ;;; Output_B_Ptr) will point to output number 20, the
 ;;; value 2010 (stored in Input_A_Ptr) will point to input
 ;;; number 10, and the value 2020 (stored in Input_B_Ptr)
 ;;; will point to input number 20.
 ;;;
 ;;; Pointer = Register 127
 ;;; Phantom = Register 128
 ;;; Output_A_Ptr = Register 10
 ;;; Output_B_Ptr = Register 11
 ;;; Input_A_Ptr = Register 12
 ;;; Input_B_Ptr = Register 13
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store 1010 to Output_A_Ptr
 store 1020 to Output_B_Ptr
 store 2010 to Input_A_Ptr
 store 2020 to Input_B_Ptr
 goto OUTPUTS_ON

[50] OUTPUTS_ON
 ;;; This step will turn on two outputs, then wait for
 ;;; a limit switch input, all using indirect references
 ;;; through the phantom register.
 ;;;
 ;;; The first instruction transfers Output_A_Ptr to the
 ;;; phantom register pointer. If this is the first time
 ;;; through the loop, this means the phantom register is
 ;;; now pointing to output number 10, since Output_A_Ptr
 ;;; was previously initialized to the value 1010. The
 ;;; second instruction then turns this output ON by
 ;;; storing the value 1 to the phantom register.
 ;;;
 ;;; The next two instructions work similarly, except that
 ;;; this time we will turn on output number 20, because
 ;;; Output_B_Ptr was initialized to the value 1020 above.
 ;;;
 ;;; The last two instructions use the phantom register to
 ;;; monitor a limit switch input. As before, we transfer
 ;;; the pointer value (Input_A_Ptr) to the phantom
 ;;; register pointer. Then, however, we’ll use an If
 ;;; instruction to test the phantom register. This
 ;;; actually will indirectly test the input being pointed
 ;;; to. The phantom register will read as 1 if the input
 ;;; has a closure on it, otherwise it will read as zero.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Output_A_Ptr to Pointer
 store 1 to Phantom
 store Output_B_Ptr to Pointer
 store 1 to Phantom
 store Input_A_Ptr to Pointer
 if Phantom=1 goto Next

[51] MONITOR_INPUT
 ;;; In this step, a series of instructions similar to the
 ;;; previous step turns off both outputs, using the same
 ;;; pointer values used to turn them on in the previous

A-32
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Using the Phantom Register
 ;;; step. The last two instructions monitor a different
 ;;; limit switch, as pointed to by Input_B_Ptr. When it is
 ;;; turned on, the program proceeds to the next step.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 store Output_A_Ptr to Pointer
 store 0 to Phantom
 store Output_B_Ptr to Pointer
 store 0 to Phantom
 store Input_B_Ptr to Pointer
 if Phantom=1 goto Next

[52] NEXT_OUTPUT
 ;;; Here we will adjust all the pointer values so they
 ;;; will point to the I/O points of the next workstation.
 ;;;
 ;;; First, however, we must test to see if we have
 ;;; completed the entire series of ten workstations. If
 ;;; so, we’ll return back to the initialization step to
 ;;; begin again.
 ;;;
 ;;; Otherwise, after pointing to the new I/O points, we’ll
 ;;; return to the beginning of our program loop, starting
 ;;; with step OUTPUTS_ON.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 if Output_A_Ptr >=1019 goto INITIALIZE_REGISTERS
 store Output_A_Ptr + 1 to Output_A_Ptr
 store Output_B_Ptr + 1 to Output_B_Ptr
 store Input_A_Ptr + 1 to Input_A_Ptr
 store Input_B_Ptr + 1 to Input_B_Ptr
 goto OUTPUTS_ON

Appendix A - Sample Programs A-33

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Using a Multi-station Indexing Table
[1] INITIALIZE_SYSTEM
 ;;; This program shows a multi-station rotary indexing
 ;;; table assembly machine. There are eight stations on
 ;;; a rotary index. Each station performs a specific
 ;;; function on a workpiece. The machine also tests each
 ;;; workpiece during certain critical points of the
 ;;; process. If a test fails, all further assembly on that
 ;;; workpiece ceases, resulting in it being off-loaded
 ;;; into the “bad” bin.
 ;;;
 ;;; The program tracks good parts/bad workpieces using a
 ;;; series of flags in a shift register. The flag’s
 ;;; status, either set or clear, represents a good or bad
 ;;; workpiece. As the table indexes workpieces from one
 ;;; station to the next, the Shift Flag instruction
 ;;; transfers the flag status to the next station on the
 ;;; table. The task that controls a station monitors its
 ;;; flag to determine if the part is good or not.
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 goto Next

[2] LAUNCH_TASKS
 ;;; This step starts start two tasks. MAIN_PROGRAM will
 ;;; start eight tasks and run the indexing table. The
 ;;; other task continuously monitors for fault conditions.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 do (MAIN_PROGRAM FAULT_MONITOR) goto LAUNCH_TASKS

[3] MAIN_PROGRAM
 ;;; Here, the position of the index table, controlled by
 ;;; the servo called Table, is synchronized by searching
 ;;; for a home reference position.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Table servo at position maxspeed=2000 accel=500000 P=50 I=30
 D=50
 search and zero Table
 monitor Table:stopped goto Next

[4] AWAIT_START
 ;;; After home position is established, the program waits
 ;;; for the operator to press the Start_Switch before
 ;;; proceeding.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor Start_Switch goto Next

[5] INDEX_TABLE
 ;;; The distance the table moves is defined by a register
 ;;; named Index. We’ll use this value in a relative
 ;;; clockwise Turn instruction to index the table.
 ;;;
 ;;; This step also shifts the flags so that, as the
 ;;; workpieces are indexed, any previously stored good-

A-34
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 ;;; part/bad-part information is also indexed to follow
 ;;; the associated workpiece.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 profile Table servo at position maxspeed=System_Speed accel=System_Accel
 turn Table cw Index steps
 shift S1_Part >> S8_Part
 monitor Table:stopped goto Next

[6] DO_STATIONS
 ;;; This step starts eight tasks. Each task controls one
 ;;; station on the table and performs an operation on the
 ;;; part.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 do (LOAD_PART FILL_PART FORM_PART TEST_PART WELD_COVER FINAL_TEST
 OFFLOAD_BAD OFFLOAD_GOOD) goto INDEX_TABLE

[10] LOAD_PART
 ;;; This step pushes a core part onto the table and
 ;;; monitors to see if the part is in position.
 —————————————————————————————————————
 Push_Part_On
 —————————————————————————————————————
 monitor Part_Positioned goto Next

[11] LOAD_PART_RETRACT
 ;;; Once the part is correctly in place, we retract the
 ;;; push arm. When the push arm hits a limit switch, we
 ;;; go to the next step.
 ;;; This step also sets the first flag in the shift
 ;;; register, indicating that a part is present.
 —————————————————————————————————————
 Retract_Pusher
 —————————————————————————————————————
 set S1_Part
 monitor Pusher_Retracted goto Next

[12] LOAD_PART_SUCCESS
 ;;; This is the end of the task controlling the first
 ;;; station.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[20] FILL_PART
 ;;; This step checks if there is part on the table. If the
 ;;; flag is set, it continues to the next step and
 ;;; performs the duties of this station. If it is clear,
 ;;; the task is complete for this cycle.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor S2_Part:set goto Next
 goto FILL_DONE

Using a Multi-station Indexing Table

Appendix A - Sample Programs A-35

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[21] FILL_PART_DROP
 ;;; This step opens the fill valve and waits for the scale
 ;;; to read full. If the part hasn’t filled within one
 ;;; second, it alerts the operator that the reservoir is
 ;;; empty.
 —————————————————————————————————————
 Fill_Open
 Alert_Operator_Off
 —————————————————————————————————————
 if Weigh_Scale >=Full_Weight goto Next
 delay 1 sec goto RESERVOIR_EMPTY

[22] FILL_PART_CLOSE
 ;;; This step closes the fill valve and waits for the gate
 ;;; to close.
 —————————————————————————————————————
 Fill_Closed
 —————————————————————————————————————
 monitor Gate_Closed goto FILL_DONE

[23] RESERVOIR_EMPTY
 ;;; This step alerts the operator that the hopper is empty.
 ;;; After 500 ms it returns to FILL_PART_DROP and tests
 ;;; the scale again.
 —————————————————————————————————————
 Alert_Operator_On
 Fill_Closed
 —————————————————————————————————————
 delay 500 ms goto FILL_PART_DROP

[24] FILL_DONE
 ;;; This is the end of the FILL_PART task.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[30] FORM_PART
 ;;; This step checks if there is part on the table. If the
 ;;; flag is set, it continues to the next step and
 ;;; performs the duties of this station. If it is clear,
 ;;; the task is complete for this cycle.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor S3_Part:set goto Next
 goto FORM_DONE

[31] FORM_PART_COMPRESS
 ;;; This step turns on an output and extends a cylinder to
 ;;; compress the part. When the cylinder hits a limit
 ;;; switch, we go to the next step.
 —————————————————————————————————————
 Compress
 —————————————————————————————————————
 monitor Part_Compressed goto Next

A-36
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

[32] FORM_PART_DECOMPRESS
 ;;; This step turns off the output and retracts the
 ;;; compression cylinder. When the cylinder hits a limit
 ;;; switch, we go to the next step.
 —————————————————————————————————————
 Compress_Up
 —————————————————————————————————————
 monitor Compress_Ret goto Next

[33] FORM_DONE
 ;;; This is the end of the FORM_PART task.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[40] TEST_PART
 ;;; This step checks if there is part on the table. If the
 ;;; flag is set, it continues to the next step and
 ;;; performs the duties of this station. If it is clear,
 ;;; the task is complete for this cycle.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor S4_Part:set goto Next
 goto TEST_DONE

[41] TEST_PART_MEASURE
 ;;; This step turns on an output that applies air pressure
 ;;; to the formed part. If a sensor detects a leak, the
 ;;; part fails.
 —————————————————————————————————————
 Pressure_On
 —————————————————————————————————————
 monitor Pressure_Leak goto FAILED_PRESSURE_TEST
 delay 300 ms goto Next

[42] TEST_PART_PASSED
 ;;; This step turns of the output for the pressure tester.
 —————————————————————————————————————
 Pressure_Off
 —————————————————————————————————————
 goto TEST_DONE

[43] FAILED_PRESSURE_TEST
 ;;; This step is only executed when part fails the
 ;;; pressure test. It also increments the Pressure_Fail
 ;;; counter so we may keep track of problem areas on the
 ;;; machine. We also clear the station flag so no further
 ;;; work will be performed on this part as it indexes
 ;;; through the rest of the machine.
 —————————————————————————————————————
 Pressure_Off
 —————————————————————————————————————
 store Pressure_Fail + 1 to Pressure_Fail
 clear S4_Part
 goto Next

Using a Multi-station Indexing Table

Appendix A - Sample Programs A-37

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

[44] TEST_DONE
 ;;; This is the end of the TEST_PART task.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[50] WELD_COVER
 ;;; This step checks if there is part on the table. If the
 ;;; flag is set, it continues to the next step and
 ;;; performs the duties of this station. If it is clear,
 ;;; the task is complete for this cycle.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor S5_Part:set goto Next
 goto WELD_DONE

[51] WELD_COVER_PLACE
 ;;; This step activates an output which places a cover
 ;;; onto the part. When the cover is in place, it
 ;;; proceeds to the next step.
 —————————————————————————————————————
 Place_Cover_On
 —————————————————————————————————————
 monitor Cover_Positioned goto Next

[52] WELD_COVER_RETRACT
 ;;; This step activates two outputs. The first retracts
 ;;; the mechanism that placed the cover on. The second
 ;;; activates the welder arm. The Boolean monitor
 ;;; instruction waits until the cover pusher has retracted
 ;;; and the weld arm is in position.
 —————————————————————————————————————
 Place_Cover_Off
 Weld_Arm_On
 —————————————————————————————————————
 monitor (and Place_Cover_Ret Weld_Arm_Positioned_On) goto Next

[53] WELD_COVER_WELD_PART
 ;;; This step turns on the output which controls the
 ;;; welder. After a 250 ms delay it proceeds to the next
 ;;; step.
 —————————————————————————————————————
 Welder_On
 —————————————————————————————————————
 delay 250 ms goto Next

[54] WELD_COVER_PULL_BACK
 ;;; This step turns off two outputs. One retracts the
 ;;; welding arm and the other turns the welder off. The
 ;;; monitor instruction waits until the weld arm has
 ;;; retracted before moving to the next step.
 —————————————————————————————————————
 Weld_Arm_Off
 Welder_Off
 —————————————————————————————————————
 monitor Weld_Arm_Positioned_Off goto Next

A-38
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

[55] WELD_DONE
 ;;; This is the end of the WELD_COVER task.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[60] FINAL_TEST
 ;;; This step checks if there is part on the table. If the
 ;;; flag is set, it continues to the next step and
 ;;; performs the duties of this station. If it is clear,
 ;;; the task is complete for this cycle.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor S6_Part:set goto Next
 goto FINAL_TEST_DONE

[61] FINAL_TEST_ENGAGE
 ;;; This step activates an output that clamps the part for
 ;;; an electrical test. A sensor indicates that the part
 ;;; is secure and proceeds to the next step.
 —————————————————————————————————————
 Clamp_Part
 —————————————————————————————————————
 monitor Part_Clamped_On goto Next

[62] FINAL_TEST_POWER_ON
 ;;; This step activates an electrical tester and checks to
 ;;; see if the part passes or fails. It also monitors the
 ;;; results of the test.
 —————————————————————————————————————
 Power_On
 —————————————————————————————————————
 monitor Good_Part goto Next
 monitor Bad_Part goto FINAL_TEST_FAILED

[63] FINAL_TEST_PASSED
 ;;; If the part has passed the electrical test, the task
 ;;; proceeds to this step. It turns off the output that
 ;;; controls the electrical power and the clamp. It also
 ;;; monitors a sensor to determine when the part is no
 ;;; longer clamped.
 —————————————————————————————————————
 Power_Off
 Unclamp_Part
 —————————————————————————————————————
 monitor Part_Clamped_Off goto FINAL_TEST_DONE

[64] FINAL_TEST_FAILED
 ;;; This step is only executed when a part fails the
 ;;; electrical test. It turns off both outputs, increments
 ;;; the counter for parts failing the electrical test, and
 ;;; clears the flag for this station, indicating that a
 ;;; bad part is present. When the sensor indicates the
 ;;; part is not longer clamped, the task concludes.
 —————————————————————————————————————
 Power_Off
 Unclamp_Part
 —————————————————————————————————————
 store Electrical_Fail + 1 to Electrical_Fail

Using a Multi-station Indexing Table

Appendix A - Sample Programs A-39

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

 clear S6_Part
 monitor Part_Clamped_Off goto FINAL_TEST_DONE

[65] FINAL_TEST_DONE
 ;;; This is the end of the FINAL_TEST task.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[70] OFFLOAD_BAD
 ;;; This step tests for a bad part on the table. If the
 ;;; flag corresponding to the part in this station is
 ;;; clear (indicating that it had failed a test), the part
 ;;; is pushed into the bad part bin.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor S7_Part:clear goto Next
 goto OFFLOAD_BAD_DONE

[71] OFFLOAD_BAD_PUSH
 ;;; This step activates an output which pushes the bad
 ;;; part off the table and monitors a sensor to make sure
 ;;; it is gone.
 —————————————————————————————————————
 Bad_Part_On
 —————————————————————————————————————
 monitor Bad_Part_Gone goto Next

[72] OFFLOAD_BAD_RETRACT
 ;;; This step turns off the output turned on in the
 ;;; previous step and monitors a limit switch to see that
 ;;; the push arm has retracted.
 —————————————————————————————————————
 Bad_Part_Off
 —————————————————————————————————————
 monitor Bad_Part_Pusher_Home goto Next

[73] OFFLOAD_BAD_DONE
 ;;; This is the end of the OFFLOAD_BAD task.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[80] OFFLOAD_GOOD
 ;;; This task pushes good parts into the good part bin.
 ;;; It checks to see if the flag is set, indicating the
 ;;; presence of a good part.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 monitor S8_Part:set goto Next
 goto OFFLOAD_GOOD_DONE

[81] OFFLOAD_GOOD_PUSH
 ;;; This step activates an output which pushes the good
 ;;; part off the table and monitors a sensor to make sure
 ;;; it is gone.

A-40
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

 —————————————————————————————————————
 Good_Part_On
 —————————————————————————————————————
 monitor Good_Part_Gone goto Next

[82] OFFLOAD_GOOD_RETRACT
 ;;; This step turns off the output turned on in the
 ;;; previous step and monitors a limit switch to see that
 ;;; the push arm has retracted.
 —————————————————————————————————————
 Good_Part_Off
 —————————————————————————————————————
 monitor Good_Part_Pusher_Home goto Next

[83] OFFLOAD_GOOD_DONE
 ;;; This is the end of the OFFLOAD_GOOD task.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 done

[100] FAULT_MONITOR
 ;;; If the servo motor error exceeds 2000 counts from its
 ;;; intended position or if the light-curtain is broken,
 ;;; the index table is shut down.
 —————————————————————————————————————
 <NO CHANGE IN DIGITAL OUTPUTS>
 —————————————————————————————————————
 if Table:error >=2000 goto Next
 if Table:error <=-2000 goto Next
 monitor Light_Curtain_Intrusion goto Next

[101] DISABLE_MACHINE
 —————————————————————————————————————
 <TURN OFF ALL DIGITAL OUTPUTS>
 —————————————————————————————————————
 cancel other tasks
 monitor Start_Switch goto INITIALIZE_SYSTEM

Using a Multi-station Indexing Table

Appendix B

Default Symbolic Names
Contents

Introduction B-2
Default Symbolic Names for Controller Resources B-3
Default Names for Registers B-3
Default Names for Counters B-4
Default Names for Data Table Columns B-4
Default Names for Flags B-5
Default Symbolic Names for Numbers B-6
Default Symbolic Names for Steps B-7
Default Symbolic Names for Inputs and Outputs B-8
Default Names for Inputs B-8
Default Names for Outputs B-8
Default Symbolic Names for Specialized I/O Devices B-9
Default Names for Displays B-9
Default Names for Thumbwheels B-9
Default Names for Analog Inputs B-9
Default Names for Digital Outputs B-9
Default Symbolic Names for Motion Control Devices B-10
Default Names for Stepping Motors B-10
Default Names for Servo Motors B-10
Default Symbolic Names for Special Registers B-11

B-2
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Introduction
The default symbolic names are located in a file called DEFAULTS.SYM. This
File is automatically placed in your QSWIN directory when you installed
Quickstep. DEFAULTS.SYM contains default symbolic names for controller
resources, analog and digital inputs/outputs, motion control devices, and some
special registers.

Appendix B - Default Symbolic Names B-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Controller Resources
Default Names for Registers

Register Number Symbolic Name
Register 10 reg_10
Register 11 reg_11
Register 12 reg_12
Register 13 reg_13
Register 14 reg_14
Register 15 reg_15
Register 16 reg_16
Register 17 reg_17
Register 18 reg_18
Register 19 reg_19
Register 20 reg_20
Register 501 reg_501
Register 502 reg_502
Register 503 reg_503
Register 504 reg_504
Register 505 reg_505
Register 506 reg_506
Register 507 reg_507
Register 508 reg_508
Register 509 reg_509
Register 510 reg_510
Register 511 reg_511
Register 512 reg_512
Register 513 reg_513
Register 514 reg_514
Register 515 reg_515
Register 516 reg_516
Register 517 reg_517
Register 518 reg_518
Register 519 reg_519
Register 520 reg_520
Register 990 reg_990

B-4
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Register Number Symbolic Name
Register 991 reg_991
Register 992 reg_992
Register 993 reg_993
Register 994 reg_994
Register 995 reg_995
Register 996 reg_996
Register 997 reg_997
Register 998 reg_998
Register 999 reg_999
Register 1000 reg_1000

Default Names for Counters
Counter Number Symbolic Name

Counter 1 ctr_1
Counter 2 ctr_2
Counter 3 ctr_3
Counter 4 ctr_4
Counter 5 ctr_5
Counter 6 ctr_6
Counter 7 ctr_7
Counter 8 ctr_8

Default Names for Data Table Columns
Data Table
Column Number Symbolic Name

Column 1 col_1
Column 2 col_2
Column 3 col_3
Column 4 col_4

Default Symbolic Names for Controller Resources

Appendix B - Default Symbolic Names B-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Names for Flags
Flag Number Symbolic Name

Flag 1 flag_1
Flag 2 flag_2
Flag 3 flag_3
Flag 4 flag_4
Flag 5 flag_5
Flag 6 flag_6
Flag 7 flag_7
Flag 8 flag_8

B-6
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Default Names for Numbers
Number Symbolic Name

0 clear
0 false
1 true
1 on

Default Symbolic Names for Numbers

Appendix B - Default Symbolic Names B-7

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Names for Steps
Undefined Step Symbolic Name

0 TOP

Default Symbolic Names for Steps

B-8
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Default Symbolic Names for Inputs and Outputs
Default Names for Inputs

Input Number Symbolic Name State
Input 1 input_1_off Closed (1)
Input 1 input_1_on Open (0)
Input 2 input_2_off Closed (1)
Input 2 input_2_on Open (0)
Input 3 input_3_off Closed (1)
Input 3 input_3_on Open (0)
Input 4 input_4_off Closed (1)
Input 4 input_4_on Open (0)
Input 5 input_5_off Closed (1)
Input 5 input_5_on Open (0)
Input 6 input_6_off Closed (1)
Input 6 input_6_on Open (0)
Input 7 input_7_off Closed (1)
Input 7 input_7_on Open (0)
Input 8 input_8_off Closed (1)
Input 8 input_8_on Open (0)

Default Names for Outputs
Output Number Symbolic Name State

Output 1 output_1_off Off (0)
Output 1 output_1_on On (1)
Output 2 output_2_off Off (0)
Output 2 output_2_on On (1)
Output 3 output_3_off Off (0)
Output 3 output_3_on On (1)
Output 4 output_4_off Off (0)
Output 4 output_4_on On (1)
Output 5 output_5_off Off (0)
Output 5 output_5_on On (1)
Output 6 output_6_off Off (0)
Output 6 output_6_on On (1)
Output 7 output_7_off Off (0)
Output 7 output_7_on On (1)
Output 8 output_8_off Off (0)
Output 8 output_8_on On (1)

Appendix B - Default Symbolic Names B-9

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Names for Displays
Display Number Symbolic Name

Display 1 display_1
Display 2 display_2
Display 3 display_3
Display 4 display_4

Default Names for Thumbwheels
Thumbwheel Number Symbolic Name

Thumbwheel 1 wheel_1
Thumbwheel 2 wheel_2
Thumbwheel 3 wheel_3
Thumbwheel 4 wheel_4

Default Names for Analog Inputs
Input Number Symbolic Name

Analog Input 1 ain_1
Analog Input 2 ain_2
Analog Input 3 ain_3
Analog Input 4 ain_4

Default Names for Digital Outputs
Output Number Symbolic Name

Analog Output 1 aout_1
Analog Output 2 aout_2
Analog Output 3 aout_3
Analog Output 4 aout_4

Default Symbolic Names for Specialized I/O Devices

B-10
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Default Symbolic Names for Motion Control Devices
Default Names for Stepping Motors

Stepping Motor Number Symbolic Name
Stepping Motor 1 motor_1
Stepping Motor 2 motor_2
Stepping Motor 3 motor_3
Stepping Motor 4 motor_4

Default Names for Servo Motors
Servo Motor Number Symbolic Name

Servo Motor 1 servo_1
Servo Motor 2 servo_2
Servo Motor 3 servo_3
Servo Motor 4 servo_4
Servo Motor 5 servo_5
Servo Motor 6 servo_6
Servo Motor 7 servo_7
Servo Motor 8 servo_8

Appendix B - Default Symbolic Names B-11

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Default Symbolic Names for Special Registers
Default Names for Special Registers

Register Number Symbolic Name
Register 127 resource_pointer
Register 128 resource_access
Register 131 dt_row_pointer
Register 132 dt_column_pointer
Register 1001 output_01
Register 1002 output_02
Register 1003 output_03
Register 1004 output_04
Register 1005 output_05
Register 1006 output_06
Register 1007 output_07
Register 1008 output_08
Register 1009 output_09
Register 1010 output_10
Register 1011 output_11
Register 1012 output_12
Register 1013 output_13
Register 1014 output_14
Register 1015 output_15
Register 1016 output_16
Register 2001 input_01
Register 2002 input_02
Register 2003 input_03
Register 2004 input_04
Register 2005 input_05
Register 2006 input_06
Register 2007 input_07
Register 2008 input_08
Register 2009 input_09
Register 2010 input_10
Register 2011 input_11
Register 2012 input_12
Register 2013 input_13

B-12
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Register Number Symbolic Name
Register 2014 input_14
Register 2015 input_15
Register 2016 input_16
Register 3001 disp_1
Register 3002 disp_2
Register 3003 disp_3
Register 3004 disp_4
Register 4001 disp8_1
Register 4002 disp8_2
Register 5001 high_speed_ctr_1
Register 5002 high_speed_ctr_2
Register 6001 decimal_point_disp_1
Register 6500 snapshot_control
Register 7001 2205_1_pos
Register 7002 2205_2_pos
Register 7003 2205_3_pos
Register 7004 2205_4_pos
Register 8001 analog_out_1
Register 8002 analog_out_2
Register 8003 analog_out_3
Register 8004 analog_out_4
Register 8005 analog_out_5
Register 8006 analog_out_6
Register 8007 analog_out_7
Register 8008 analog_out_8
Register 8501 analog_in_1
Register 8502 analog_in_2
Register 8503 analog_in_3
Register 8504 analog_in_4
Register 8505 analog_in_5
Register 8506 analog_in_6
Register 8507 analog_in_7
Register 8508 analog_in_8

Default Symbol Names for Special Registers

Appendix B - Default Symbolic Names B-13

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Register Number Symbolic Name
Register 9000 dt_access
Register 9001 analog_1_gain
Register 9002 analog_2_gain
Register 9003 analog_3_gain
Register 9004 analog_4_gain
Register 9501 analog_1_resolution
Register 9502 analog_2_resolution
Register 9503 analog_3_resolution
Register 9504 analog_4_resolution
Register 10001 group1_32_outs
Register 10002 group2_32_outs
Register 10003 group3_32_outs
Register 10004 group4_32_outs
Register 10101 group1_16_outs
Register 10102 group2_16_outs
Register 10103 group3_16_outs
Register 10104 group4_16_outs
Register 10201 group1_8_outs
Register 10202 group2_8_outs
Register 10203 group3_8_outs
Register 10204 group4_8_outs
Register 10205 group5_8_outs
Register 10206 group6_8_outs
Register 10207 group7_8_outs
Register 10208 group8_8_outs
Register 11001 group1_32_ins
Register 11002 group2_32_ins
Register 11003 group3_32_ins
Register 11004 group4_32_ins
Register 11101 group1_16_ins
Register 11102 group2_16_ins
Register 11103 group3_16_ins
Register 11104 group4_16_ins

B-14
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Register Number Symbolic Name
Register 11201 group1_8_ins
Register 11202 group2_8_ins
Register 11203 group3_8_ins
Register 11204 group4_8_ins
Register 11205 group5_8_ins
Register 11206 group6_8_ins
Register 11207 group7_8_ins
Register 11208 group8_8_ins
Register 12000 comm_status
Register 12001 dt_row_xmit
Register 12300 comm_mode_control
Register 12301 comm_baud_control
Register 12302 comm_inchar_count
Register 12303 comm_parse_control
Register 12304 incoming_message_parser
Register 12305 all_flags
Register 12306 comm_switch_control
Register 12307 comm_switch_delay
Register 12309 comm_switch_output
Register 12310 comm_format_control
Register 13002 millisecond_timer
Register 13003 ctc_rev
Register 13004 ctc_type
Register 13008 ctc_model
Register 13009 software_fault_output
Register 13010 analog_input_range
Register 13011 super_task
Register 13012 current_task_num
Register 14001 servo_1_position
Register 14002 servo_2_position
Register 14003 servo_3_position
Register 14004 servo_4_position
Register 14005 servo_5_position

Default Symbol Names for Special Registers

Appendix B - Default Symbolic Names B-15

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Register Number Symbolic Name
Register 14006 servo_6_position
Register 14007 servo_7_position
Register 14008 servo_8_position
Register 14101 servo_1_error
Register 14102 servo_2_error
Register 14103 servo_3_error
Register 14104 servo_4_error
Register 14105 servo_5_error
Register 14106 servo_6_error
Register 14107 servo_7_error
Register 14108 servo_8_error
Register 14201 servo_1_velocity
Register 14202 servo_2_velocity
Register 14203 servo_3_velocity
Register 14204 servo_4_velocity
Register 14205 servo_5_velocity
Register 14206 servo_6_velocity
Register 14207 servo_7_velocity
Register 14208 servo_8_velocity
Register 14301 servo_1_status
Register 14302 servo_2_status
Register 14303 servo_3_status
Register 14304 servo_4_status
Register 14305 servo_5_status
Register 14306 servo_6_status
Register 14307 servo_7_status
Register 14308 servo_8_status
Register 14501 servo_1_vel_feed_fwd
Register 14502 servo_2_vel_feed_fwd
Register 14503 servo_3_vel_feed_fwd
Register 14504 servo_4_vel_feed_fwd
Register 14505 servo_5_vel_feed_fwd
Register 14506 servo_6_vel_feed_fwd

B-16
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Register Number Symbolic Name
Register 14507 servo_7_vel_feed_fwd
Register 14508 servo_8_vel_feed_fwd
Register 14601 servo_1_decel
Register 14602 servo_2_decel
Register 14603 servo_3_decel
Register 14604 servo_4_decel
Register 14605 servo_5_decel
Register 14606 servo_6_decel
Register 14607 servo_7_decel
Register 14608 servo_8_decel
Register 14701 servo_1_inputs
Register 14702 servo_2_inputs
Register 14703 servo_3_inputs
Register 14704 servo_4_inputs
Register 14705 servo_5_inputs
Register 14706 servo_6_inputs
Register 14707 servo_7_inputs
Register 14708 servo_8_inputs
Register 14801 servo_1_accel_feed_fwd
Register 14802 servo_2_accel_feed_fwd
Register 14803 servo_3_accel_feed_fwd
Register 14804 servo_4_accel_feed_fwd
Register 14805 servo_5_accel_feed_fwd
Register 14806 servo_6_accel_feed_fwd
Register 14807 servo_7_accel_feed_fwd
Register 14808 servo_8_accel_feed_fwd

Default Symbol Names for Special Registers

Glossary

Glossary

Glossary-2 QuickstepTM Language and Programming Guide
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Controller Resources
CTC controllers provide the following internal controller resources you can
use when writing your Quickstep program: special and general purpose
numeric registers, counters, flags, and Data Table.

Counters
Counters allow the automatic counting of pulses from the controller’s inputs.
They work in the background and, once started, operate much like an
independent device within the controller.

Data Table
The Data Table is a two-dimensional array of numbers that can be stored in
the controller’s memory along with your Quickstep program. Storing this
information in the Data Table instead of within the body of a program makes
the program easier to maintain. The size of the Data Table depends on the
controller model.

Dedicated Inputs
Dedicated inputs are functions that can be programmed for certain controller
inputs. They are called Start, Stop, Reset, and Step.

Flags
Flags are memory elements within a controller that can be either set or clear
and are used to store yes/no types of information.

Multi-tasking
Multi-tasking programs in Quickstep execute multiple program modules
simultaneously. Each module can control a separate sequence of events.

Nesting
Any task in a multi-tasking program can contain other tasks inside of it.
Tasks contained within a task are called nested tasks. Nested tasks must
start and end during the execution of its parent task and follow the rules for
multiple tasks.

Numeric Registers
Numeric Registers are storage locations for numbers within your controller.
Special purpose registers perform specific functions, depending on the
register number and the value stored in it.

For the storage capacity of the general purpose registers and a list of the
special purpose registers and their functions, refer to Register Reference
Guide, and the installation and applications guide for your controller model.

Parameter Editor
Use the Parameter editor to specify the following information:
• The model of your controller
• The number of rows and columns in data table
• Which, if any, of the first four inputs are used for dedicated functions

Recursion
Recursion occurs when a task (or one of its nested subtasks) includes an
instruction to restart the same task. Eventually the controller has to keep
track of so many tasks that it crashes.

Registers (see Numeric Registers)

Glossary

Glossary Glossary-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Quickstep supports the following specialized input/output devices:
• Analog inputs and outputs
• Thumbwheel arrays
• Numeric displays

Specialized Motion Control Devices
Quickstep supports the following specialized motion control devices:
• Servo motors
• Stepping motors

Step
A Quickstep program uses steps to define each new state of a machine. A
complete program is composed of a series of steps executed in a defined
pattern. Steps usually contain the following two elements:
• An action that establishes the machine’s new state
• One or more instructions for leaving the step. These instructions

establish the duration of the state.

Symbol Browser
Use the Symbol Browser to specify symbolic names for steps, numeric
constants and the following controller resources and special devices:
• Analog inputs
• Analog outputs
• Counters
• Data Table columns
• Displays
• Flags
• Inputs
• Outputs
• Stepping motors and servos
• Numeric registers
• Thumbwheels

Symbolic Names
Symbolic names are names given to resources, such as registers, inputs, or
motors. Starting with Quickstep 2.0 you can give resources like these
symbolic names. Symbolic names can identify the function that the resource
performs. For example, a series of servo motors can be called Traverse,
Rotate, and Spindle, rather than Servo_1, Servo_2, and Servo_3.

Glossary Glossary-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Specialized I/O Devices

Index Index-1

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Index

Index

Index-2
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Index
Symbols
16-bit access to inputs 3-39
16-bit access to outputs 3-38
32-bit access to inputs 3-39
32-bit access to outputs 3-38
8-bit access to inputs 3-39
8-bit access to outputs 3-38

A
Absolute turn

servo motor 2-19
stepping motor 2-17

Accessing resources
using the phantom register 3-14

Analog inputs
accessing

using special purpose registers 3-30
accessing 16-bit input points 3-39
accessing 32-bit input points 3-39
accessing 8-bit input points 3-39
using analog input signals 3-28
using analog inputs

for a time delay 3-30
in a relational test 3-29

using with a controller 3-28
Analog outputs

accessing
using special purpose registers 3-30

accessing 16-bit output points 3-38
accessing 32-bit output points 3-38
accessing 8-bit output points 3-38
ramp generation A-14
using for control 3-29
using with a controller 3-28

Avoiding mechanical contention
using flags 3-8

B
Boolean operators

performing bit-wise operations
using Store instructions 2-7, 3-40

performing comparisons
using Monitor instructions 2-6

used in Monitor instructions 2-6
used in Store instructions 3-40
using bit-wise Boolean algebra 3-44

C
Cancel (all other tasks)

instruction description 2-12
Clear Flag

instruction description 2-9

Column pointer
using with the Data Table 3-26

Controller
dedicated inputs on 3-34
running several with multi-tasking 1-17
stopping 2-14

Count Down
instruction description 2-13

Count Up
instruction description 2-13

Counters
assigning inputs 3-3
counting down 2-13
counting speeds 3-4
counting up 2-13
debouncing 3-4
disabling 2-13
enabling 2-13
example using 3-4
high speed counting modules 3-37

frequency counting 3-37
programming 3-3
resetting 2-13
starting 2-13

D
Data Table 3-25

using row and column pointers 3-26
using the row pointer 3-26
using to specify X/Y coordinates 3-26
using with Quickstep 3-27

Dedicated inputs
home input 3-18, 3-24
on controller 3-34
reset input functions 3-35
start input functions 3-34
step input functions 3-35
stop input functions 3-34

Delay
instruction description 2-4

Disable (counter)
instruction description 2-13

Displays
accessing

using special purpose registers 3-32
sending numbers to eight-digit display

using special purpose registers 3-32
setting decimal point for 3-32
using with a controller 3-31

Do
instruction description 2-12

Done
instruction description 2-12

Index Index-3

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

E
Enable (counter)

instruction description 2-13
Error

sensing servo error 3-22
Establishing a home position

for servo motor 3-24
for stepping motor 2-16, 3-18

example 3-18
Examples

cycle counting A-6
establishing a home position

for a stepping motor 3-18
programming a simple machine A-3
showing a circular buffer A-27
showing multi-tasking A-9, A-14
using an indexing table A-33
using analog inputs A-14
using analog outputs A-14

ramp generation A-14
using counters 3-4, A-8
using flags 3-9
using servo motors A-20

in velocity mode A-22
using stepping motors A-19
using the Data Table

in an iterative program A-24
using the phantom register 3-15

accessing multiple I/O points A-30
creating a circular buffer A-27

using thumbwheels A-12

F
Fault monitoring

monitoring for multiple faults 1-5, 1-16
programming a step for 1-5
with multi-tasking 1-15

Flags
clearing 2-9, 3-6
example using 3-9
instructions 2-5, 2-9
monitoring 2-5, 3-6
rotating 2-9
rotating in a shift register 3-8
setting 2-9, 3-6
shifting 2-9, 3-6, 3-7
testing and setting 2-5, 3-9
using 3-6

to avoid mechanical contention 3-8
using as a shift register 3-6
using multiple shift registers 3-8

G
Goto

instruction description 2-11

H
High speed counting modules 3-37

frequency counting 3-37
Homing

a stepping motor 2-16

I
If

instruction description 2-10
Indirect addressing

using phantom register 3-14
Inputs

analog
access to 16-bit output points 3-39
access to 32-bit output points 3-39
access to 8-bit output points 3-39
using analog input data 3-28

digital
assigning to counters 3-3
monitoring 2-5
normally open/closed 3-3

Instruction samples using
numeric registers 3-12
phantom register 3-15

Instructions
affecting controller resources 1-6
Cancel (all other tasks) 2-12
Clear Flag 2-9
Count Down 2-13
Count Up 2-13
counter control 2-13
Delay 2-4
Disable (counter) 2-13
Do 2-12
Done 2-12
Enable (counter) 2-13
for flags 2-9
for servo motors 2-18
for stepping motors 2-15
Goto 2-11
If 2-10
importance of order 1-7
initiating events 1-6
list of 2-2
Monitor Boolean 2-6
Monitor Flag 2-5
Monitor Input 2-5

Index-4
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Monitor Motor 2-6
Monitor Servo 2-6
monitoring 2-5
multi-tasking 2-12
Profile Motor 2-15
Profile Servo 2-18
Reset (counter) 2-13
Rotate Flag 2-9
Search and Zero Motor 2-16
Search and Zero Servo 2-19
selective execution of 1-9
Set Flag 2-9
Shift Flag 2-9
Start Counter 2-13
Stop (controller) 2-14
Stop Motor 2-17
Stop Servo 2-20
Store 2-7
Test and Set Flag 2-5
Turn Motor 2-17
Turn Servo 2-19
Zero Motor 2-16
Zero Servo 2-19

M
Monitor

instructions 2-5
Monitor Boolean

instruction description 2-6
using with flags 3-6

Monitor Flag
instruction description 2-5

Monitor Input
instruction description 2-5

Monitor Motor
instruction description 2-6

Monitor Servo
instruction description 2-6

Motors
absolute turn 2-17
establishing home position 2-16
monitoring 2-6
profile instruction 2-15
programming hints for servo motors 3-21
programming hints for stepping motors 3-19
programming servo motion 3-20
relative turn 2-17
stepping motor position 3-18
stop instruction 2-17
turn instruction 2-17
using servo motors 3-20

Multi-tasking
Cancel instruction 2-12
definition 1-11
Do instruction 1-12, 2-12
Done instruction 1-13, 2-12
ending tasks 1-13
fault-monitoring 1-15
instructions 2-12
modular programs 1-14
monitoring for multiple faults 1-16
program format 1-12
recursion 1-13
running several controllers with 1-17
starting tasks 1-12

N
Nonvolatile registers 3-11
Numeric displays

accessing
using special purpose registers 3-32

sending numbers to eight-digit display
using special purpose registers 3-32

setting decimal point for 3-32
using with a controller 3-31

Numeric registers
description 3-11
nonvolatile 3-11
sample instructions using 3-12
using 3-11

O
Outputs

analog
access to 16-bit output points 3-38
access to 32-bit output points 3-38
access to 8-bit output points 3-38

turning on and off 1-4, 1-7
using analog outputs 3-29

P
Phantom register

accessing resources 3-14
definition 3-14
example 3-15
tracking multiple resources 3-16

Position
sensing servo position 3-22

Profile Motor
instruction description 2-15

Profile Servo
instruction description 2-18

Index

Index Index-5

Control Technology Corporation proprietary. Reproduction or distribution forbidden.

Programming
creating modular programs 1-14
format of multi-tasking program 1-12
servo motors 3-21
using the Data Table 3-27

Programming hints
for servo motors 3-21
for stepping motors 3-19
using analog inputs

for a time delay 3-30
in a relational test 3-29

Q
Quickstep

language definition 1-2

R
Recursion

avoiding 1-13
Registers

definition 3-11
phantom register 3-14

Relative turn
servo motor 2-20
stepping motor 2-17

Reset (counter)
instruction description 2-13

Reset input
dedicated input functions 3-35

Rotate Flag
instruction description 2-9

Row pointer
using in with the Data Table 3-26

S
Search and Zero Motor

instruction description 2-16
Search and Zero Servo

instruction description 2-19
Searching for home

stepping motor 2-16
Servo error 3-22

using servo error parameters 3-23
Servo motors 3-20

establishing a home position 3-24
instructions for 2-18
monitoring 2-6
profile instruction 2-18, 3-20
programming hints for servo motors 3-21
programming servo motion 3-20
search and zero instruction 2-19

searching for home 2-19
sensing servo error 3-22
sensing servo position 3-22
stop instruction 2-20
turn instruction 2-19
using servo error parameters 3-23
using servo position parameters 3-23
zero instruction 2-19

Servo position 3-22
using servo position parameters 3-23

Set Flag
instruction description 2-9

Shift Flag
instruction description 2-9

Shift registers
rotating flags in 3-8
using flags 3-6
using multiple 3-8

Special purpose registers
for accessing analog inputs 3-30
for accessing analog outputs 3-30
for displays

accessing 3-32
sending numbers to eight-digit display 3-32
setting a decimal point 3-32

Start Counter
instruction description 2-13

Start input
dedicated input functions 3-34

Step
definition 1-4
example of a simple step 1-4
how it works 1-4
importance of order in 1-7
initiating events 1-6
multiple instructions in 1-5
selective execution of instructions 1-9

Step input
dedicated input functions 3-35

Stepping motors
establishing a home position 2-16, 3-18
full- or half-step mode 3-17
instructions for 2-15
profile instruction 2-15
programming hints 3-19
reading position 3-18
stop instruction 2-17
turn instruction 2-17
typical sequence for controlling 3-17
using with Quickstep 3-17
velocity profile 2-16

Stop (controller)
instruction description 2-14

Index-6
Control Technology Corporation proprietary. Reproduction or distribution forbidden.

QuickstepTM Language and Programming Guide

Stop input
dedicated input functions 3-34

Stop Motor
instruction description 2-17

Stop Servo
instruction description 2-20

Stopping
the controller 2-14

Store
instruction description 2-7
performing bit-wise Boolean operations 3-40, 3-

44
Symbolic names

converting from Quickstep 1.6/1.7 2-3
default names in DEFAULTS.SYM B-2

T
Test and Set Flag

instruction description 2-5
Thumbwheels

prescaling information 3-31
uses for 3-31
using with a controller 3-31

Time delay instruction 2-4
Tracking multiple resources 3-16
Turn Motor

instruction description 2-17
Turn Servo

instruction description 2-19

V
Velocity profile

for a stepping motor 2-16
Velocity turn

servo motor 2-20

Z
Zero Motor

instruction description 2-16
Zero Servo

instruction description 2-19
Zeroing

servo motor 2-19
stepping motor 2-16

Index

