
© 2018 Control Technology Corp.

QuickBuilder™ Reference Guide

25 South Street
Hopkinton, MA 01748

Phone: 508.435.9595
Fax: 508.435.2373

Monday, March 5, 2018

Doc. No. 951-530020-010

QuickBuilder™ Reference Guide2

© 2018 Control Technology Corp.

Table of Contents

... 81 Chapter 1: QuickBuilder Overview
.. 9Target Systems

.. 11QuickBuilder projects

.. 11Resource Manager (RM)

.. 14SFC Window

.. 14Step Editor & Assistant

.. 15Task Editor

.. 19Translation
... 20Modes
... 21Target Platforms
... 22Program Download
... 22Reserved Words
.. 23Debugger Mode
... 24Watch Windows
... 24Online Variable Monitoring
... 27Online Status & Control Monitor/Debugger
... 29Breakpoints
... 31MSB Status/Control Monitor Fault Processing
... 33MSB Monitor
.. 37Project Manager
.. 37FTP Explorer
.. 39Global and Local Resources
.. 42Intelligent Prompting
.. 45Tech Tips

... 472 Chapter 2: Library Manager
.. 47Creating a Library

... 523 Chapter 3: QuickStep 4 (QS4)
.. 52QS4 SFC Graphical Constructs
... 53SFC Diagram
... 54QS4 Task Definition
... 54QS4 Event Definition
... 56QS4 Function Definition
... 56QS4 Step
... 57QS4 Goto
... 57QS4 Do Step
... 59QS4 Begin Step
... 59QS4 Decision Step
... 60QS4 Done Step
... 60QS4 'C' Step
... 61Motion Overview & Sequence Blocks
.. 65QS4 Resources
... 65Symbolic Names and Resources
... 66Resource Declarations
... 66Vector and Table Declarations (Arrays)
... 67Constants & Literals

3Contents

3

© 2018 Control Technology Corp.

... 69Indirect Variables

... 71Tasks and Steps
.. 72QS4 Functions and Expressions
... 72Expressions
... 73Numerical Functions
... 76String Functions
... 77Bit Functions
... 77Special Functions
.. 79QS4 System Variables
... 79$TASKTIMER
... 80$DINPUTS[]
... 80$DOUTPUTS[]
... 81$REGISTERS[]
... 81$TRIGGER
... 82$CBITS[]
... 82$CVARS[]
... 82$TASKPRIORITY
... 83$CURRENT_TASKPRIORITYLEVEL
... 84$TASKHANDLE
.. 84MSB System Variables
.. 86QS4 Statements
... 86QS4 Statement syntax
... 86QS4 Editor Color Codes
... 86Assignment (numeric)
... 87Assignment (string)
... 88Store
... 88Set
... 88Setbit, Clrbit
... 89Goto
... 89Call, Return
... 90If/Then/Else
... 92While
... 92Repeat/Until
... 93For
... 94Break
... 94Continue
... 95Delay
... 95Timeout
... 95When
... 96Enable, Disable (Event)
... 96Do
... 97Begin
... 97Cancel
... 98Done
... 98Start
... 98Stop
... 98Soft Counters
... 99Rotate, Shift Flags

... 1004 Chapter 4: Importing QuickStep 2/3 Projects
.. 101Datatables
.. 102Motion Control
.. 105Variables
.. 105Soft Counters
.. 106Reserved Words Error Search

QuickBuilder™ Reference Guide4

© 2018 Control Technology Corp.

.. 107Importing
... 1175 Chapter 5: BACnet/IP

.. 117BACnet Volatile Tables

.. 120BACnet System Variables

.. 123BACnet Explorer
... 1266 Chapter 6: EtherCAT Explorer

.. 126Status Window

.. 131Properties

.. 133Log Buffer Timings

.. 134User Options
... 1387 Chapter 7: Windows 7 and 10 Support
... 1418 Appendix A: Shortcut Keys
... 1429 Appendix B: Known Anomolies & Warnings
... 14410 Appendix C: Training

... 1471 Chapter 1: Introduction and Overview
.. 147Guide to Symbols
.. 148Brief Overview of Motion Control
... 148Servo Motor Applications
... 149Stepper Motor Applications
.. 150Brief Overview of M3-40/41 Motion Module Features
... 152M3-40 & M3-41/IncentiveECAT Motion Module Features
... 153Special M3-40 I/O Functions
... 153Drives & M3-41 IO
... 154QuickBuilder Motion Control Features
... 155IO Assignments

... 155IO Assignments - M3-40A

... 156IO Assignments - M3-40B

... 157IO Assignments - M3-40C

... 158IO Assignments - M3-41A

... 1592 Chapter 2: Motion Architecture
.. 160QuickBuilder
.. 161QuickStep
.. 162QuickMotion
... 163Adding Motion to the 5300/Incentive Application

... 164The Axis Module

... 165The Axis Object

... 166The Motion Sequence Block

.. 167Controlling Motion from QuickStep
... 167QS4 start Statement
... 167QS4 stop Statement
... 168Motion Architecture Summary Diagram

... 1713 Chapter 3: QuickMotion Axis Setup
.. 172Axis Properties
... 173Basic Tuning
... 174Fine Tuning
.. 175Tuning an axis (5300 M3-40 Only)

... 1774 Chapter 4: QuickMotion Programming
.. 177Operating Modes

5Contents

5

© 2018 Control Technology Corp.

.. 178Expressions

.. 179Utility Statements

.. 184Program Flow Statements

.. 188Set Statements

.. 191Common bits and variables

.. 194I/O Statements

.. 202Simple Motion

.. 212Gearing

.. 216Position Capture & Registration

.. 218S-Curve

.. 220Linear and Circular Interpolation (Vectors)
... 2215 Chapter 5: Camming and Data Tables

.. 224Loading Tables

.. 228Using Tables for Spline/CAM

.. 232Accessing Table Data
... 233Diagnosing Table Issues
.. 234Microsoft Excel as Table Data
.. 235Virtual Master
... 236Broadcasting (M3-40 only)
.. 237Segmented Moves and Examples
... 237Concept
... 238Commands
... 240Examples

... 2456 Chapter 6: Motion Variables
.. 245QuickMotion User-defined Variables
.. 247QuickMotion Pre-defined Variables
.. 277Host Register Access

... 2797 Chapter 7: Quickstep Support
.. 280Registers
.. 285Quickstep Variables
.. 288Input Mapping (M3-40 Only)

... 2898 Chapter 8: Fault Codes & MSB Debugging
.. 290Fault Codes
.. 294MSB Status/Control Monitor Fault Processing
.. 296MSB Monitor

... 2999 Appendix: Sample Code

... 30310 Appendix: Command Hyperlinks

... 3081 Chapter 1: Overview

... 3102 Chapter 2: The QB PID Object
.. 310Features
.. 311PID Loop Algorithm
.. 312PID Object Setup
.. 315PID Object Properties
.. 316Accessing Properties in QS4 code

... 3183 Appendix A: PID Loop Tuning

... 3211 Chapter 1: Overview

QuickBuilder™ Reference Guide6

© 2018 Control Technology Corp.

... 3222 Chapter 2: QuickScope and QuickView Features
.. 322Invoking QuickScope
.. 324Toolbar Summary
.. 324Status Bar Summary
.. 325Connecting to a controller
.. 326Setting up traces
.. 328Capturing Data
.. 329Evaluating Data
... 330Zoom
... 331A and B Cursors
.. 332Creating a PDF file
.. 333Creating an Excel Spreadsheet
.. 333QuickView
.. 335Multiple Windows

Index 336

QuickBuilder Reference Guide 7

Doc. No. 951-530020-010

QuickBuilder Reference Guide

Copyright © 2004 - 2018 Control Technology Corp. All Rights Reserved.

Control Technology Corp.
25 South Street
Hopkinton, MA 01748
Phone: 508.435.9595 • Fax 508.435.2373

Document No. 951-530020-010

 WARNING: Use of CTC Controllers and software is to be done only by experienced and qualified
personnel who are responsible for the application and use of control equipment like the CTC controllers.
These individuals must satisfy themselves that all necessary steps have been taken to assure that each
application and use meets all performance and safety requirements, including any applicable laws, regulations,
codes and/or standards. The information in this document is given as a general guide and all examples are for
illustrative purposes only and are not intended for use in the actual application of CTC product. CTC
products are not designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or liability, intellectual or
otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software described in this document is
provided under license agreement and may be used and copied only in accordance with the terms of the license
agreement. The information, drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means, electronic or mechanical, for
any purpose other than the purchaser’s personal use, without the express written consent of Control Technology
Corporation. Products that are referred to in this document may be either trademarks and/or registered trademarks
of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume
no responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been
caused directly or indirectly by this document.

The information in this document is current as of the following Hardware and Firmware revision levels. Some
features may not be supported in earlier revisions.

See www.ctc-control.com for the availability of firmware updates or contact CTC Technical Support.

http://www.ctc-control.com

8

QuickBuilder™ Reference Guide

Control Technology Corp.

1 Chapter 1: QuickBuilder Overview

Introduction to the QuickBuilder architecture and terminology

QuickBuilder is CTC’s innovative graphical development environment for the Incentive (5300 and embedded PC)
series of automation controllers. It combines all the aspects of an automation project into one easy to use desktop
application. This holistic approach to solving automation projects leads to quicker machine startups and simpler
ongoing maintenance.

QuickBuilder is based upon concepts from the IEC 61131 (1131) standard and CTC’s proven automation state
language called QuickStep. A QuickBuilder project contains all of the relevant information pertaining to a
particular automation application. The five main elements of the QuickBuilder desktop are:

1. The Resource Manager (RM), which allows the automation developer to define how and where data and
physical I/O exist in one or more CTC automation controllers. It features a hierarchical, resource
definition view that is used to describe the data used in the project, where the data exists (physical-to-
logical mapping) as well as "typing" information for the data.

2. The graphical Sequential Function Chart (SFC) that describes the overall logic flow of the project. The
SFC is composed of logically connected graphical constructs parented from tasks, functions and events,
as well as their underlying logic steps.

3. The QuickStep Editor is where logic is entered or edited within the steps of a QuickBuilder project. A
structured text language known as QuickStep4 (QS4) is used to program the logic of the steps that are
contained within a task function or event. The QS4 text can either be freely typed into the editor or
automatically entered into the editor from menu-driven pick lists.

4. The Project Manager provides a hierarchical view of the major program elements in a familiar tree
structure. Using the tree’s drill-down capability, even large multi-controller projects are easy to navigate.
 The project manager also organizes other useful information such as debug watch windows and project
documentation files.

5. The Library Manager allows individuals and teams to easily share and re-use common code elements.
Any portion of a project from a step, to a series of steps, to a task, to an entire page can be saved as a
library element.

Note: Appendix C contains training slides which can enhance your understanding of QuickBuilder. These
slides are only available when using the 'Help' menu option within QuickBuilder, not when this document
is a separate PDF.

QuickBuilder Reference Guide 9

Doc. No. 951-530020-010

1.1 Target Systems

QuickBuilder is used for program development on two main automation platforms that are fully compatible; the
CTC 5300 PLC controller and IncentivePLC/ECAT for embedded PC automation.

Series 5300 programmable automation controllers are self-contained compact control systems featuring high-
density I/O and an impressive suite of capabilities. With such powerful integrated capabilities as high-
performance motion control, strong communications and data handling provisions, and a high-level automation-
specific programming language, this series of product has become a favorite with fast-moving technology
companies for their automation projects.

These systems are programmed using the QuickBuilder programming environment, a comprehensive programming
tool encompassing programming, library creation, system configuration, debugging and monitoring. It fully

10

QuickBuilder™ Reference Guide

Control Technology Corp.

supports all QuickBuilder language capabilities, which include multitasking, asynchronous events, user functions
with parameters, and a modified state language structure that greatly improves program readability and
performance. The Series 5300 can operate standalone or in a distributed network, and is supported by a broad
range of over 40 I/O modules, allowing you to tailor your I/O complement to specific device requirements without
additional external hardware.

The 5300 Controller QuickBuilder run-time was ported to the Windows® PC where it is known as Incentive. A
virtual, soft 5300 PLC (Incentive) can now execute on multiple platforms allowing for versatility in your
automation decisions. The Incentive family of software components runs on your standard PC hardware and
creates a powerful and extensible control system for your automation project. The three primary members of this
family are:

• IncentivePLC – a fast, multitasking controller offering powerful constructs to quickly implement a control
program. IncentivePLC is programmed using the QuickBuilder programming environment, which can run either
locally or on a remote system.

• IncentiveAPI – this .Net Managed API of high-level automation functions lets your code, written in C#, C++ or
VB.Net, interact with your IncentivePLC control program or directly with external sensors and actuators via
IncentiveECAT, both locally and remotely over a network.

• IncentiveECAT – a software-based EtherCAT master controller, IncentiveECAT runs on one core of your
multicore PC platform and uses a standard Ethernet port to communicate with up to 64 servo axes, or a
combination of motion drives and I/O. Use it in conjunction with IncentiveAPI to give your own code easy
access to controlling the physical world, or add IncentivePLC to build a complete PC-based control system.

These modules run as processes on dedicated real-time CPU cores in parallel with normal Windows programs.
Unlike the 5300 controller, Incentive is dedicated to controlling all motion and IO over an EtherCAT network via
its EtherCAT Master, IncentiveECAT. IncentiveECAT originated from the 5300 M3-41 EtherCAT Master module,
ported to a PC environment. Since both the 5300 and Incentive originated from the same code base they are both
fully compatible and use the same QuickBuilder programming environment. QuickBuilder generates 'C' code when
translated, programs loaded on the PC are then compiled using Microsoft Visual Studio tools, while the 5300 uses
an embedded ARM gnu compiler, thus a single setting within your QuickBuilder program determines the target
system.

QuickBuilder Reference Guide 11

Doc. No. 951-530020-010

1.2 QuickBuilder projects

A QuickBuilder project is composed of:

1. Global and local definitions that specify symbolic representations of storage (“registers”) or physical
resources such as digital inputs, digital outputs or the like;

2. Global constant definitions that specify symbolic representations of a value that do not change during
program execution;

3. One or more controllers – each of which has one or more pages containing graphical diagrams that
define logic and multi-tasking relationships. These diagrams are parented from tasks, functions and
events and are programmed in QS4.

1.3 Resource Manager (RM)

All of the physical and logical attributes of the controller are contained in the Resource Manager (RM). Instead
of burying this important information within the Project Manager, QuickBuilder uses a dedicated window for
resource management. This not only provides a clearer view of the project, but it significantly speeds program
development. Using the menus and right click functionality, it’s easy to set up and configure controllers for the
application.

12

QuickBuilder™ Reference Guide

Control Technology Corp.

Multiple controller types are available. That selected is only for reference as each can be translated for the other's
platform. If only PC based solutions will be deployed it is recommended that the INCENTIVE-PC be selected.

Resources are added to a controller starting with the rack and then filling the rack with the proper IO modules.

QuickBuilder Reference Guide 13

Doc. No. 951-530020-010

Maximum capacities for the Resource Manager are:

Parameter Max capacity

Digital Inputs 1024

Digital Outputs 1024

Analog Inputs 256

Analog Outputs 256

PID loops 256

Modules per CPU 32

Racks per CPU 4

Active tasks (including Tasks, Functions and
Events)

96

Volatile integers 485

Volatile floats, strings and arrays:

Array cells holding integers or floats

Array cells holding strings

600

> 250,000

>40,000

14

QuickBuilder™ Reference Guide

Control Technology Corp.

Non-volatile integers 4000

Non-volatile floats, strings, and arrays1 100

 Non-volatile arrays are stored to NVRAM as part of the file system. It is suggested you use the save datatable
script commands for larger arrays and tables since each element or cell in an array is 256 Bytes. (a 10 x10 table
would occupy 25K of NVRAM space).

 Integers - 32 bit signed, Floats - float32 (32 bit single precision float) float64 (64 bit double precision), strings
223 bytes maximum.

1.4 SFC Window

The SFC Window is where the program development takes shape. Using flowcharting techniques, the major
application elements are arranged according to task. Under the tasks are steps that can easily be altered, moved,
cloned, or deleted. When a step is highlighted, it is instantly linked to the code window.

1.5 Step Editor & Assistant

Once a step is highlighted in the graphical SFC Window, the actual instructions and logic for that step can be
created and/or edited in the editing window. Here you have two options: For novice programmers there is an
auto Step Assistant Editor that walks the user through the command selection and completion. The resulting
code is automatically inserted into the left side code editor window. The Step Assistant Editor is typically not
shown in the default configuration and has be included for legacy users. A more powerful full screen editor is
available, detailed later in this manual.

http://www.ctc-control.com/customer/techinfo/technotes/TechNote19.pdf
http://www.ctc-control.com/customer/techinfo/technotes/TechNote19.pdf

QuickBuilder Reference Guide 15

Doc. No. 951-530020-010

 The Step Assistant Editor It may be opened using the View->Step Editor menu option. As an alternative
intellihelp is available which allows you to work solely in the text editor and use special key sequences to view
available commands, variables, etc. Reference the Intelligent Prompting section for further details.

 Refer to the 'Editor & Debugger Mode' section for enhanced editing features.

1.6 Task Editor

QuickBuilder consists of two editor modes, Project and Editor. Project mode is similar to the screen shown below
where the graphical flow chart representation is depicted, you can click on a step and then edit the code in the
window at the bottom of the screen.

16

QuickBuilder™ Reference Guide

Control Technology Corp.

The tab at the top of the flow chart window also shows Editor. Selecting that converts you to Editor mode.
Editor mode offers some very powerful features:

1. the ability to view the code from two different tasks at the same time;

2. view help by simply double clicking an instruction, in the help tab;

3. online monitoring of variables;

4. MSB online monitoring and debug.

Below shows the Editor with the 'Split' tab selected:

QuickBuilder Reference Guide 17

Doc. No. 951-530020-010

You can even add steps while in the Editor by issuing a right click in the Editor Step. Selecting ‘Add Step’ inserts
a new step below the step you have selected.

You can create code in the new step and rename it as desired.

18

QuickBuilder™ Reference Guide

Control Technology Corp.

Other useful features such as 'Find All References' allows you to find all references to the highlighted text.

The result is displayed in the console window below the editor. Double clicking on a line of the result will make
that step current an place your cursor within that area of the editor.

You can also use the Cntrl-F keyboard sequence to invoke the find form, further refining a search based on case,
local, global, etc.

QuickBuilder Reference Guide 19

Doc. No. 951-530020-010

1.7 Translation

After programs are created they must be translated. The translation generates the compiled 'C' code that is
downloaded to the controller for execution. All errors must be corrected prior to download. To translate a
program select the translate button:

A window will appear in the center of the screen listing any errors or none as shown below:

20

QuickBuilder™ Reference Guide

Control Technology Corp.

1.7.1 Modes

There are 5 translation modes available within QuickBuilder:

Legacy – The original translation mode used by older QuickBuilder programs, prior to 11/2010. This mode

generated ‘C’ code and interpreted Quickstep code. It is no longer supported and provided for legacy

applications that need to be built. It is recommended that all Legacy programs be built with ‘Optimized_debug’

for a significant performance improvement. Many new instructions are not supported in Legacy mode and an

error will be generated during translation.

Optimized_debug – The default QuickBuilder translation mode which generates full ‘C’ compiled code along with

debug information useful for breakpoints and monitoring program execution. Step instructions execute

sequentially as in a procedural program.

Optimized_no_debug – Same as “Optimized_debug” except the debug information has been removed in order to

make a smaller program image. Some large programs have problems fitting in the base RAMDISK size and need to

remove the debug information as a cost reduction versus expanding to a larger RAMDISK.

Optimized_Quickstep_debug – The default Quickstep Import translation mode (automatically set when imported).

 State programming where the assignment instructions are executed only on the first loop of the step and a branch

out of the step must be by a specified ‘goto’ instruction. Debug information is included in the program file image.

Optimized_Quickstep_no_debug – The same as “Optimized_Quickstep_debug” except the debug information has

been removed to reduce file storage requirements.

The desired translation mode is selected under the controller properties:

QuickBuilder Reference Guide 21

Doc. No. 951-530020-010

1.7.2 Target Platforms

Currently there are three possible target platforms available within QuickBuilder, each using a different
compiler setting.

legacy - This is for very old programs and not used anymore.

OS5_5 - This is for the 5300 Controller which is ARM based and uses the gnu 3.4 compiler.

PC_Realtime - This is for the Incentive embedded PC platform and used to compile programs for x86 processors
using the Microsoft Visual Studio Community compiler 2013 and greater.

22

QuickBuilder™ Reference Guide

Control Technology Corp.

1.7.3 Program Download

Once a program have been successfully translated it can be downloaded to the controller using the 'Publish and
Run All' button. The IP address provided in the properties section of the controller will be used as the
destination.

If more than one controller is listed all will be downloaded. If only one is desired, right click the controller and
select the 'Publish' option on the menu.

1.7.4 Reserved Words

When entering instructions or naming steps, within QuickBuilder, there are a number of reserved word tokens
which if used will generate a Translation error. The tokens currently are as follows:

QuickBuilder Reference Guide 23

Doc. No. 951-530020-010

Instructions:
 all begin break by
 call cancel clrbit clrebit continue scount const
 delay disable do done timeout
 else enable event
 for goto if next other
 repeat return
 set setbit setebit start stop store sync FG BG slewed
 tasks then to until when while with
 softstop hardstop maxspeed position up down cw ccw
 profile zero motion search and accel P I D servo at reset turn deadband of rotate shift

Functions:
 sin cos tan asin acos atan sinh cosh tanh atan2
 abs exp log log10 sqrt pow hypot
 ceil floor frac sign sign2 len
 min max fmod
 left right trim mid padl padr compare find
 bit addr isdone string
 _servoInfo _rol _ror

Constants:
false true FALSE TRUE on off ON OFF pi PI ms
BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11 BIT12 BIT13 BIT14 BIT15
BIT16 BIT17 BIT18 BIT19 BIT20 BIT21 BIT22 BIT23 BIT24 BIT25 BIT26 BIT27 BIT28 BIT29

BIT30 BIT31

Note: Each space is a separator between the unique words/tokens.

1.8 Debugger Mode

QuickBuilder has extensive debugging capabilities which include variable watch windows, program status
display, multiple task breakpoints, real-time variable value display by mouse over, and MSB instruction
monitoring.

24

QuickBuilder™ Reference Guide

Control Technology Corp.

1.8.1 Watch Windows

Watch Windows are created via the Project Manager and allow you to monitor variables or resources
with a simple drag and drop from the Resource Window. You can also write to any “writeable” resources,
view arrays, and do some simple data-logging. You can create as many Watch Windows as you like and
their configuration is saved as part of the project.

1.8.2 Online Variable Monitoring

QuickBuilder has the ability to view “online” values of any given resource using the Editor-Online feature. This
allows you to run your program on a controller and then simply hover your mouse over certain variables within
your program editor to determine their current values and type.

QuickBuilder Reference Guide 25

Doc. No. 951-530020-010

Once you are Online you will see the Editor highlighted in green.

26

QuickBuilder™ Reference Guide

Control Technology Corp.

This feature allows you to mouse over any resource and see its value. The value is shown within the curly
brackets {}. This also shows you details about the resource, such as type and location.

If you mouse over a resource while the Editor is not online you will still see the resource details, but the value
reports back as {?}. Below you can see the value of Pos2, which is a read/write float variable. This value is a
snapshot of the resource taken at the time you mouse over it. If you want to update it simply move the mouse
away and then back over the resource.

To exit online mode simple return to the resource menu and select Editor - offline. Translating a program will also
automatically cause the online mode to be disconnected. Note that it is not recommended that you modify source
code while you are online, but you are not prevented from doing so.

 The 'Editor Online/Offline' option will automatically be activated if the Status/Control window is open while in
the 'Editor Mode' or transitioned from 'Project' to 'Editor' mode.

QuickBuilder Reference Guide 27

Doc. No. 951-530020-010

1.8.3 Online Status & Control Monitor/Debugger

The "Status & Control Monitoring" window allows you to monitor the execution of all the tasks in a controller.
Additionally, if the program is translated and executed in 'optimize' mode, a source level debugger is available with
breakpoints, single stepping and the ability to monitor source code execution. The window is invoked from the
controller Resources panel using the Status/Control menu selection:

Selection of "Status/Control" causes the window to open and attempt a connection to the controller. Assuming a
controller is online then all the executing tasks and their state of execution will appear:

Note: If the window does not appear as above then the program is translated in legacy mode. In legacy mode
SStep, LStep, Global Off, and ClearSlct buttons will be disabled, the line number will not reflect actual SFC
execution, and the instruction line will not appear within 'State'.

28

QuickBuilder™ Reference Guide

Control Technology Corp.

The headers across the tops of the columns are:

Task - Up to 96 tasks can be run, 1 to 96 is listed. Double clicking the Task cell of an active task will activate
that task for direct control by the Execution Buttons at the bottom of the window. Up to 16 tasks can be
highlighted. Double click again to remove the highlight or click the 'ClearSlct' button to clear all highlighted.
Handle - Each task, function, or event is assigned a unique handle identifier upon startup of execution. The
'Handle' is used to control individual tasks. It is also referenced in QuickBuilder for task cancellation.
TFE - Task, Function, Event. The type of task and name of it appears here. If MODULE(??????) appears
then the task is being started and none has been assigned yet.
Step - Step name and current line execution number. The first number references the SFC line number as
viewed within the Project Editor. If the Full Editor is open then an /## will appear after the Project Editor line
number, which references the line within the Full Editor. Double clicking this cell, within the Full Editor, will
cause that source code to appear in the Editor with the line highlighted and also turn on line tracking during
single stepping, for this task. Line Tracking will cause the step that appears in the 'Step' column, and line in
the State column, to become current in the editor. During single & line stepping the source code will track
with the controller execution. Note that double clicking the column title 'Step' will disable line tracking. Also
clicking a different task Step will then cause that task to be in line tracking mode.
State - The current state of the task as well as the instruction being executed. Possible states are:

RUNNING - Executing normally.
STOPPED - Task temporarily stopped.
S_STEP - Stopped in single step mode.
S_RUN - Executing a single step.
L_STEP - Stopped in line step mode.
L_RUN - Executing a single line execution.
L_BREAK - Breakpoint has occurred.
HALTED - May be displayed at task start or while ending, task preparing to start or stop.

 An '*' will appear to the right of the 'State' if a breakpoint is active anywhere within the task. This is useful to
prevent random unused breakpoints from being left activated or if for some reason you loose sync with the
controller.

 The instruction line that appears within the State cell is what is about to be executed in Line Step mode and is
what was last executed in Single Step mode. Also in Single Step mode it is what is about to be executed for a
conditional test or loop instruction such as an 'if', 'while', 'do', etc. This is due to the fact that Single Step mode
maintains the same atomicity as a running program and yields as a normal program does, allowing other tasks to
run. Line Step is useful for more detailed debugging but does allow other tasks to run after each line execution,
which is not the same as a fully running task. This can result in slightly different results if the variable is shared
with other tasks.

The buttons across the bottom are used for task control. Double clicking the 'Task' column will highlight
individual rows/tasks. If highlighted then Run, Stop, SStep, and LStep will effect only those tasks. If none are
highlighted than all tasks are effected. Buttons are defined as:

Run - Run tasks normally, full speed.
Stop - Stop the task, temporarily.
Restart - Restart the program and begin execution.
SStep - Single step to the point where a program yields control to another task.
LStep - Step each individual instruction and yield task control after each execution (SStep is normal execution
where task execution is not yielded until the end of a step or the beginning of a conditional test or end of a
loop (while, do...)).
Global Off - This button displays the current mode of the SStep and LStep keys. The possibilities are 'Global
Off' and 'Global On'. When on all tasks may be stepped at once. Be careful as stepping all tasks, or any for
that matter, can cause damage to your equipment if not careful.
ClearSlct - Clear all selected (highlighted) tasks.

QuickBuilder Reference Guide 29

Doc. No. 951-530020-010

 Reference the Tasks and Steps section for information regarding Legacy and Optimized execution.

1.8.4 Breakpoints

 Breakpoints are only supported in controllers with the optimization level set to 'optimized'. Also it is
recommended that programs be translated and newly downloaded to ensure they are in sync. If you set your
project CRCMode property to 'common' instead of 'unique' then you will not have to download after translation
unless the project is actually different (controller must be initially downloaded with the 'common' project version).
 The debugger will check the CRC of the last translated project to that in the controller and if they do not match
you will be warned. As is the normal procedure with any debugging, be careful with breakpoints since once you
stop executing you will loose control of your equipment and depending upon its implementation damage or injury
could result.

The 'Editor' supports up to 16 source code level breakpoints per task. Breakpoints can be set on either a global
program or task basis. To activate the use of breakpoints simply view your program in the 'Editor' mode and open
a 'Status/Control' window (from the controller resource menu). The debug environment will automatically activate
online variable monitoring as well as breakpoint capabilities.

Below is a sample editor session monitoring the controller execution. Note the 'Editor' tab is green indicating
variable monitoring is also active:

There are no '*' next to the RUNNING status, thus indicating breakpoints are not active. We will now set a global
breakpoint in all tasks at line 17. Note that task 2 is currently displaying LINE 13/17. The 13 is the line when
referenced within the 'Project' view and line 17 is the current 'Editor' view. Since the controller is running full

30

QuickBuilder™ Reference Guide

Control Technology Corp.

speed we are only seeing a moment of execution. Upon setting a breakpoint the task will stop when it executes
that line within the step. To set a breakpoint double click to the left of line 17, in the gray column, a maroon bullet
and highlighted line will appear for each set:

When a breakpoint is set the round maroon indicator will stay in your program as long as you are in the Editor.
Also the list at the lower right will show all the breakpoints that are currently set. You can double click on any
breakpoint in the list to move to that location within your editor. The combo box that says 'Controller' lists the
currently active controller. You can open another Status/Controller window and by selecting different controllers
in the combo box you can interact with both.

If you reference task 02 in the Status/Control window you'll see the current status is now L_BREAK. This means
the task has stopped running and has hit a breakpoint. The instruction shown in the state window was about to
execute. You may either click the RUN button to continue to the next breakpoint or click LStep to single step to
the next line.

To clear a breakpoint simply double click the round maroon indicator and it will be removed, alternately click the
'Clear All Breakpoints' button if you wish to clear all in the controller. You may also set breakpoints for individual
tasks by highlighting those tasks in the Status/Control window and then setting a breakpoint. The breakpoint
will only be active on the tasks highlighted. Note that if you clear breakpoints, they are cleared for that program
location on all tasks.

 Up to 16 global breakpoints are allowed, or 16 different one's per task. Breakpoints are stored on a task basis
thus global breakpoints are all tasks and each counts as one.

QuickBuilder Reference Guide 31

Doc. No. 951-530020-010

 Double clicking on an item in the 'Step' column will make that line current in the source editor and also enable
line tracking for that Handle task. the "Line Tracking Handle" text box will contain the task handle of the active
task with tracking enabled.

1.8.5 MSB Status/Control Monitor Fault Processing

There are a number of features within QuickBuilder to enable the debugging of QuickMotion MSB's. This can be
either during normal operation or should a fault occur. A fault is indicate by a flashing FLT LED on the controller
CPU. To observe a QuickMotion fault the Status/Control monitor can be viewed:

Once the Status/Control window appears observe and click the AFS text. Note that each character represents an
axis, with the first on the far left. In the example below a 0 means the axis is OK, F that there is a fault. Below
shows a fault on axis 1 since it is 'F'.

32

QuickBuilder™ Reference Guide

Control Technology Corp.

Once clicked detailed information about the fault will be shown, if available:

Note that the error occurred at line 6 of the source code of the FrontXCamControl MSB. In referencing that MSB
we can see the line listed, 'table 1 loadseries ram foo' as being the problem. In this case there was no camtable209
file present within the controller flash disk.:

QuickBuilder Reference Guide 33

Doc. No. 951-530020-010

1.8.6 MSB Monitor

QuickMotion MSB blocks may be monitored the same as regular steps. Since a single MSB can be run by more
than one axis, the default axis to request information must be selected while in Editor Mode from the MSB
Monitor window:

.

Once online the IP Address will be filled out with that to which you are connected and the MSB Axis pull down
list will contain all available axis. That which is seelcted is what will be active for mouse hover data monitoring.
Clicking the 'enable MSB Monitoring' check box will cause the axis to be periodically scanned and both position
and MSB execution information shown. Double-clicking on the MSB instruction information will bring you to
that line of code in the Editor.

34

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickBuilder offers a MSB Monitor when online in the Editor mode.

This monitor periodically (about every second) refreshes axis information for display. Current fpos, mpos,
vel, tpos and perr are available as well as the instruction and state of MSB's that are executing. A pull
down combo box lists all available axis, that selected is what will be automatically refreshed.

If the axis is faulted, using the example from the 'MSB Status/Control Monitor Fault Processing' section,
the following will appear:

QuickBuilder Reference Guide 35

Doc. No. 951-530020-010

 Note that the 'Enable MSB Monitoring' check box must be checked for monitoring to be active. Also the
Editor tab should be green to indicate online debug mode.

 Double clicking on the MSB line appearing in the list box will automatically make that code and line current in
the Editor.

In situations where a fault had not occurred multiple MSB's would appear executing, as well as their line number
and axis motion status:

36

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickBuilder Reference Guide 37

Doc. No. 951-530020-010

1.9 Project Manager

The Project Manager provides a hierarchical view of the major program elements in a familiar tree structure. Using
the tree’s drill-down capability, even large multi-controller projects are easy to navigate. At the top of the tree are
the controllers used in the project. The program for each controller is built on logical pages. The page concept
offers a convenient way to logically break up the program. A controller can have as many pages as desired.
Clicking on a page activates it in the graphical SFC window. The pages contain the flowchart view of the
application, including all of the tasks, events, and functions used. In addition to Controller pages, there is a
scratchpad area that is not associated with any particular controller, but rather can be used in developing
modules that might be used in multiple places.

1.10 FTP Explorer

The FTP Explorer allows you to organize the projects that are stored in your controller. It also allows you to set
up which project will run when the controller is initially powered up. FTP Explorer can be accessed by right-
clicking on the controller as shown.

38

QuickBuilder™ Reference Guide

Control Technology Corp.

FTP File Manager:

QuickBuilder Reference Guide 39

Doc. No. 951-530020-010

1.11 Global and Local Resources

Global and Local resources are defined and grouped in a tree structure. Global resources are shared by all QS4
tasks, events, and functions (and in the future, all of 1131) – Local resources are created and used on a per-QS4
task/event/function basis.

Logical resources are what used to be called registers, except they are no longer numbered and can take on
multiple types depending on their current assigned value (Boolean, integer, string and double-precision floating-
point).

Variables (Volatile & Non-Volatile)
Data Types:
· 32-bit Integer (“int”)
· 32-bit Single Precision Floating Point ("float32")
· 64-bit Double Precision Floating Point (“float64”)
· String (“string”)223-byte maximum length
· Boolean (“boolean”)
· Any (“any”)

Storage Types:
· Scalar (“scalar”) - Holds a single value
· One dimensional array (“vector”)
· Two dimensional array (“table”)

40

QuickBuilder™ Reference Guide

Control Technology Corp.

 QS2 Users: Arrays are used in place data tables. They are much more powerful then data tables also since
two-dimensional arrays allow the use of multiple variable types.

 Variable names are case sensitive. Spaces and special characters are not allowed. You may find it useful
to routinely use lower-case characters when writing your program, because reserved system variables are
typically upper-case and it will help differentiate them.

Physical resources represent controller physical entities which usually connect in some way to the outside world,
such as inputs, outputs and the like.

QuickBuilder Reference Guide 41

Doc. No. 951-530020-010

For example:

This example shows four resources defined: two logical and two physical.

The first logical resource, MyVar1 is defined as a simple volatile Variable. The second, MyVar2 is defined as a
non-volatile NVariable.

The first physical resource, Out1, is defined as a digital output and is assigned physically to the first rack’s (R3-
02A) module (M3-18A) and the first output on the module. The second physical resource, Out2 , is defined as
another digital output and is assigned physically to the first rack’s (R3-02A) module (M3-18A) and the second
output on the module.

42

QuickBuilder™ Reference Guide

Control Technology Corp.

Physical reconfiguration can be performed at any time by context (right-mouse click) menu:

1.12 Intelligent Prompting

While in the editor window certain key sequences can be used to help remember available commands, defined

variables, functions, axis, etc.

STEP Intelligent Prompting Editor Keys:

Summary:

?. – Display available commands.

ain. – Display available analog inputs.

aout. – Display available analog outputs.

axis. – Display available motion axis.

din. – Display available digital inputs.

dout. – Display available digital outputs.axis. – Display available motion axis.

“selected axis”. – Display motion variables and property for specific axis.

func. – Display available function calls.

evt. – Display available events.

msb. – Display available MSB blocks.

QuickBuilder Reference Guide 43

Doc. No. 951-530020-010

nvar. – Display defined non-volatile variables

pid. – Display available PID definition blocks.

step. – Display available steps.

task. – Display available tasks.

var. – Display defined volatile variables

xvar. - Display defined xvar variables (locals)

?. – Display available commands

Note: All items enclosed in < > must be replaced by valid references.

axis. – Display available motion axis

“selected axis”. – When axis. is satisfied the resulting axis name may be used to reference all created MSB

variables as well as axis properties. For example if the axis name was ‘actuator’ then actuator. would cause a

prompt with MSB variables and axis properties.

44

QuickBuilder™ Reference Guide

Control Technology Corp.

func. – Display available function calls.

evt. – Display available events.

msb. – Display available MSB blocks

nvar. – Display defined non-volatile variables

pid. – Display available PID definition blocks.

QuickBuilder Reference Guide 45

Doc. No. 951-530020-010

1.13 Tech Tips

Numerous programming tips are available online at Control Technology's web site, TechTips.

A knowledge base of sample code is also available.

http://www.ctc-control.com/index.php?option=com_content&view=article&id=202&Itemid=167
http://www.ctc-control.com/index.php?option=com_content&view=article&id=204&Itemid=169

46

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickBuilder Reference Guide 47

Doc. No. 951-530020-010

2 Chapter 2: Library Manager

QuickBuilder’s powerful Library Manager allows individuals and teams to easily share and re-use common code
elements. Any portion of a project from a step, to a series of steps, to a task, to an entire page can be saved as a
library element. Library elements are stored in a folder that can be located on the local PC or shared server.
Multiple libraries can be open simultaneously.

• Stores and retrieves snippets of logic
• Multiple libraries are supported.
• Encourages code re-use
• Minimizes debug time when proven logic is inserted into a new project
• Standardize Projects and Programs
• Corporate (networked) Libraries as well as User Libraries are supported

2.1 Creating a Library

In order to create a library simply select the 'Library' tab:

48

QuickBuilder™ Reference Guide

Control Technology Corp.

From the menu select the 'New' item:

A file dialog box will open, enter the name for the library and modify the path as needed if it is to be stored
elsewhere:

QuickBuilder Reference Guide 49

Doc. No. 951-530020-010

Select the blocks to store in the library by holding the 'CNTL' key down and clicking the steps. Below shows 3
steps being selected.

50

QuickBuilder™ Reference Guide

Control Technology Corp.

Click the Add icon to store the selected items as a Library entry. Each time Add is selected a new entry will be
made.

Edit the 'New Item' name to that you wish to call the Library entry:

QuickBuilder Reference Guide 51

Doc. No. 951-530020-010

Below shows the new item named:

In order to use the item from the library simply select it and drag and drop it to the flowchart area.

52

QuickBuilder™ Reference Guide

Control Technology Corp.

3 Chapter 3: QuickStep 4 (QS4)

QuickStep 4 is CTC’s next-generation automation programming language.

QuickStep 4 is the next-generation programming language for CTC automation controllers. Although different
from earlier versions of QuickStep, it is similar enough to allow seasoned automation engineers to easily transition
to.

Whereas Quickstep 2 & 3 used a single program that consisted of many steps, QuickStep 4 allows users to break
their programs into reusable and flexible tasks, events and functions that encourage good programming practices.

3.1 QS4 SFC Graphical Constructs

QuickBuilder uses a series of graphical constructs to define the overall logic for a QS4-based project within the
SFC window. These constructs are as shown below.

QuickBuilder Reference Guide 53

Doc. No. 951-530020-010

3.1.1 SFC Diagram

The SFC Diagram is a graphical representation of overall program flow. The SFC Diagram contains a series of
connected graphical constructs which determines and controls how the program is executed on the controller.

A toolbar in QuickBuilder is used to insert these graphical constructs onto the SFC Diagram. This toolbar is
pictured below.

Each of the icons in this toolbar inserts a specific graphical construct into the diagram. In the section that
follows, these icons appear in the sub-section header as a guide to their meaning.

54

QuickBuilder™ Reference Guide

Control Technology Corp.

3.1.2 QS4 Task Definition

Icon(s) on toolbar:

This graphical construct begins a QuickStep4 task definition. The QS4 task name appears within the blue box.
When a task is designated as the start task, bold lines appear at the top (as shown above on the left). Every
QuickBuilder project must have exactly one starting task for each defined controller.

Task constructs are used to begin a series of QS4 steps. Tasks are a section of code that includes multiple steps,
decisions, and conditions. Start tasks run only when the program begins. You must have one start task and you
can only have one start task. Standard tasks can be started from either the start task or any other task that is
currently running. Also, note that you can have multiple tasks running simultaneously. When multiple tasks are
running, QuickBuilder uses a time-slice or time-share method to run them. Time-sharing is the sharing of a
computing resource (the CPU) among many processes. In the background, the CPU automatically manages which
steps to attend to next.

Tasks can have parameters and local variables – although a start task cannot take parameters (since no one will
ever call a start task).

3.1.3 QS4 Event Definition

Icon on toolbar:

This graphical construct begins a QuickStep4 Event. This construct is a mechanism to define logic for
asynchronous events. When the specified condition evaluates to true, the defined steps are executed in parallel
to other steps that are executing.

Events are implemented like tasks except that they wait on a specific condition before they run. Rather than
beginning an event, you enable or arm an event. When you enable an event, it scans and waits for the condition
to occur. When the condition occurs, it triggers the event to run. Events are specifically useful for error-handling
and looking for error conditions such as E-Stops or light-curtain triggers.

Events are allowed to have local variables, but they do not take parameters.

QuickBuilder Reference Guide 55

Doc. No. 951-530020-010

56

QuickBuilder™ Reference Guide

Control Technology Corp.

3.1.4 QS4 Function Definition

Icon on toolbar:

This graphical construct begins the definition of a QuickStep4 (user-defined) function. User-defined functions
are a series of steps which perform some operation and possibly return a value. These functions are called by

using the QS4 instruction call.

Functions are implemented much like a tasks in that they allow both local variables and to pass parameters.
Functions are “called” rather than “started” and must be completed before the task that called the function can
resume processing. This is commonly known as subroutine programming.

Functions can have parameters and local variables.

3.1.5 QS4 Step

Icon on toolbar:

The QS4 step contains QuickStep4 code. The name that appears in the top box is the QS4 step name.

A QS4 step can be connected to another QS4 step. When a connection transition (the white box below a step) is
used, it defines when and if the program flow will proceed to the next step. If the connection transition is left
blank, program flow continues without waiting for any condition (implicitly true).

In the diagram below, two steps are shown with a transition in between. In this case, step1 will only proceed onto

step2 when x>0.

QuickBuilder Reference Guide 57

Doc. No. 951-530020-010

QS4 steps must parent from a QS4 Task, a QS4 Event or a QS4 Function.

QS4 steps are guaranteed atomic during execution with specific caveats on certain instructions.

3.1.6 QS4 Goto

Icon on toolbar:

The QS4 Goto sends program flow to the named destination. It is sometimes more convenient to utilize a
graphical “goto” rather than connecting lines in the SFC diagram.

3.1.7 QS4 Do Step

Icon on toolbar:

The QS4 Do Step is a shortcut symbolic construct that represents the textual QS4 do statement. This aids the
user in visualizing multi-tasking operations which would have been otherwise obscured.

For example, the construct:

58

QuickBuilder™ Reference Guide

Control Technology Corp.

is equivalent to the QS4 statement:

do (Lower_Clamp1 Lower_Clamp2);

QuickBuilder Reference Guide 59

Doc. No. 951-530020-010

3.1.8 QS4 Begin Step

Icon on toolbar:

The QS4 Begin Step is a shortcut symbolic construct that represents the textual QS4 begin statement. As with
the QS4 Do Step, it aids the user in visualizing multi-tasking operations which would have been otherwise
obscured.

For example, the construct:

is equivalent to the QS4 statement:

begin parallel_task;

3.1.9 QS4 Decision Step

Icon on toolbar:

The QS4 Decision construct can be used in place of the if/then/else statement to provide a more readable SFC
diagram.

By default, the true path is on the bottom, but the user can select an alternate with the false path on the bottom.

60

QuickBuilder™ Reference Guide

Control Technology Corp.

3.1.10 QS4 Done Step

Icon on toolbar:

The QS4 Done construct visually represents a QS4 done statement (for tasks and events) or a return statement
(for functions).

3.1.11 QS4 'C' Step

Icon on toolbar:

The QS4 'C' step contains ANSI 'C' code provided by the User. The name that appears in the top box is the step
name.

A QS4 'C' step can be connected to other QS4 steps. Unlike the QS4 step, there is no transition blocks. QS4 'C'
steps must parent from a QS4 Task, a QS4 Event or a QS4 Function.

QS4 'C' steps execute just like other steps except that they own the task processing until they return, thus they
should not stay in a loop once invoked, returning immediately. Reference Chapter 3 of the 5300 'C' Users
Programming Guide for some of the available internal function calls. Chapter 6 of the 5300 Enhancements
Overview also references Variant access via 'C'. A sample project is available, called 'QB_C.zip', which provides
numerous 'C' function examples.

'C' steps are very powerful constructs that can be used to enhance both the QuickBuilder language and
performance. The code within the block is compiled inline with that of QS4 steps, thus no external tools are
needed.

 The gcc compiler V3.4 is currently used for the 5300 PLC controller. Microsoft Visual Studio Community
Edition 2013 to 2017 is used by PC based Incentive. C++ is not supported.

 'C' steps can access all QS4 resources, including the file system and communications. When a QS4 program is
generated 'C' code is created. Check out the qs4.c file that is available in the project folder after translation. 'C'
steps are simply inserted in this file as function calls and compiled with the rest of QS4 in a very efficient manner.
You may even place your own external functions and globals in other files and include them.

 'C' steps can not be easily debugged. It is suggested that you write small amounts of code and test it, using
XVAR's as a way to view variables and relay information from you 'C' step during debugging.

http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530004.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530004.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530001.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530001.pdf
http://www.ctc-control.com/customer/downloads/code/QB_C.zip

QuickBuilder Reference Guide 61

Doc. No. 951-530020-010

XVARNAME.value is what is referenced at the 'C' level, reference the generated qs4.c file and QB_C.zip examples
for details.

 'C' steps are each actually a 'C' function call encapsulated within a step. The function is passed a TASK *task
which is typically used to access local variants.

Example:

// Convert a 32 bit binary value to an ASCII string
// storing in successive integer registers starting at _CTC_destRegister
// Example:
// _CTC_floatValue = 3.567
// On exit _CTC_destRegister would be 0x33
// _CTC_destRegister+1 would be 0x2e
// _CTC_destRegister+2 would be 0x35
// etc...
// ON RETURN: _CTC_length is 0 if failed or number of registers used

char buffer[32]; // scratch buffer for convertion
int i, j, val;

// Convert 32 bit binary value to ascii bytes locally

sprintf(buffer,"%0.6f",_CTC_floatValue.value);

// Find out length of all characters

i = strlen(buffer);

for (j = 0;j!=i;j++,_CTC_destRegister.value++)

{

 // Get a character

val = buffer[j];

// Store it in the next desired sequential register

regWrite(_CTC_destRegister.value, val);

}
 // Set number of converted characters
 _CTC_length.value = i;

3.1.12 Motion Overview & Sequence Blocks

CTC’s Model 5300 and PC based Incentive products use a powerful object-oriented approach to solve motion
control applications. This greatly simplifies application creation and maintenance. It also improves performance
by off loading the demanding motion control tasks to specialized motion control processors. Motion control
commands are created within QuickBuilder and then transferred to one or more physical Motion Modules, for true
parallel operation. The logic to control motion is encapsulated in what is called a Motion Sequence Block, or
MSB.

Operational Overview:

62

QuickBuilder™ Reference Guide

Control Technology Corp.

The main components used in Model 5300 and Incentive motion control are:

The Axis Module - The physical Motion Module in the rack (or process running on a Windows PC core
when using an embedded PC).
The Axis Object -

· The Axis Object represents a
physical servo or stepper axis
on a motion module.

· It is created
automatically when a
motion module is
added to a rack in
the Resource
Manager.

· Axis Objects have many
specialized properties that
can be configured using the
Property Inspector.

· Most of these properties
can also be changed
dynamically in the
QuickBuilder project.

· Axis Objects have various
inputs and outputs that
control the servo (or
stepper) and usually
feedback signals that are
used to monitor position.

QuickBuilder Reference Guide 63

Doc. No. 951-530020-010

· Using Motion Sequence
Blocks (MSBs), you can
command each axis to
perform a sequence of
motion statements.

The MSB - The Motion Sequence Block containing one or more motion statements that execute on the Axis
Module’s CPU under the supervision of QuickStep on the main 5300 CPU (or process running on a
Windows PC core when using an embedded PC).

· The Motion Sequence Block (MSB) element holds QuickMotion statement sequences.
· MSBs appear in the QuickBuilder project as stand-alone graphical elements.
· MSBs are not associated with any particular axis. This allows the same sequence to be reused many

times for different axes, similar to the way a function works.
· An MSB is started on a given axis by using the “Start MSB” statement within QuickBuilder.
· MSBs are programmed in the QuickMotion language –a language designed specifically for motion.
· One MSB can start another MSB that can run in parallel on the same axis: Up to 4 foreground (500-

800µ s) MSBs can be running simultaneously. A foreground MSB runs an instruction per servo tick
cycle while a background MSB does not run as periodic, executing using free processor time about
every 2 mS.

· Up to 32 total MSBs can be running simultaneously (memory limited).

Icon on toolbar:

The Motion Sequence Block (MSB) construct holds QuickMotion command sequences. These
sequences are used with QS4 Axis objects.

On the Incentive PC platform MSBs run within the IncentiveECAT process, QuickBuilder tasks run within the
IncentivePLC process:

64

QuickBuilder™ Reference Guide

Control Technology Corp.

See the QuickMotion Reference document for further information on using QuickMotion.

QuickBuilder Reference Guide 65

Doc. No. 951-530020-010

3.2 QS4 Resources

3.2.1 Symbolic Names and Resources

Symbolic names are used to reference controller resources within a Quickstep program. Resources are things like
memory storage (volatile and non-volatile variables), input and outputs, etc.

Basically all instructions either reference variables, QS4 objects or constant values (such as numbers or strings).

Each symbolic name, when referencing a resource, may have properties associated with it that extend its usage
and capabilities.

You define symbolic names for the following items:

· Controller memory storage;

· Specialized motion control devices – such as servo and stepping axes;

· Specialized I/O resources such as digital inputs / outputs and analog inputs / outputs;
· Constants used in a QS4 program (e.g., multiplier value, maximum speed of a stepping motor or a

temperature value).

Each the above resources are identified by a unique type, each of which has specific properties particular to it.

In other words a Variable resource is nothing more than general memory storage (what was called a "register" in
QS2) whereas an AnalogInput resource references a hardware-based analog input.

The AnalogInput resource is much more complex and contains properties that can adjust its operation, while a
general memory storage Variable is more limited to read/write and the type of data being accessed.

Resource types consist of:

· Variable – (volatile) simple generic memory store for strings, integers (default), and single(float32) or
double-precision floating-point (float64);

· NVariable – (non-volatile) simple generic memory store for strings, integers (default), and single
(float32) or double-precision floating-point (float64);

· AnalogInput – a reference to an analog input on I/O board;

· AnalogOutput – a reference to an analog output on I/O board;

· DigitalInput – a reference to an digital input on I/O board;

· DigitalOutput – a reference to an digital output on I/O board;

· PID - a reference to associated inputs upon which a PID algorithm should be run and what output is to
be controlled;

· XVar - (volatile) simple generic memory store for strings, integers (default), and single or double-
precision floating-point. Stored local to generated output code and not public to most communication
protocols. Faster operation than a Variable and arrays not supported. May also be designated read-
only and initialized with static data when defined as a CONSTANT;

66

QuickBuilder™ Reference Guide

Control Technology Corp.

· Motion-related resources such as Axis.

One key departure from QS2 is the concept of a register. Users can visualize that Variable or NVariable
resources are simply registers but in reality, QS4 allows these resources to contain an integer, a single precision
floating point (float), a double precision floating point (double), or a string – or a 1 or 2 dimensional array of such.

3.2.2 Resource Declarations

Resources must be defined prior to translation for use in the controller. The Resource Manager handles such in
a graphical manner. Users may elect to define resources prior to use in the QS4 Editor, as they are used, or after
they are used in the logic.

All resources declarations are public and may be referenced within a task , function or event.

The assignment of specific resources, such as which DigitalInput corresponds to what physical connection at
the controller, is performed at the project level within QuickBuilder using the Resource Manager. This “soft
configuration” allows the same program to be reused regardless of the physical I/O assignment. Each controller
can use the same program, with a differing I/O assignment, as desired.

3.2.3 Vector and Table Declarations (Arrays)

An indexed one-dimensional set of the same type of a Variable or NVariable (generically a variable) is known
as a Vector. An indexed two-dimensional set of the same type of a variable is known as a Table. Both are
considered Arrays.

An Array is declared in much the same way that a variable is with one exception: the type of storage (either vector
or table) is specified in the Resource Manager. Non-arrays are referred to as scalars.

Within a QS4 statement, a reference to a specific element of a vector is coded by using square-brackets with the
desired index within. For example, to reference the i-th element of the vector variable VectorOfData one would
write:

VectorOfData[i]

The index may be a numeric constant (i.e. 5), a variable or a complicated expression such as (i+1)*2:

VectorOfData[(i+1)*2]

To reference the i-th row and j-th column element (cell) of the table variable TableOfData, one would write:

TableOfData[i][j]

The first element in the array is the 0th element (e.g., i would equal 0 to reference it).

 It is a requirement for NV arrays (tables & vectors) that the array must be pre-allocated. This is done by
writing to the “last cell” (last row, last column) you will ever need to access before writing to any other cells.
Since NV arrays are stored on the file system this allows hashing tables to be built and optimized for the array size
you will be using, thus providing my better performance. You can always expand the number of rows in your
array by simply writing to the next last expected row cell. Columns can not be expanded once a table is created
although the table could be deleted and re-created. To do this entails stopping the application program, using the

QuickBuilder Reference Guide 67

Doc. No. 951-530020-010

telnet 'set close nvariant [variant #]', command and then physically deleting the file from the RAMDISK. Arrays
will still work if you expand the row size dynamically, although with much slower access time.

For example, if a 1000 x 6 non-volatile table is required, it would be coded as follows:

// First pre-allocate table by selecting and storing a value to

// the last cell to ever be used BEFORE writing to any other cells

NVtable[1000][6]=0;

// then init or fill in the table as your program requires.

NVtable[0][0]=5;

NVtable[10][3]=7; // etc.

Deleting a non-volatile table that has been created on the controller using a telnet session:

BlueFusion/RAMDISK/_nvar/>dir
drw-rw-rw- 0 owner group 000256 JAN 03 19:38 .
drw-rw-rw- 0 owner group 000000 JAN 03 19:38 ..
-rw-rw-rw- 0 owner group 000528 JAN 03 19:45 _nv36705.var
-rw-rw-rw- 0 owner group 000664 JAN 03 19:11 _nv36706.var
-rw-rw-rw- 0 owner group 002324 JAN 04 05:43 _nv36702.var
Volume: Capacity - 1012992 Free - 950016 Deleted - 0.

BlueFusion/RAMDISK/_nvar/>set close nvariant 36702
SUCCESS: Closed non-volatile variant 36702.
BlueFusion/RAMDISK/_nvar/>delete _nv36702.var
SUCCESS: File deleted.

BlueFusion/RAMDISK/_nvar/>dir
drw-rw-rw- 0 owner group 000256 JAN 03 19:38 .
drw-rw-rw- 0 owner group 000000 JAN 03 19:38 ..
-rw-rw-rw- 0 owner group 000528 JAN 03 19:45 _nv36705.var
-rw-rw-rw- 0 owner group 000664 JAN 03 19:11 _nv36706.var
Volume: Capacity - 1012992 Free - 952576 Deleted - 0.

BlueFusion/RAMDISK/_nvar/>

3.2.4 Constants & Literals

Literals are values that which define themselves and are not reference by a symbol, like constants. The number
'5' is a literal. String literals must be used using the 'string' function, such as string("My literal string").

 Note that if a negative number is used in a conditional it should be enclosed in parenthesis, (...). For example x
>= (-8). Failure to do so will typically result in a 0 literal.

Constants are used to associate a symbolic name with a constant value. Unlike variables, constants are read-
only, and can only be optionally defined using an XVar.

Constants may be defined as integer, double or string constants.

It is suggested, but not required, that constants be in uppercase.

68

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickBuilder Reference Guide 69

Doc. No. 951-530020-010

'value' property field can be modified to set the read-only value.

3.2.5 Indirect Variables

Indirect Variables are used to pass a reference to a variable when used with a Task or Function. This allows the
Task or Function to operate on the passed variable – including changing the variable’s value.

Normally, without indirection, parameters are passed by value. Non-scalar variables (arrays) can only be passed
indirectly.

Indirect Variables appear with an asterisk by their name.

In this function definition, the parameter x is passed by value:

70

QuickBuilder™ Reference Guide

Control Technology Corp.

In this function definition, the parameter x is passed by reference (indirect):

Assume that step0 contains the following code:

#x = #x + 1;

If we were to call these two different function using:

call increment(some_global_variable);

there would be two quite different outcomes:

In the first function (that uses pass by value) – the value of some_global_variable would be passed to the
function increment – and the value would get incremented in step0 – but the global variable
some_global_variable would not change.

In the second function (that uses pass by reference) – a reference to some_global_variable is passed to the
function increment – therefore all operations on x will actually operate on some_global_variable. Thus, the
code in step0 will affect some_global_variable – in this case, some_global_variable will be incremented by 1.

This is a powerful tool as one could create a task or function which operates on a set of digital outputs – and the
code which invoked the task or function can pass a different set of outputs to be manipulated.

QuickBuilder Reference Guide 71

Doc. No. 951-530020-010

3.2.6 Tasks and Steps

QS4 allows for multiple tasks versus a single large program. There may be as many tasks as desired (up to the
controller task limit of 96), each containing any number of steps. The tasks are combined, as desired, during a link
process, with outputted code directly executable by the controller CPU (as compared to QS2, which used an
interpreter).

A few rules about tasks:

· Each task/function/event must have a unique, non-empty name within the project;
· Multiple tasks may be included within a single project;
· You may multitask as many instances of a task as desired (using do / begin) up to the controller task

limit – presently 96.
· Each function/event also counts towards the limit of 96 simultaneously executing tasks.

As will be discussed further in the next section, controller resources are made up of variables and QS4 Objects.
Variables and QS4 Objects are created and defined using QuickBuilder’s Resource Manager (RM).

QuickBuilder has two modes of translation which directly effect task execution, legacy and optimized. Legacy
mode was a transition from Quickstep to QuickBuilder. Some of the QuickBuilder application program remained in
Quickstep, some was in compiled 'C'. This was needed for product stability given the scope of QuickBuilder.
Legacy mode was all that was available prior to November 2010. It is still supported for existing installations but a
new, higher performance mode is now available, Optimized. With the availability of Optimized task execution and
code has totally changed. Tasks are now independent threads, executing in parallel, held off only for atomicity.
Most importantly is Quickstep has been removed and QuickBuilder code is now 100% compiled 'C' code yielding
a significant performance increase. In some cases as much as 22 times faster.

The selection of Legacy and Optimize modes is from the property panel of the controller:

The controller is designed to handle Quickstep, QuickBuilder Legacy, as well as QuickBuilder Optmized programs
and can detect which has been downloaded for automatic configuration. and execution.

72

QuickBuilder™ Reference Guide

Control Technology Corp.

3.3 QS4 Functions and Expressions

3.3.1 Expressions

Expressions perform mathematical and string operations on variables and constants. Expressions consist of
unary (one operand) and binary (two operand) operators as well as functions.

Expressions can contain other expressions enclosed in parentheses.

+ operator
The unary “+” operator is a meaningless operator – no operator occurs. The binary “+” operator adds two
numeric values together. It also serves as a concatenation operator for strings. For example, 3+4 evaluates to 7
where as “under” + “way” evaluates to the string “underway”. It is the only operator that is valid for strings.

- operator

The unary “-” operator changes the sign of the expression. For example –(3+4) evaluates to -7. The binary “-”
operator subtracts two numeric values. For example, 10-7 evaluates to 3.

* operator

The binary “*” operator multiplies two numeric values. For example 11*6 evaluates to 66.

/ operator

The binary “/” operator divides two numeric values. For example 21/2 evaluates to 10.5.

% operator
The binary “%” operator computes the modulus (remainder) of two values. For example, 17 % 4 evaluates to 1
(17/4 is 4 with a remainder of 1).

| operator

The binary “|” operator computes a bit-wise logical-or of two numeric values. For example, 8 | 2 evaluates to 10.

& operator
The binary “&” operator computes a bit-wise logical-and of two numeric values. For example, 9 & 5 evaluates to
1.

^ operator
The binary “^” operator computes a bit-wise exclusive-or of two numeric values.

>> operator

The binary “>>” operator bit shifts left a numeric value a specific number of times. A left bit shift is effectively a
divide by 2 for each time the bit is shifted. For example 20 >> 2 evaluates to 5.

<< operator

The binary “<<” operator bit shifts right a numeric value a specific number of times. A right bit shift is
effectively a multiply by 2 for each time the bit is shifted. For example 20 << 2 evaluates to 80.

> operator
The binary “>” operator returns a non-zero value when the left-side expression is greater than the right-side
expression.

QuickBuilder Reference Guide 73

Doc. No. 951-530020-010

>= operator
The binary “>=” operator returns a non-zero value when the left-side expression is greater than or equal to the
right-side expression.

< operator
The binary “<” operator returns a non-zero value when the left-side expression is less than the right-side
expression.

<= operator
The binary “<=” operator returns a non-zero value when the left-side expression is less than or equal to the right-
side expression.

== operator
The binary “==” operator returns a non-zero value when the left-side expression is equal to the right-side
expression.

!= operator
The binary “!=” operator returns a non-zero value when the left-side expression is not equal to the right-side
expression.

&& operator
The binary “&&” operator returns a non-zero value when the left-side expression and right-side expressions are

both non-zero.

|| operator

The binary “||” operator returns a non-zero value when either the left-side expression or right-side expressions
are non-zero.

! operator
The unary “!” operator inverts the truth of a Boolean expression – when applied to a non-zero expression, the
result is 0.

~ operator
The unary “~” operator inverts all the bits (logical not – one’s complement) of specified numeric value.

pi constant
The constant "pi" or "PI" evaluates to the trigonometric constant 3.14159… .

Boolean constants
The pre-defined constants "true", "TRUE", "on" and "ON" represent a true Boolean condition and are integer
valued to 1. The pre-defined constants "false", "FALSE", "off" and "OFF" represent a false Boolean condition
and are integer valued to 0.

 Note that if a negative number is used in an expression it must be surrounded by parenthesis, (...). For
example x >= (-8). Failure to do so will typically result in a 0 literal.

3.3.2 Numerical Functions

To call a numerical function, use the function name, with appropriately typed parameters (comma-separated)
inside parentheses.

74

QuickBuilder™ Reference Guide

Control Technology Corp.

Name (Parameters)
Return
type Description

max(a, b) type

independen

t

Returns the maximum of two values.

min(a, b) type

independen

t

Returns the minimum of two values.

sin(double x) double Returns the sine of x where x is specified in radians.

cos(double x) double Returns the cosine of x where x is specified in radians.

tan(double x) double Returns the tangent of x where x is specified in radians.

asin(double x) double This function computes the arc sine of x – that is, the value whose

sine is x. The returned value is scaled in radians and lies between








2
,

2



.

The arc sine function is defined mathematically only over the

domain -1 to 1.

acos(double x) double This function computes the arc cosine of x – that is, the value

whose cosine is x. The returned value is scaled in radians and lies

between

 ,0
.

The arc cosine function is defined mathematically only over the

domain -1 to 1.

atan(double x) double This function computes the arc tangent of x – that is, the value

whose tangent is x. The returned value is scaled in radians and lies

between








2
,

2



.

atan2(double y, double x) double This function computes the arc tangent of y/x – that is, the value

whose tangent is y/x. The signs of both arguments are used to

determine which quadrant the result lie within. The returned value

is scaled in radians and lies between

  ,
.

QuickBuilder Reference Guide 75

Doc. No. 951-530020-010

exp(double x) double Returns the natural number raised to the power of x. In other

words,

xe .

log(double x) double Returns the natural logarithm (base e) of x.

log10(double x) double Returns the logarithm (base 10) of x.

pow(double x, double y) double Returns

xy
.

sqrt(double x) double Returns

x
.

hypot(double x, double y) double Returns

22 yx 
.

sinh(double x) double Returns the hyperbolic sine that is defined by

2

xx ee 
.

cosh(double x) double Returns the hyperbolic cosine that is defined by

2

xx ee 
.

tanh(double x) double Returns the hyperbolic tangent that is defined by

1

1
2

2




x

x

e

e

.

abs(x) type

independen

t

Returns the absolute value of x.

ceil(double x) double Returns the x rounded upwards to the nearest integer.

76

QuickBuilder™ Reference Guide

Control Technology Corp.

floor(double x) double Returns the x rounded downwards to the nearest integer.

frac(double x) double Returns the fractional part of x.

sign(x) int Returns 1 if x>0, 0 if x equals 0 and -1 if x < 0.

sign2(x, y) type

independen

t

Returns the sign of x applied to y. If x < 0, then –y is returned. If

x > 0 then y is returned. If x = 0, then 0 is returned.

fmod(double x, double y) double Returns the floating point remainder of x divided by y.

3.3.3 String Functions

To call a string function, use the function name, with appropriately typed parameters (comma-separated) inside
parentheses.

Name
(Parameters)

Return
type Description

trim(string x, string y) string Returns the string x with all leading and trailing characters specified

by the second string y removed from it .

left(string x, int s) string Returns the leftmost s characters from the string x.

right(string x, int s) string Returns the rightmost s characters from the string x.

mid(string x, int start , int length) string Returns length characters starting at position start from the string

x.

padl(string x, int length, string p) string Pads and returns the string x with the string p such that the length

of the string is greater than or equal to length. Padding occurs on

the left . The length of the padding string must be 1.

padr(string x, int length, string p) string Pads and returns the string x with the string p such that the length

of the string is greater than or equal to length. Padding occurs on

the right. The length of the padding string must be 1.

len(string x) int Returns the length of the string x. An empty string has a length of

0.

compare(string x, string y) int Compares two string – returns -1 if x is lexically less than y, 0 if

the strings are the same, and 1 if x is lexically greater than y.

find(string x, string y) int Searches for string y in string x – if found, returns the position in x

(starting from 0) that the string was found. If not found, returns -

1.

QuickBuilder Reference Guide 77

Doc. No. 951-530020-010

3.3.4 Bit Functions

To call a bit function, use the function name, with appropriately typed parameters (comma-separated) inside
parentheses.

Name
(Parameters)

Return
type Description

bit(int x, int n) int Returns 1 if bit #n is ON in x, or 0 if the bit is OFF. n can range

from 0 to 31.

_rol(<variable>,times) int Rotate bits left and returns result , variable not modified, 0 shifted

into LSB location.

_ror(<variable>,times) int Rotate bits right and returns result , variable not modified, 0 shifted

into MSB location.

3.3.5 Special Functions

To call a special function, use the function name, with appropriately typed parameters (comma-separated) inside
parentheses.

Name
(Parameters)

Return
type Description

addr(variable name) int Returns the address of the named variable (used for indirection

assignment).

isdone(variable name) int Returns a 1 if the task handles contained in the specified variable

are all done, otherwise a 0.

If the passed variable is a scalar, then it is assumed that the

variable holds a task handle to a single task – and therefore only

that task is checked if “done”.

If the passed variable is a vector, then it is assumed that the

variable holds a task handle to multiple tasks – and therefore all

tasks are checked for “done.” Thus, this function returns a value

of 1 if and only if all of the tasks are “done.”

_servoInfo(<Axis>.Axis, request) int returns a 1 or 0 based on true or false where ‘request’ is

one of following:

 XVars defines:

__CTC_SERVO_ERROR with constant value of 8

__CTC_SERVO_POSITION with constant value of 7

__CTC_SERVO_RUNNING with constant value of 5

__CTC_SERVO_STOPPED with constant value of 6

78

QuickBuilder™ Reference Guide

Control Technology Corp.

Note: __CTC_SERVO_POSITION returns a 32 bit signed

count value representing the current position.

*This function is only usable when the Quickstep 2/3 motion

simulation MSB's are being used.

QuickBuilder Reference Guide 79

Doc. No. 951-530020-010

3.4 QS4 System Variables

There are a number of pre-defined system variables useful in QS4 programming. These variables are:

· $TASKTIMER

· $DINPUTS

· $DOUTPUTS

· $REGISTERS

· $TRIGGER

· $CBITS

· $CVARS

· $TASKPRIORITY

· $CURRENT_TASKPRIORITYLEVEL

· $TASKHANDLE

3.4.1 $TASKTIMER

The $TASKTIMER variable is similar to the register-based 13002 millisecond timer register in the QS2 world with
one difference: the timer is unique and independent for each Task, Function and Event.

$TASKTIMER increments by 1 every millisecond and is useful for timing things as well as handling timeouts
waiting for something to occur.

$TASKTIMER is cleared when a task is started, and is therefore useful as well to determine how long a task has
been running.

Examples:

// wait for up to 1000ms for input1 to turn on

$TASKTIMER = 0;

while !input1 && TASKTIMER<1000 repeat { }

// measure how long the tablefill function takes

$TASKTIMER = 0;

call tablefill;

tablefill_duration = $TASKTIMER;

80

QuickBuilder™ Reference Guide

Control Technology Corp.

3.4.2 $DINPUTS[]

The $DINPUTS vector system variable provides direct access to the digital inputs. The first input is in the [1]
element of the vector.

Example:

// count how many of the first 16 inputs are on

count = 0;

for i = 1 to 16 repeat {

if $DINPUTS[i] then count += 1;

}

3.4.3 $DOUTPUTS[]

The $DOUTPUTS vector system variable provides direct access to the digital outputs. The first output is in the
[1] element of the vector.

Examples:

// count how many of the first 16 outputs are on

count = 0;

for i = 1 to 16 repeat {

if $DOUTPUTS[i] then count += 1;

}

// clear the first 8 outputs

for i = 1 to 8 repeat {

$DOUTPUTS[i] = 0;

}

QuickBuilder Reference Guide 81

Doc. No. 951-530020-010

3.4.4 $REGISTERS[]

The $REGISTERS vector system variable provides direct access to the controller registers. This is a better
alternative to using an override on a user-defined variable. The return value is always an integer. If a variant is
referenced with a float type, it will be rounded.

Examples:

// clear the millisecond timer

$REGISTERS[13002] = 0;

// read the real time clock

year = $REGISTERS[13019];

month = $REGISTERS[13018];

day = $REGISTERS[13017];

hour = $REGISTERS[13016];

minute = $REGISTERS[13015];

second = $REGISTERS[13014];

3.4.5 $TRIGGER

The $TRIGGER system variable triggers QuickScope for data capture when the scope is set for Triggered mode.

It should only be written to – the value written is ignored and can be any value.

Examples:

// trigger QuickScope

$TRIGGER = 1;

// also triggers QuickScope since the value is ignored

$TRIGGER = 0;

82

QuickBuilder™ Reference Guide

Control Technology Corp.

3.4.6 $CBITS[]

The $CBITS vector system variable provides direct access to the global common bits that are used on such
modules as the M3-40A. The first common bit is in the [0] element of the vector.

The $CBITS vector is a Boolean read/write system variable with 256 elements ([0] to [255])

Common bits are further documented in the QuickMotion manual.

Examples:

// wait for CBITS[4] to be on

while !$CBITS[4] repeat { }

// set CBITS[2] on

$CBITS[2] = 1;

3.4.7 $CVARS[]

The $CVARS vector system variable provides direct access to the global common “vars” (variables) that are used
on such modules as the M3-40A. The first common “var” is in the [0] element of the vector.

The $ CVARS vector is a read/write system variable taking values of 0 through 255 with 32 elements ([0] to [31]).

Common “vars” are further documented in the QuickMotion manual.

Examples:

// wait for CVARS[22] to be > 20

while $CVARS[22] <= 20 repeat { }

// set CVARS[2] to 11

$CVARS[2] = 11;

3.4.8 $TASKPRIORITY

The $TASKPRIORITY variable is to set the run time priority of a task to something different from the default, 0.
By default all tasks have the same priority and between each step, or during for/while loops, they yield to other
tasks, sharing processor execution. At times greater performance may be needed. The $TASKPRIORITY allows

QuickBuilder Reference Guide 83

Doc. No. 951-530020-010

you to set a number from 0 to 100. The greater the number the more processor time the task will get based upon
the $CURRENT_TASKPRIORITYLEVEL.

The setting of the $TASKPRIORITY has no immediate effect unless it is -1 or 100. A -1 will force a task yield, so
others can run. A priority of 100 can only be used by a single task an makes that task the only one that will run.
It will also starve some communication protocols (CTC BINARY and Modbus). A priority of 100 may be useful if
a 'for' loop must be executed that has a critical timing requirement, a programmer might do the following:

$TASKPRIORITY = 100; // restrict execution to just this task.

for loop ...

$TASKPRIORITY = 0; // allow others to run now.

Reference the $CURRENT_TASKPRIORITYLEVEL variable for additional features.

Examples:

// Set task priority to default, 0

$TASKPRIORITY = 0;

// Yield to allow communications to run (useful if TASKPRIORITY is
100). This value is not stored.

$TASKPRIORITY = -1;

// Set task priority to 5, a read will return a 5 as well.

$TASKPRIORITY = 5;

3.4.9 $CURRENT_TASKPRIORITYLEVEL

The $CURRENT_TASKPRIORITYLEVEL variable is used to activate the $TASKPRIORITY. Basically any task
equal or greater than the current $CURRENT_TASKPRIORITYLEVEL setting will be allowed to run. This variable
is global and common to all tasks whereas the $TASKPRIORITY is unique to each task.

For example if there are three tasks:

TASK 1 - $TASKPRIORITY = 5

TASK 2 - $TASKPRIORITY = 0; // default

TASK 3 - $TASKPRIORITY = 8;

84

QuickBuilder™ Reference Guide

Control Technology Corp.

During normal execution all tasks will run. If one of the tasks sets the $CURRENT_TASKPRIORITYLEVEL to 5
then only TASK 1 and 3 will run. TASK 2 will complete its current step or conditional loop and stop execution
until its priority level is >= the $CURRENT_TASKPRIORITY_LEVEL.

.

3.4.10 $TASKHANDLE

Returns the current task handle.

3.5 MSB System Variables

'cmode' variable settings:

$CYCLIC_SYNC_POSITION_MODE 0
$PROFILE_VELOCITY_MODE 1
$STEPPER_MODE 2
$INTERPOLATED_POSITION_MODE 3
$PROFILE_POSITION_MODE 4
$PROFILE_TORQUE_MODE 5
$HOMING_MODE 8
$VELOCITY_MODE 9

Example:

[beginTest]
cmode = $CYCLIC_SYNC_POSITION_MODE;

'eCAT_driveType' variable settings:

$DRIVE_COPLEY 2
$DRIVE_YASKAWA" 3
$DRIVE_ELMO" 4
$DRIVE_KOLLMORGEN" 5
$DRIVE_SANYO_DENKI" 6
$DRIVE_EMERSON" 7
$DRIVE_AMC" 8
$DRIVE_VIRTUAL" 9
$DRIVE_IAI_ACON_MODE0" 10
$DRIVE_IAI_ACON_MODE3" 11
$DRIVE_ABB_MICROFLEX" 12
$DRIVE_MITSUBISHI" 13
$DRIVE_PANASONIC" 14
$DRIVE_LINMOT" 15
$DRIVE_YASKAWA_V1000" 16
$DRIVE_MOTIONLINX" 17
$DRIVE_WAGO_ENCODER_631" 18
$DRIVE_WAGO_ENCODER_637" 19

Example:

QuickBuilder Reference Guide 85

Doc. No. 951-530020-010

if eCAT_driveType == $DRIVE_WAGO_ENCODER_631 goto Virtual;
if eCAT_driveType == $DRIVE_WAGO_ENCODER_637 goto Virtual;

86

QuickBuilder™ Reference Guide

Control Technology Corp.

3.6 QS4 Statements

QS4 has a wide selection of statements that give you tremendous flexibility in building a powerful control
strategy. QS4 is the latest version of CTC’s proven QuickStep state language. QS4 statements and their use are
reviewed in the following sections.

3.6.1 QS4 Statement syntax

QS4 steps are made up of one or more statements and are entered in QS4 graphical steps.

The syntax and definition of these statements (instructions) are defined in subsequent sections.

The general syntax for a statement is free-form.

Comments may be placed on a line following double-slashes “//”. All text following the double-slashes (on that
line) is ignored.

Multi-line comments begin with "/*" and end with "*/". For example:

/*

Initialize x and y
*/
x = 10;
y = 1;

Statements may be placed on more than one line and indented as desired, which enhances readability.

3.6.2 QS4 Editor Color Codes

The QS4 Editor automatically applies color coding for improved readability according to the following rules:

GREEN for comments: // Comments
BLUE for commands: goto
BLACK for values and operators: 3.14 + 77
PURPLE for keywords: off
DARK RED for variables: input_conveyor
DARK BLUE for functions: y=sqrt(144);

3.6.3 Assignment (numeric)

There are four assignment statements in QS4. The first form simply stores the value computed from the right side
of the “=” into the location specified to the left of the “=”.

For example, to store 12 into the variable named x, one would write:

x = 12;

To add two variables, a and b together and store the result in c, one would write:
c = a+b;

QuickBuilder Reference Guide 87

Doc. No. 951-530020-010

The second and third forms of the assignment statement increment or decrement a variable by the value
computed from the right side. These two forms use to different symbols – “+=” for increment and “-=”
for decrement.

For example, to decrement the variable x by 5, one would write:

x -= 5;

This last expression is equal to the following:
x = x-5;

The right side of the increment/decrement assignment is not limited to constant values. For example, if

one wanted to increment x by the value of (y-5) one would write:
x += y-5;

The last form of the assignment statement is to change the address of an indirect variable:
x <- addr(y);

This would set the indirect variable x to “point to” the variable y.

3.6.4 Assignment (string)

When assigning strings to a variable, a special notation must be used:

x = string("Hello There");

This would assign the variable x the value “Hello There”. This notation is only required when dealing with
expressions that evaluate to strings.

For example, to concatenate two strings (contained in variables string1 and string2) and store the result in
string3, one would write:

string3 = string(string1 + string2);

When a function that returns a string is utilized, the string() notation must also be used:
string2 = string(left(string1, 5));

The above example would take the leftmost 5 characters of string1 and store them into string2.

Data types can be mixed where integers, floats and doubles will automatically be converted to a string:

x = string("The total count is: " + sum); // where sum is an
integer variable, float, and double can also be referenced

x = string("" + sum); // where just the integer value is desired,
thus add an empty string.

Array Indexing is supported for strings where x is a string vector table:

x[0] = string(“Hello There”);
x[1] = string(“Goodbye”);

Concatenation Operator '+':

y = string(“Joe”);

88

QuickBuilder™ Reference Guide

Control Technology Corp.

x = string(“Hello There” + y);

Where the resulting string would be "Hello There Joe". Note that the quotes are not part of the string
stored.

Functions that do not return strings must not be enclosed in string(). For example, the function that returns the
length of a string (len) cannot and should not be enclosed in string():

x = len(left(string1, 5));

The variable x will be set to the length of the result of the left() operation – one would assume that x will
be 5, but it can be any value from 0 to 5 depending on the value of string1.

3.6.5 Store

The store statement is fundamentally the same as the first form of the assignment statement. It remains as part of
the QuickStep syntax for compatibility with QS2.

The syntax of this statement is:

store expression to location;

The store statement can also be expressed as an assignment:

location = expression;

Expressions must follow the same rules for strings as mentioned in the previous section on string assignment.

3.6.6 Set

The set statement alters a list of digital outputs or booleans.

The syntax of this statement is:

set list on | off | ON | OFF;

For example, to turn two outputs named dig1 and dig2 on, one would write:

set dig1,dig2 off;

The list is comma-delimited.

3.6.7 Setbit, Clrbit

These two instructions manipulate bits (formerly referred to as flags) within a controller. Bits have two logical
values, true and false.

Bits are numbered from 0 upwards to 31.

QuickBuilder Reference Guide 89

Doc. No. 951-530020-010

You can also use them to store Boolean information just as flags were used in the QS2 world. Since one register
can hold 32 bit values, then the number of Boolean bits available to the user is quite high in comparison to QS2.

Multiple tasks can set/clear bits in the same variable, at the same time and receive the correct results.

The syntax of these statements is:

setbit BITn variable;

setbit n variable;

clrbit BITn variable;

clrbit n variable;

For example, to set bit 5 in a variable named x, one would write:

setbit BIT5 x;

The prefix BIT is optional – therefore the last example could also be written:

setbit 5 x;
To clear bit 10 in a variable named x, one would write:
clrbit 10 x;

One can test the value of a bit using the bit() function.
For example, the follow sets the variable y to 1 (true) when bit 5 in the variable x is on (true):

y = bit(x, 5);

3.6.8 Goto

The goto instruction tells the controller which step to execute next. The destination step specified in the
instruction must be within the same task.

The syntax of this statement is:

goto destination;

Once executed, the existing step is exited, other steps allowed to execute if pending, and then the branch finally
occurs.

The following example instructs the controller to jump to the step named SHUT_DOWN:

goto SHUT_DOWN;

A special form of this instruction simply tells the controller to proceed to the next step in sequence:

goto next;

3.6.9 Call, Return

The call instruction tells the controller to invoke a user-defined function and return control to the next instruction
upon completion.

90

QuickBuilder™ Reference Guide

Control Technology Corp.

Calling a function repeatedly, without executing a return instruction will result in a controller fault, namely a stack
overflow. This will occur if you use a call instruction repeatedly and never return to the calling step.

The call instruction can pass up to 9 parameters and also return a single integer variable.

The various forms of the call statement are:

call function;
call function store to result;
call function (param1, param2, ...);
call function (param1, param2, ...) store to result;

The comma-separated parameter list (param1, param2, …) can be a mix of variable names and/or constants
(numbers and strings). The returned integer result can be stored in the optionally specified variable result.

In order to return control (from within the called routine), a return instruction must be executed.

The two forms of the return statement are:

return;
return result;

The first form returns a zero value, and the second form returns a specific result.

 A 'call' function counts as an active task. Thus a single task which invokes a function is now 2 tasks until you
return from the function call. You are limited to 96 total active tasks, functions & events.

3.6.10 If/Then/Else

The if instruction tests a conditional expression for a true (non-zero) value.

In QS2, the if instruction only included a single operation, namely a goto. In QS4, if statements can be made up
of multiple lines. QS4 also supports else logic.

The if statement has two forms:

if expression goto step;

if expression then statement;

In the first form (the goto form), the controller will jump to the step named step if the expression
evaluates to a non-zero (true) value. This form is not allowed to have an else clause.

In the second form (the then form), the controller will execute the listed statement if the expression evaluates to a
non-zero (true) value.

The special target step next can be used as the destination for the goto.

As mentioned earlier, QS4 also allows a multi-line if. This form is written:

if expression then {

statement;

statement;

...

QuickBuilder Reference Guide 91

Doc. No. 951-530020-010

}

In this form, when the expression evaluates to a non-zero value, each of the statements are executed.
The if statement (in either the goto or then forms) can optionally be followed by an else statement which is
written:

else statement;

If the associated if evaluates to false, then the else statement is executed.
Just like the if statement, the else statement supports a multi-line format:

else {

statement;

statement;

...
}

Multiple if statements can be logically nested to form if/else-if/else-if/…else constructs. For example:
if expression1 then {

statement1;

statement2;

...
}

else if expression2 then {

statement3;

statement4;
}

else if expression3 then {

statement5;

statement6;
}

else {

statement7;

statement8;
}

statement9;

In this case, expression1 is evaluated. If expression1 is true, then statements 1 & 2 are executed followed by
statement 9. If it is false, then expression2 is evaluated – if true then statements 3 & 4 and executed followed by
statement 9. If expression2 is false as well, then expression3 is evaluated – if true, then statements 5 & 6 are
executed followed by statement 9. If expression3 also evaluates to false, then statements 7 & 8 are executed
followed by statement 9.

Examples:

if x >= 8 then goto ProcessComplete; else goto next;

if dig1 then {
 set digout1 off;
 x = 0;
}

92

QuickBuilder™ Reference Guide

Control Technology Corp.

else x = 1;
If instructions are not atomic when contained in a step, but the body of the then or else instruction is
atomic.

 Note that if a negative number is used in a conditional statement it must be surrounded by parenthesis, (...).
For example x >= (-8). Failure to do so will typically result in a 0 literal.

3.6.11 While

The while instruction repeatedly tests a conditional expression and executes one or more statements while true.

The while instruction operates as follows:

If the condition initially evaluates to true (non-zero) then the statement or statement block is executed.

Once the statement or statement block has been executed, the conditional expression is evaluated again and if still
true, then the statement or statement block is again executed.

The process repeats over and over again until the conditional expression evaluates to false (a zero value).

The two forms of the while statement are:

while expression repeat statement;

while expression repeat {

statement;

statement;

...
}

While instructions are not atomic when contained in a step, but the body of the while instruction is atomic.

 Note that if a negative number is used in an expression it must be surrounded by parenthesis, (...). For
example x >= (-8). Failure to do so will typically result in a 0 literal.

3.6.12 Repeat/Until

The repeat…until instruction executes a statement or statement block and then tests whether or not a given
condition evaluates to true (non-zero). If the condition is true, then control exits the repeat. If the condition is
false (zero), then the statement or statement block is executed again.

Once the statement or statement block has been executed again, the conditional expression is evaluated again and
if still false, then the statement or statement block is again executed.

The process repeats over and over again until the conditional expression evaluates to true (a non-zero value).

The two forms of the repeat statement are:

repeat statement; until expression;

repeat {

QuickBuilder Reference Guide 93

Doc. No. 951-530020-010

statement;

statement;

...

} until expression;

Repeat instructions are not atomic when contained in a step, but the body of the repeat instruction is atomic.

 Note that if a negative number is used in an expression it must be surrounded by parenthesis, (...). For
example x >= (-8). Failure to do so will typically result in a 0 literal.

3.6.13 For

The for instruction executes a statement or statement block while at the same time iterating a variable over a range
of values.

For instructions are not atomic when contained in a step, but the body of the for instruction is atomic.

The four forms of the for statement are:

for variable = start to end repeat statement;

for variable = start to end by increment repeat statement;

for variable = start to end repeat
{

statement;

statement;

...
}

for variable = start to end by increment repeat
{

statement;

statement;

...
}

For example, to iterate the variable "i" from 1 to 10 (inclusive) by an increment of 1 (one):

for i = 1 to 10 repeat
{

statement;

statement;

...
}

To iterate the variable "i" from 0 to 6 (inclusive) by steps of 2 (0, 2, 4, 6):

for i = 0 to 6 by 2 repeat
{

statement;

statement;

94

QuickBuilder™ Reference Guide

Control Technology Corp.

...
}

To iterate the variable "i" from 10 to 1 (inclusive) decrementing each time:

for i = 10 to 1 by -1 repeat
{

statement;

statement;

...
}

3.6.14 Break

The break instruction aborts a while, for or repeat instruction. When this instruction is encountered, no more
looping or iterating occurs and the "exit" condition (such as the while's until condition) is not tested.

The syntax of the break statement is:

b r eak ;

In the following example, the variable "i" is iterated from 1 to 100. If however, the variable "x" exceeds
100, then no more iteration occurs:
for i = 1 to 100 repeat
{

...

if (x > 100) then break;

...
}

In the following example, statements 1 and 2 are executed while the variable "digin1" is true. If, however, the
variable "y" equals -1, then the while loop is exited and statement 3 is executed.

while digin1 repeat {

statement1;

statement2;

if y == -1 then break;

...
}

statement3;

3.6.15 Continue

The continue instruction immediately begins the next iteration ("loop") of a while, for or repeat instruction.
When this instruction is encountered, no more statements are executed until the iteration condition is tested
(while and repeat) or the next iteration begins (for).

The syntax of the continue statement is:

continue;

QuickBuilder Reference Guide 95

Doc. No. 951-530020-010

In the following example, the variable "i" is iterated from 1 to 100. If however, the variable "x" exceeds 100 (after
statement 9 is executed) then statement 10 is not executed but the next iteration of "i" occurs instead:

for i = 1 to 100 repeat
{

...

statement9;

if (x > 100) then continue;

statement10;
}

3.6.16 Delay

The delay instruction is similar to the delay instruction in QS2, except there is no branch operation (reference
'timeout' for compatibility). This instruction causes the controller to proceed after a specified amount of time has
passed.

This time delay is specified as:

delay expression ms;

Note: the internal resolution of the controller is 1 millisecond and all times will be rounded appropriately.

3.6.17 Timeout

The timeout instruction is similar to the delay instruction available in QS2. This instruction causes the controller
to proceed after a specified amount of time has passed.

This time delay is specified as:

timeout expression ms goto label;

The big difference from the delay instruction is timeout runs in the background. The first time it is executed,
within a step, it is initialized, every execution after that is a test to see if the timeout occurred, resulting in the
branch if it did. You must re-execute in order to test the state of the timer. Also if multiple timeout instructions
are executed within a step, the last one if the one active but all will be tested. Exiting a step will clear the timer.

Note: the internal resolution of the controller is 1 millisecond and all times will be rounded appropriately.

3.6.18 When

The when instruction is simpler in form than the if instruction but more efficient in operation.

The syntax for the when instruction is:

when expression goto step;

If the expression is initially true (non-zero) a branch will occur to the specified step step immediately – if it is false
(zero) the expression will be tested the next time the task is allowed to run.

Once the expression finally evaluates to true a branch will occur to the specified step.

96

QuickBuilder™ Reference Guide

Control Technology Corp.

The when instruction is not equivalent to the monitor instruction in QS2 – the when instruction is equivalent to
the transition condition used in QS4 steps.

 Note that if a negative number is used in an expression it must be surrounded by parenthesis, (...). For
example x >= (-8). Failure to do so will typically result in a 0 literal.

3.6.19 Enable, Disable (Event)

Events and their associated functionality often require program-level enabling and disabling.

For example, there may be a specific point in a QuickStep program where an event should not be allowed to occur
(initialization, during fault-handling, etc.). For this reason, a couple of QS4 instructions were creating to facilitate
enabling and disabling of these events.

The two forms of this instruction are:

enable event event;

disable event event;

The enable and disable instructions are also used with other resource variables and are covered later in this
document.

All events are initially disabled when program execution begins – it is required that a task programmatically
enable some or all events as required.

Example:

enable event MY_event;
disable event MY_event;

 Note that an 'event' counts as an active task. You are limited to 96 total active tasks, functions & events.

3.6.20 Do

The do instruction starts one or more child tasks.

The parent task (that executed the do instruction) will not continue execution until a done instruction is issued by
each child task.

The two forms of this instruction are:

do (task task ...)

do task with expression, expression, ...

The first form starts the listed child tasks but waits until each child task has finished executing before continuing
execution.

The second form starts a single child task passing a series of parameters to the task. The parent task will wait
until the single child task has finished before continuing execution.

QuickBuilder Reference Guide 97

Doc. No. 951-530020-010

The parameter types and storage must match the signature of the task being started – that is if the task being
started takes two parameters (for example, a scalar integer and a scalar double), then the calling parameter types
must match.

3.6.21 Begin

The begin instruction starts one or more child tasks.

Unlike the do instruction, the begin instruction does not wait until the child task(s) complete(s) before execution
continues – the task(s) is/are started and control is returned immediately to the parent task for continued
execution.

Since more than one instance of a task can be started simultaneously, when tasks are begin-ed the QS4 runtime
returns a task handle for each started task.

When a single task is started with begin, the user can store a task handle in a scalar variable – if multiple tasks
are begin-ed, the user can store these series of task handles in a vector variable.

If the task handles are not needed later in program execution, they do not need to be stored.

The first two forms of this instruction are:

begin (task task ...) ;

begin (task task ...) tasks to variable ;

These two forms of the begin instruction start a series of tasks. The second form allows the user to store the
series of returned task handles into a vector variable.

The last four forms of this instruction are:

begin task ;

begin task task to variable ;

begin task with expression, expression, ... ;

begin task task to variable with expression, expression, ... ;

The first form simply begins a task.

The second form begins a task and stores the task handle for the started task into the specified (integer) scalar
variable.

The third form begins a task with a list of parameters. Just like its counterpart do, the parameter types and storage
must match the signature of the task being started – that is if the task being started takes two parameters (for
example, a scalar integer and a scalar double), then the calling parameter types must match.

The fourth and final form begins a task with a list of parameters – in addition, a variable is specified for holding
the resulting task handle. The same rules apply for this form – the specified variable must be (an integer) scalar,
and the parameters must match the signature of the task being started.

3.6.22 Cancel

The cancel instruction stops one or more child task specified in the instruction itself or all running tasks (2nd
form) or all other tasks (3rd form).

98

QuickBuilder™ Reference Guide

Control Technology Corp.

The two forms for this instruction are:

cancel variable;

cancel all tasks;
cancel other tasks;

The first form of this instruction cancels one or more tasks:

· If the named variable is a vector variable, then it is assumed to contain a series of task handles – each
of these tasks will be stopped.

· If the named variable is a scalar variable, then it is assume to contain a single task handle – the single
task will be stopped.

The second form of this instruction cancels all the running tasks including the task that is executing the step
containing this instruction.

The third form of this instruction cancels all the running tasks except the task that is executing the step
containing this instruction.

3.6.23 Done

The done instruction stops this task – the task executing the done instruction. The done instruction also informs
a possibly waiting parent task that this child task has been completed.

The only form for this instruction is:

done;

3.6.24 Start

The start statement begins execution of the named motion sequence block (MSB) on the specified axis. The
MSB is started as a background (BG) MSB. If the named MSB is already active on the axis, then the statement is
effectively ignored.

start axis MSB;

See the QuickMotion Reference Guide for additional information on motion control programming.

3.6.25 Stop

The stop statement ends execution of all foreground (FG) and background (BG) MSBs that are active on the
specified axis.

stop axis;

See the QuickMotion Reference Guide for additional information on motion control programming.

3.6.26 Soft Counters

Reference Chapter 3. This is an enhancement added to support Quickstep 2/3, Soft Counters.

QuickBuilder Reference Guide 99

Doc. No. 951-530020-010

3.6.27 Rotate, Shift Flags

Quickstep 2/3 compatible flag rotate instructions:

rotate <QS2flag> << or >> <QS2flag> [number times] range must be on 32 bit boundry 1 to 31, 32 to 63, etc.

The ROTATE instruction replaces the status of a flag (either set or clear) with the status of the flag preceding or
following it. The first flag in the series inherits the status of the last flag in the series.

shift <QS2flag> << or >> <QS2flag> [number times] range must be on 32 bit boundry 1 to 31, 32 to 63, etc.

The SHIFT instruction replaces the status of a flag (either set or clear) with the status of the flag preceding or
following it. The first flag in the series is automatically cleared.

Note: <QS2flag> - Overridden register variables from 13201 to 13228 representing individual flag registers within
the controller.

100

QuickBuilder™ Reference Guide

Control Technology Corp.

4 Chapter 4: Importing QuickStep 2/3 Projects

Quickstep 2/3 programs can be imported into the QuickBuilder programming environment. Quickstep programs

were those programs used on controllers such as the 5100/5200/2600/2700 series as well as the 5300. The 5300

also offers the more advanced QuickBuilder programming environment. Importing a Quickstep program will allow

it to run on the 5300. When moving from the Quickstep to the QuickBuilder environment a few things need to be

noted:

Quickstep:

· Each step executes an ‘assignment instruction’, such as ‘store’, only once during step execution. A

function ‘call’ will always executed and yield to other steps.

· If a ‘goto’ is not executed the step will loop upon itself executing only the ‘if’, ‘while’, ‘when’, ‘repeat’,

‘for’, ‘call’, and other conditional type statements. The conditional is tested during each loop but the

assignment operations are only done the first loop, even if the conditional was not satisfied. As long as

the conditional is satisfied on the first loop the assignment instructions within that conditional will be

executed.

· You must execute a branch instruction to exit a step block, the visual links connecting the blocks serve

no function other than specifying which task the step belongs to.

· Execution will be atomic within a step until the end of the step is reached, a branch occurs, or a

‘while/when’ loop begins to execute again (after does the first loop within itself).

· Monitor instructions are now If conditional instructions.

· Quickstep referenced a single data table of unsigned 16 bit integers, QuickBuilder allows for numerous

data tables, both volatile and non-volatiles and with differing types, 32 bit integers, float64, and strings.

· QuickBuilder supports all previous Quickstep instructions natively or modifies syntax to a new format

where required. This includes native support for TURN, ZERO, SEARCH AND ZERO, PROFILE,

SCOUNT (previously COUNT), ROTATE, and SHIFT. MONITOR is now an IF statement. A new

instruction of TIMEOUT replaces the prior Quickstep DELAY and works the same.

· Quickstep allowed tasks to execute code in other tasks while QuickBuilder did not. In other words a task

can jump into the code of another task and execute it as though it is its own. This tends to make the

code difficult to follow and debug. Since during the import unique step names exist this rule has been

made flexible and is now allowed, but not recommended. A warning will be generated during translation

and can be ignored.

· Quickstep allowed 40 characters for step and task names, QuickBuilder allowed 16. QuickBuilder was

expanded to 40.

· Quickstep allows to multiple symbols to reference the same digital input, active high and active low.

QuickBuilder only allows a single symbol definition. To enable the import to function properly this

restriction was relaxed to allow the multiple references to be listed in the digital input resource tree. Once

deleted it cannot be re-created and QuickBuilder will not allow you to do this within a normal project. It

is meant to support the initial Quickstep import but going forward should not be used.

QuickBuilder:

QuickBuilder Reference Guide 101

Doc. No. 951-530020-010

· Each step executes an ‘assignment instruction’, such as a ‘store’, every time executed, similar to

procedural programming logic.

· If a ‘goto’ is not executed the step will branch to the next step, connected to by the visual link, if none

then the task will execute a ‘done’ command.

· Execution will be atomic within a step until the end of the step is reached, a branch occurs, or a ‘while’,

‘when’, ‘repeat’, ‘for’ loop begins to execute again (after does the first loop within itself). A ‘delay’

and’call’ instruction always yields to other steps.

· The visual links between step blocks are functional when using QuickBuilder mode.

· Quickstep allowed 40 characters for step and task names, QuickBuilder allowed 16. QuickBuilder was

expanded to 40. This will cause an old program that is loaded into the new version of QuickBuilder to

have its steps visually overlay each other, due to a change in spacing. Select the ‘View-> Autoformat

Grouped Area’ menu item to reformat the screen. This only needs to be done once. Each Page will have

to be reformatted.

Prior to attempting the import of a Quickstep program the program must be fully compiled using Quickstep and

contain no errors. All generated files must be present within the same directory. During import only the

Quickstep Booleans of AND, OR, ANDNOT, and XOR are supported. Every attempt is made to execute the

imported Quickstep programs in a similar manner as before but all possible deviations can not be 100% tested. It

is important to fully test your program prior to deployment into a production environment. For example

something as simple as speed of execution may cause problems with some programs, depending upon how they

were written.

4.1 Datatables

If a data table is present within the imported Quickstep program a non-volatile variant table, register 36800, is

referenced within the QuickBuilder generated code called ‘_datatable’, with a data type of 32 bit signed integer.

The table will not be created, only referenced, and it either needs to be created by your program or by using

external means, such as using the Quickstep generated .tab file. Not keeping the data table as part of the program

is on purpose, since the table is non-volatile, you do not want to initialize it every time a new program is loaded or

modified. Quickstep use to keep it as part of the program and whenever a new Quickstep program was loaded

into the controller the data table had to be backed up and restored, manually, given the new Quickstep program

would overwrite the values in the table.

If a default value of ‘0’ is valid for the table then it can be created programmatically by writing to the last cell of

the desired table size:

_datatable[lastrow-1][lastcolumn-1] = 0;

Assuming the original Quickstep .tab file will be referenced, then that file must be placed on the controller at the

‘datatablespath’ location. By default this is “/_system/Datatables” directory, and resides in flash. If you wish

this to be changed to RAMDISK, or some other location you can change the default by using:

‘set datatablespath myDatatablesDir

Where myDatatablesDir is a user defined path.

102

QuickBuilder™ Reference Guide

Control Technology Corp.

Once the Quickstep .tab file has been placed in the proper directory, typically by FTP, the file can be loaded

directly into the variant register using the ‘load datatable 36800 qs2.tab’ telnet command, any existing data table

will be erased and the new table created with the values residing within the referenced file.

load datatable 36800 qs2.tab (note that qs2.tab is whatever the file name was generated as Quickstep

compilation output).

4.2 Motion Control

QuickBuilder uses MSB’s for motion control. Quickstep had a number of commands which were specific to

motion control. When a Quickstep program is imported into QuickBuilder two MSB’s are automatically included

from a library (<InstallationDir>\Resources\QS2_Motion.qbl) which provides an interface for these instructions

as well as the Quickstep Motion Registers, such as 14/15/17000 register blocks. These MSB blocks can be

customized by the user, as needed. These two automatically generated MSB’s are known as the Quickstep

Motion Simulation Environment. Note that the user units of Quickstep were counts whereas that of QuickBuilder

can be user defined, typically revolutions. QuickBuilder also supports 64 bit data whereas Quickstep was only 32

bit integers. This restriction still applies to an imported program, although as modifications are made full access

to the 64 bit data is available as with any QuickBuilder program. The restriction is only in the use of the legacy

motion commands, such as TURN, ZERO, PROFILE, and SEARCH AND ZERO.

In order to support the Quickstep MONITOR and IF instructions a function called _servoInfo() has been added

to QuickBuilder in order to interface with the motion control Quickstep simulation environment. Its accepts two

parameters, the first the motion axis name with a property of .Axis following it, which generates an axis number, 1

to N. The second parameter what information is desired. The second parameter can be hard coded or what the

importer does, defined as an XVar constant:

_servoInfo(<Axis>.Axis, request) returns a 1 or 0 based on true or false where ‘request’ is one of

following:

 XVars defines:
__CTC_SERVO_ERROR with constant value of 8
 __CTC_SERVO_POSITION with constant value of 7
 __CTC_SERVO_RUNNING with constant value of 5
 __CTC_SERVO_STOPPED with constant value of 6

Note: __CTC_SERVO_POSITION returns a 32 bit signed count value representing the current position.

Quickstep Motion instructions now supported in the QuickBuilder environment:

<Axis> - M340 axis name defined in the resource tree.
<cw/ccw> - Either select cw for clockwise, or ccw for counter clockwise rotation.

motion <Axis> hardstop/softstop

The STOP SERVO instruction brings the servo to a halt. You can choose one of the following methods
to stop the servo:
• softstop - Causes the servo to stop at the deceleration rate specified in the last profile instruction.

Example:
motion servo_2 softstop

QuickBuilder Reference Guide 103

Doc. No. 951-530020-010

• Hard Stop - Causes the controller to attempt to stop the servo instantly. However, because of
momentum (caused by the inertial load), the servo does not stop instantly and consequently the
absolute position may be lost and instability may result.

Example:
motion servo_1 hardstop

In either case, you should use a monitor instruction before issuing another turn instruction.

turn <Axis> to <Expression>
turn <Axis> <cw/ccw> [<Expression> steps]
turn <Axis> <cw/ccw>

The TURN SERVO instructions initiate a new servo motion. The controller must have executed a
PROFILE SERVO instruction to define the motion parameters. TURN SERVO defines the distance the
servo travels using one of the following methods:

• Absolute — Turns the servo a calculated number of steps based on the distance from a predetermined
zero position.

Example:
turn servo_1 to 1500
turn servo_2 to 1500 on_start_switch

The second absolute distance instruction also requires a contact closure on the servo module’s
dedicated start input before the servo motion begins.

• Relative — Turns the servo clockwise or counter clockwise a specified number of steps from the
current motor position.

Example:
turn servo_5 cw 70000 steps

NOTE: step = encoder signal transition

• Velocity — Begins continuous clockwise or counter clockwise motion. The servo remains in motion
until the controller executes a ‘motion <axis> hardstop/softstop’ instruction or the servo control module
senses a stop input signal.

Example:
turn servo_5 ccw

NOTE: Do not issue another TURN SERVO instruction for a servo while the servo is still in motion. If
the servo is still turning, the controller reports a software fault (servo not ready) and halts execution of
the program. Before issuing another turn instruction, you should program a monitor servo:stopped
(_servoInfo(<axis.axis>,__CTC_SERVO_STOPPED) instruction prior to any subsequent turn instruction.

profile <Axis> servo at position [maxspeed = <Expression>] [accel = <Expression>]
[P = <Expression>] [I = <Expression>] [D = <Expression>]

profile <Axis> motor off at position [maxspeed = <Expression>] [accel = <Expression>]
[P = <Expression>] [I = <Expression>] [D = <Expression>]

profile <Axis> deadband of <Expression> at position [maxspeed = <Expression>] [accel = <Expression>]

104

QuickBuilder™ Reference Guide

Control Technology Corp.

[P = <Expression>] [I = <Expression>] [D = <Expression>]

profile <Axis> [maxspeed = <Expression>] [accel = <Expression>][P = <Expression>] [I = <Expression>]
[D = <Expression>]

Note: P/I/D information is not presently used but is passed to the Quickstep Motion Simulation MSB.

The Profile Servo instruction sets the motion parameters for a servo as follows:

· Maximum Speed (max) — Establishes the maximum speed of the servo. It is defined in encoder
pulse edges (steps) per second (fully decoded).

· Acceleration Rate (accel)— Specifies the acceleration rate of the servo. Defined in encoder
pulse edges (steps) per second per second (steps/sec2). This parameter also sets the
deceleration rate. If you want the acceleration and deceleration values to be different, store the
deceleration value to a special purpose register. The following example sets the deceleration
rate:

Example:
profile servo_1 max=50000 accel=100000

store 20000 to reg_15006 (axis No. 1 deceleration register)

· P (Proportional) Filter - Specifies the factor applied to the sensed position error to create a
correction signal. It is expressed as a multiplication factor from 0 to 255. (Not currently used).

· I (Integral) and D (Derivative) Filters - Determine the characteristics of the built-in digital
compensation filter. (Not currently used).

· Holding Mode - Specifies the status of the servo when stopped, using one of the following
parameters:
o Servo at position - Once the servo reaches the desired position, the actuator will

continuously seek this position. If the actuator is forced from its position, the servo control
module sends a correction signal to attempt to correct the perceived error.

o Deadband of __ at position - The servo control module senses position errors but does not
correct them unless the error is out of the range of the Deadband.

o Off at position - Once the servo reaches position no further corrective action occurs. This
allows manual adjustment or another external force to change the position of the servo.

o None - Indicates that the controller should use the holding mode specified in a previous
PROFILE SERVO instruction.

The PROFILE SERVO instruction does not start the servo motion. To initiate motion use the TURN
SERVO instruction. You may respecify the servo profile parameters any number of times in the same
program. Any of the numeric parameters for a servo motor can be drawn from any of the controller’s
numeric resources, instead of being expressed as a fixed number. For additional information, refer to the
section on the STORE instruction.

Unlike a stepping motor, you can execute a new PROFILE SERVO instruction while the servo is still in
motion. You can change any parameter except the acceleration rate.

Example:
profile servo_3 servo at position maxspeed=15000 accel=35000 P=10 I=95 D=50

search and zero <Axis>

The SEARCH AND ZERO SERVO instruction sets a zero or home reference position for a servo. The
SEARCH AND ZERO SERVO instruction starts the servo turning at the rate specified in the PROFILE
SERVO instruction until the servo control module senses a contact transition on its home limit switch

QuickBuilder Reference Guide 105

Doc. No. 951-530020-010

input (dedicated input). Depending on the model of the servo control module you have, the instruction
functions differently.

Example:
search and zero servo_1

zero <Axis>

The ZERO SERVO instruction sets the current position of the servo as its zero or home reference
position.

Example:
zero servo_1

 Important: When doing motion control you must tune your motor and set the properties for each axis prior to
operation (M3-40 axis). Also make sure you set the driveenable property to the proper output to enable the drive,
it is disabled, 0, by default. CTC demo boxes use output #1, thus a change is needed.

4.3 Variables

When importing a Quickstep program some variables are automatically created, other than the XVar constants

referenced in the Motion Control section, another is __qb_local01. This is a scratch variable for internal use only

and is assigned to use the task local register 36089.

4.4 Soft Counters

The counter instructions control the eight internal counters in a controller. These instructions can start a counter
and increase or decrease the value in one of the controller’s counters. They also reset, enable, and disable any of
the controller’s counters.

<counter> - Where counter a register overridden as 1 to 8 or variable that contains the counter number.

scount up <counter>

COUNT UP adds one to the current value in the counter.

Example:
scount up ctr_3

scount down <counter>

COUNT DOWN subtracts one from the current value in the counter.

Example:
scount down ctr_3

scount enable <counter>

 Count Enable reactivates a counter that was temporarily disabled.

106

QuickBuilder™ Reference Guide

Control Technology Corp.

Example:
scount enable ctr_3

scount disable <counter>

Count DISABLE temporarily disables a counter so that it does not accept any count up, count down, or
reset pulses until it is enabled.

Example:
scount disable ctr_3

scount reset <counter>

Count Reset returns the value in the counter to zero.

Example:
scount reset ctr_3

scount start <counter> [up <input>] [down <input>] [reset <input>]

Count Start initializes a counter. The counters overlay the first eight registers (i.e., counter No. 1 =
register No. 1). When starting the counter,
you can assign three of the controller’s inputs to perform the count-up, count-down, and reset
functions:

scount start ctr_1 up in_5A down in_6B reset in_7A

This initializes the counter and assigns functions to three of the controller’s inputs. These inputs
continue sending input signals to the counter until the counter is re-initialized or disabled.

— Up in_5A, specifies that input No. 5 is being used for the count up function and increments the
counter for each switch closure. The A specifies that the input is a normally-open input. A normally-
open input means that the count occurs when the switch closes.
— Down in_6B, specifies that input No. 6 is being used for a countdown function and decreases the
value in the counter by one for each time the switch opens. The B specifies that the input is a normally
closed input. A normally-closed input means that the count occurs when the switch opens.
— Reset in_7A, resets the value in the counter to zero when the switch closes.

Note: The De-bounce available in Quickstep Start Count instruction is not supported and is removed
upon importing. Also the DigitalInput ‘activeState’ property is not referenced, using the default ‘true’
value. ‘activeState’ is only applied for normal register read operations.

4.5 Reserved Words Error Search

A Quickstep program may use variable and/or step names which are reserved by QuickBuilder. Sometimes these

can be difficult to find. The correction can be made by simply searching for all instances of the reserved word

and replacing it with a new one. If the reserved word was used as a variable the variable name should be changed

first, for example ‘timeout’ changed to ‘Timeout’ or ‘position’ changed to ‘Position’. Then attempt a translation

and it will fail due to a syntax error. A dialog box will display what task and step the error is in. Scroll through

that task until you see the red underlines under the instructions, indicating a syntax error. Assuming you have

more than one place you use this variable, select the ‘Editor’ tab and you will now have a full text editor display of

multiple steps. Hold the Control key down and hit ‘F’, CNTRL F, and a find/replace screen will display. Fill out

the dialog as desired and select ‘Replace All’:

QuickBuilder Reference Guide 107

Doc. No. 951-530020-010

Your entire program, all pages, will be searched for what desired and replaced accordingly. Be sure to select

‘Match case’, ‘Match whole word’, and ‘Global’ prior to selecting the ‘Replace All’ button. Close the

Find/Replace screen and select ‘Translate’ again, repeating above for each error instance until your program fully

translates.

In looking for step names that may be using a reserved word as its name typically the link prior to that having a

reserved word will be pink versus white. For example 'motion' is a reserved word, below shows the error:

To correct this problem the step named 'motion' would have to be edited, for example changed to 'motionx', as well

as any references. To resolve the pink box and clear that error simple double click on the box and the parser will

then see the step name has been changed and clear the error. Sometimes you need to click the clear box below as

well if an error still exists.

4.6 Importing

To import a Quickstep project first create an empty project with the proper controller modules in place. Save that

project with no steps or tasks present, now re-open the empty project. If the project is imported and there are not

108

QuickBuilder™ Reference Guide

Control Technology Corp.

enough resources you will be warned to reference the unassigned folder for resources not defined. Re-open the

saved project, added the needed resources, and attempt the Import again until adequate resources exist.

QuickBuilder Reference Guide 109

Doc. No. 951-530020-010

110

QuickBuilder™ Reference Guide

Control Technology Corp.

When adequate resources exist the import process will begin, first by assigning symbols followed

by scanning for all tasks and then building the task tree’s.

Once complete a dialog box will appear.

QuickBuilder Reference Guide 111

Doc. No. 951-530020-010

Below is an example of an imported program, each task is a separate tree.

112

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickBuilder Reference Guide 113

Doc. No. 951-530020-010

Sample Quickstep 2/3 motion instructions imported and converted to the QuickBuilder environment:

114

QuickBuilder™ Reference Guide

Control Technology Corp.

Sample resources generated after input:

QuickBuilder Reference Guide 115

Doc. No. 951-530020-010

Upon translation warnings may occur when a task branches into the code of another task. This is typical for a

Quickstep program, although not good programming practice, hence the warning. It can be ignored.

 Important: When doing motion control you must tune your motor and set the properties for each axis prior to
operation (M3-40 axis). Also make sure you set the driveenable property to the proper output to enable the drive,
it is disabled, 0, by default. CTC demo boxes use output #1, thus a change is needed.

 Translation Errors - In looking for step names that may be using a reserved word, as its name, typically the
link prior to that having a reserved word will be pink versus white. For example 'motion' is a reserved word, below
shows the error:

To correct this problem the step named 'motion' would have to be edited, for example changed to 'motionx', as well

as any references. To resolve the pink box and clear that error simple double click on the box and the parser will

116

QuickBuilder™ Reference Guide

Control Technology Corp.

then see the step name has been changed and clear the error. Sometimes you need to click on the clear box below

the step as well should a translation error continue to occur.

QuickBuilder Reference Guide 117

Doc. No. 951-530020-010

5 Chapter 5: BACnet/IP

BACnet (Building Automation and Controls network) was developed by the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE, www.bacnet.org). BACnet is an ISO global standard,
American national standard, a European pre-standard, and is used in more than 30 countries.

BACnet is a data communication protocol, or set of communication rules, that ASHRAE created in order to
standardize communication between building automation system components. It allows systems from various
vendors, such as HVAC, lighting, security and fire systems, to communicate with each other by providing
standardized methods for presenting, requesting, interpreting, and transporting information.

QuickBuilder has a powerful BACnet programming implementation. Almost all devices, objects, and properties
can be accessed programmatically, in real time. It is expected that the basic programming skills of QuickBuilder
are understood before proceeding with this section. Also the basics of BACnet Devices and Objects is needed.
Reference document 951-536105, "BACnet Communications Guide" for more detailed QuickBuilder and 5300
controller information. BACnet is not presently supported within the Incentive embedded PC platform.

QuickBuilder allows a programmer to take a standard volatile variant table and remap it to BACnet device objects.
 Object values can be read and written, in real time, as the instruction is executed. No values are cached and the
operation is initiated immediately. Since QuickBuilder programs run as independent threads this does not affect
other task operation. If a polled mode is desired then it is recommended a programmer dedicate a single task to
periodically reading BACnet data and storing it into local QuickBuilder variables for other tasks to access, this
may be more efficient than simply reading an online variable randomly.

As with reads, writes also occur immediately and as soon as control is returned to the task, the write has
occurred. Last read and write error status is also available as well as online system status to ensure data integrity.
 The 5300 ‘tsm timeout’ and ‘tsm retries’ setting will determine the maximum amount of time a task will hang
should the device be powered off and an attempt to access is made. Note that if the device has already been
identified as offline then control will return immediately, with the appropriate error code set. It is only during the
transition to offline that a delay may occur. Actual read and write times will vary, dependent upon the response
time of the device you are conversing with. The 5300 typically initiates the transaction within 1-2 mS.

4 The QuickBuilder/5300 interface does not support properties that have an array. Typically only the first

element will appear in a read but given the vast number of properties testing of each desired would be needed.

5.1 BACnet Volatile Tables

In order to define a QuickBuilder volatile variable to be a BACnet aware a number of things must be done. In the
example below we are defining a variable ‘BACNet_AnalogReg’ to be redirected to the BACnet network. It will
interact with a device called “New Virtual Device 1” and an analog output called “My New Object”. In this
particular example the SCADA Engines BACnet Simulator is being used, converting a PC into a BACnet/IP server.

1. Define a variable of storage ‘table’ and type ‘any’:

118

QuickBuilder™ Reference Guide

Control Technology Corp.

2. In your program initialize the first element of the table prior to access (only do this once):

// Initialize the variant register we will use for BacNet, this just

// creates it by writing any value to the first cell.

BACNet_AnalogReg.i[0][0] = 0;

3. Set the BACnet indirection flag (only do this once):

// Set our Variant selection register so we can indirectly set the BACNET

remote flag

$REGISTERS[36804] = addr(BACNet_AnalogReg);

// Set the remote access flag, we are now a BACnet remote variable

$REGISTERS[36814] = 1;

4. Initialize the table entries for the Device to communicate with, Object Name, and Object Type. It is
assumed that the Device name is unique on the network and the Object Name is unique for the Object
Type defined. If not the BACnet Device Instance and Object Instance information will need to also be
set (Refer to the QuickBuilder Explorer for the needed information). Each row specifies a specific device
while the column is the property to be accessed for that device. The variable may reference as many
different BACnet objects as desired by simply changing the row index. You may also define multiple
tables of different QuickBuilder names referencing the same device and the same or different BACnet
objects.

// Set the device entry for this array element, multiple device definitions may

be defined

// by incrementing the row value of the table. Below we are assuming the first

table entry.

QuickBuilder Reference Guide 119

Doc. No. 951-530020-010

// ‘device’ is an integer.

device = 0;

// Initialize the Device Network Name, each row can be a new or the same device

to access,

// regardless, each row must be initialized to create a mapping.

BACNet_AnalogReg.s[device][$PROP_BACNET_CTC_DEVICE_NAME] = string("New Virtual

Device 1");

// Set the object name we map to

BACNet_AnalogReg.s[device][$PROP_BACNET_CTC_OBJECT_NAME] = string("My New

Object");

// Set the object type expected, OBJECT_ANALOG_OUTPUT

BACNet_AnalogReg.i[device][$PROP_BACNET_CTC_OBJECT_TYPE] =

$OBJECT_BACNET_ANALOG_OUTPUT;

// If duplicate names exist on the network then the BACnet defined device

instance must be

// set, the default is -1, which means the first found matching the device

name.

BACNet_AnalogReg.i[device][$PROP_BACNET_CTC_DEVICE_INSTANCE] = 1;

// If duplicate object names exist for the desired object type then the object

instance must

// be set, the default is -1, which means the first found matching the object

name/type.

BACNet_AnalogReg.i[device][$PROP_BACNET_CTC_OBJECT_INSTANCE] = 0;

5. Duplicate the above for all BACnet objects desired, then prior to accessing wait for the device to be
online. This is only needed for the first variable to be used accessing that particular device:

// Check the system status for this device

online_status = BACNet_AnalogReg.i[device][$PROP_BACNET_CTC_SYSTEM_STATUS];

// If 1 then am online, if 0 then offline

if (online_status == 1) then goto online;

// Wait for bit, then check again

delay 1000 ms;

goto wait_online;

6. Once online you may freely access the variable and properties as desired. Since the variant is of type
‘any’ you must use the .f32 for a float, .i for an integer or enumerated BACnet type, or a .s for a string.
The type will automatically be changed to the proper type of the property you are accessing, if possible.

// It is online so loop, writing a value, use .f32 since an analog output is of

type Real.

BACNet_AnalogReg.f32[device][$PROP_BACNET_PRESENT_VALUE] = test_value;

// Verify wrote properly and read the last write error, will be 0 if no error,

-1 if busy,

// else error code. Since we block during write we do not have to loop for

results

result_code = BACNet_AnalogReg.i[device][$PROP_BACNET_CTC_LAST_WRITE_ERROR];

// See if OK

if (result_code != 0) then goto error_handler;

// Wrote properly so continue

120

QuickBuilder™ Reference Guide

Control Technology Corp.

test_value = test_value + 1.0;

// continue to loop

goto online;

5.2 BACnet System Variables

BACnet Property Constants

 PROP_BACNET_DEVICE_NAME = 0
 PROP_BACNET_ALARM_VALUE = 6
 PROP_BACNET_APDU_TIMEOUT = 11
 PROP_BACNET_BIAS = 14
 PROP_BACNET_COV_INCREMENT = 22
 PROP_BACNET_DEADBAND = 25
 PROP_BACNET_DERIVATIVE_CONSTANT = 26
 PROP_BACNET_DESCRIPTION = 28
 PROP_BACNET_ERROR_LIMIT = 34
 PROP_BACNET_FEEDBACK_VALUE = 40
 PROP_BACNET_HIGH_LIMIT = 45
 PROP_BACNET_INTEGRAL_CONSTANT = 49
 PROP_BACNET_LIMIT_ENABLE = 52
 PROP_BACNET_LOCAL_DATE = 56
 PROP_BACNET_LOCAL_TIME = 57
 PROP_BACNET_LOCATION = 58
 PROP_BACNET_LOW_LIMIT = 59
 PROP_BACNET_MAXIMUM_OUTPUT = 61
 PROP_BACNET_MINIMUM_OFF_TIME = 66
 PROP_BACNET__MINIMUM_ON_TIME = 67
 PROP_BACNET_MINIMUM_OUTPUT = 68
 PROP_BACNET_MIN_PRES_VALUE = 69
 PROP_BACNET_MODEL_NAME = 70
 PROP_BACNET_OBJECT_IDENTIFIER = 75
 PROP_BACNET_OBJECT_NAME = 77
 PROP_BACNET_OBJECT_PROPERTY_REFERENCE = 78
 PROP_BACNET_OBJECT_TYPE = 79
 PROP_BACNET_OUT_OF_SERVICE = 81
 PROP_BACNET_OUTPUT_UNITS = 82
 PROP_BACNET_POLARITY = 84
 PROP_BACNET_PRESENT_VALUE = 85
 PROP_BACNET_PRIORITY = 86
 PROP_BACNET_PROGRAM_STATE = 92
 PROP_BACNET_PROPORTIONAL_CONSTANT = 93
 PROP_BACNET_RELIABILITY = 103
 PROP_BACNET_RELINQUISH_DEFAULT = 104
 PROP_BACNET_RESOLUTION = 106
 PROP_BACNET_SETPOINT = 108
 PROP_BACNET_SETPOINT_REFERENCE = 109
 PROP_BACNET_STATUS_FLAGS = 111
 PROP_BACNET_SYSTEM_STATUS = 112
 PROP_BACNET_TIME_DELAY = 113
 PROP_BACNET_UNITS"] = 117

QuickBuilder Reference Guide 121

Doc. No. 951-530020-010

 PROP_BACNET_UPDATE_INTERVAL"] = 118
 PROP_BACNET_AVERAGE_VALUE"] = 125
 PROP_BACNET_ENABLE"] = 133
 PROP_BACNET_MAXIMUM_VALUE"] = 135
 PROP_BACNET_MINIMUM_VALUE"] = 136
 PROP_BACNET_VARIANCE_VALUE"] = 151
 PROP_BACNET_SETTING"] = 162
 PROP_BACNET_SILENCED"] = 163
 PROP_BACNET_TRACKING_VALUE"] = 164
 PROP_BACNET_ADJUST_VALUE"] = 176
 PROP_BACNET_COUNT = 177
 PROP_BACNET_COUNT_BEFORE_CHANGE = 178
 PROP_BACNET_INPUT_REFERENCE = 187
 PROP_BACNET_PRESCALE = 185
 PROP_BACNET_PULSE_RATE = 186
 PROP_BACNET_SCALE = 187
 PROP_BACNET_SCALE_FACTOR = 188
 PROP_BACNET_VALUE_SET = 191
 PROP_BACNET_LIGHTING_COMMAND = 224
 PROP_BACNET_LIGHTING_COMMAND_PRIORITY = 225
 PROP_BACNET_ALARM_STATE = 226
 PROP_BACNET_DOOR_EXTENDED_PULSE_TIME = 227
 PROP_BACNET_DOOR_OPEN_TOO_LONG_TME = 229
 PROP_BACNET_DOOR_PULSE_TIME = 230
 PROP_BACNET_DOOR_STATUS = 231
 PROP_BACNET_DOOR_UNLOCK_DELAY_TIME = 232
 PROP_BACNET_LOCK_STATUS = 233
 PROP_BACNET_SECURED_STATUS = 235
 PROP_BACNET_OFF_DELAY = 236
 PROP_BACNET_ON_DELAY = 237
 PROP_BACNET_POWER = 238
 PROP_BACNET_POWER_ON_VALUE = 239
 PROP_BACNET_PROGRESS_VALUE = 240
 PROP_BACNET_RAMP_RATE = 241
 PROP_BACNET_STEP_INCREMENT = 242
 PROP_BACNET_SYSTEM_FAILURE_VALUE = 243
 PROP_BACNET_ABSENTEE_LIMIT = 244
 PROP_BACNET_ACCESS_DOORS = 246

BACnet CTC Assigned Special Property Constants

 PROP_BACNET_CTC_DEVICE_NAME = 65000
 PROP_BACNET_CTC_OBJECT_NAME = 65001
 PROP_BACNET_CTC_OBJECT_TYPE = 65002
 PROP_BACNET_CTC_DEVICE_INSTANCE = 65003
 PROP_BACNET_CTC_OBJECT_INSTANCE = 65004
 PROP_BACNET_CTC_LAST_READ_ERROR = 65005
 PROP_BACNET_CTC_LAST_WRITE_ERROR = 65006
 PROP_BACNET_CTC_OBJECT_PRIORITY = 65007 (1 to 16
allowed or 0 for default)
 PROP_BACNET_CTC_SYSTEM_STATUS = 65008

BACnet Object Constants

122

QuickBuilder™ Reference Guide

Control Technology Corp.

 OBJECT_BACNET_ANALOG_INPUT = 0
 OBJECT_BACNET_ANALOG_OUTPUT = 1
 OBJECT_BACNET_ANALOG_VALUE = 2
 OBJECT_BACNET_BINARY_INPUT = 3
 OBJECT_BACNET_BINARY_OUTPUT = 4
 OBJECT_BACNET_BINARY_VALUE = 5
 OBJECT_BACNET_CALENDAR = 6
 OBJECT_BACNET_COMMAND = 7
 OBJECT_BACNET_DEVICE = 8
 OBJECT_BACNET_EVENT_ENROLLMENT = 9
 OBJECT_BACNET_FILE = 10
 OBJECT_BACNET_GROUP = 11
 OBJECT_BACNET_LOOP = 12
 OBJECT_BACNET_MULTI_STATE_INPUT = 13
 OBJECT_BACNET_MULTI_STATE_OUTPUT = 14
 OBJECT_BACNET_NOTIFICATION_CLASS = 15
 OBJECT_BACNET_PROGRAM = 16
 OBJECT_BACNET_SCHEDULE = 17
 OBJECT_BACNET_AVERAGING = 18
 OBJECT_BACNET_MULTI_STATE_VALUE = 19
 OBJECT_BACNET_TRENDLOG"] = 20
 OBJECT_BACNET_LIFE_SAFETY_POINT = 21
 OBJECT_BACNET_LIFE_SAFETY_ZONE = 22
 OBJECT_BACNET_ACCUMULATOR = 23
 OBJECT_BACNET_PULSE_CONVERTER = 24
 OBJECT_BACNET_EVENT_LOG = 25
 OBJECT_BACNET_GLOBAL_GROUP = 26
 OBJECT_BACNET_TREND_LOG_MULTIPLE = 27
 OBJECT_BACNET_LOAD_CONTROL = 28
 OBJECT_BACNET_STRUCTURED_VIEW = 29
 OBJECT_BACNET_ACCESS_DOOR = 30
 OBJECT_BACNET_LIGHTING_OUTPUT = 31
 OBJECT_BACNET_ACCESS_CREDENTIAL = 32
 OBJECT_BACNET_ACCESS_POINT = 33
 OBJECT_BACNET_ACCESS_RIGHTS = 34
 OBJECT_BACNET_ACCESS_USER = 35
 OBJECT_BACNET_ACCESS_ZONE = 36
 OBJECT_BACNET_CREDENTIAL_DATA_INPUT = 37
 OBJECT_BACNET_NETWORK_SECURITY = 38
 OBJECT_BACNET_BITSTRING_VALUE = 39
 OBJECT_BACNET_CHARACTERSTRING_VALUE = 40
 OBJECT_BACNET_DATE_PATTERN_VALUE = 41
 OBJECT_BACNET_DATE_VALUE = 42
 OBJECT_BACNET_DATETIME_VALUE = 44
 OBJECT_BACNET_INTEGER_VALUE = 45
 OBJECT_BACNET_LARGE_ANALOG_VALUE = 46
 OBJECT_BACNET_OCTETSTRING_VALUE = 47
 OBJECT_BACNET_POSITIVE_INTEGER_VALUE = 48
 OBJECT_BACNET_TIME_PATTERN_VALUE = 49
 OBJECT_BACNET_TIME_VALUE = 50

QuickBuilder Reference Guide 123

Doc. No. 951-530020-010

5.3 BACnet Explorer

QuickBuilder provides a basic BACnet Explorer whose information comes from the controller your project is
defined for. QuickBuilder will initiate a telnet session with the controller and graphically display the information
retrieved with the ‘get bacnet devices’ command. You may then scroll through what that 5300 views as its current
BACnet network connections. Present Value properties may be refreshed and updated using graphical buttons
which translate to the telnet ‘get bacnet data’ and ‘set bacnet data’ commands.

Note that the Present Value properties displayed are those when the device was first on-lined, not at the moment
the display was rendered, thus may be old data. Use the ‘Refresh Present Value’ button to update the selected
object.

The Explorer is very useful when attempting to determine the names of devices and objects, as well as instance
numbers (object-identifier) for inclusion in your QuickBuilder program. To invoke the Explorer, right click the
controller of interest and click ‘BACnet Explorer’:

All the devices currently connected will appear after expanding the Controller folder (Test):

124

QuickBuilder™ Reference Guide

Control Technology Corp.

Clicking on the device will display the device object information available. The number listed within the <###> is
the BACnet property identifier which is used as the QuickBuilder table column reference to read this property.

Upon expanding a device entry, all the public objects will appear:

QuickBuilder Reference Guide 125

Doc. No. 951-530020-010

Once an object is selected you may then use the ‘Update Present Value’ and ‘Refresh Present Value’ buttons to
modify and refresh respectively. The ‘Refresh Discovery’ button will initiate a telnet session with the 5300 and
update the display with the current discovery information within that controller.

126

QuickBuilder™ Reference Guide

Control Technology Corp.

6 Chapter 6: EtherCAT Explorer

EtherCAT is an open real-time Ethernet network protocol that sets new standards for real-time performance and
topology flexibility. It is detailed in the IEC standard IEC61158. Both the 5300 and Windows based
IncentivePLC/ECAT offer an advanced EtherCAT Master. The M3-41 EtherCAT Master is available both as a
hardware device, module within the 5300 Controller, or as a soft device, executing in real-time on a Windows®
based platform (IncentivePLC/IncentiveECAT). In both environments the same application programming
environment is used, QuickBuilder. Additionally, a .Net API (IncentiveAPI), exposes the entire MSB language is
available on a Windows® platform. The biggest difference between the two is the PC environment is limited to
EtherCAT only IO while the embedded 5300 controller has numerous local IO and network possibilities, in
addition to EtherCAT. Execution on a Windows based PC presents the developer with an open and diverse
architecture with which to implement their automation solution. Both products offer an advanced EtherCAT
Master providing distributed motion control, using the CAN application protocol over EtherCAT, supporting
such devices as servo drives, RFID readers, and I/O control.

Unlike EtherCAT Masters from other vendors, Incentive attempts to isolate the user from the complexity of the
EtherCAT environment by automatically scanning the network and configuring supported devices. The
programming interface uses the same high-level language that the previous 5300 M3-40 series of modules uses:
QuickBuilder MSBs (Motion Sequence Blocks). You no longer have to deal with a complex configurator, poking
drive objects, or figuring out how an interface works. Each of the supported motion and/or I/O devices has been
verified, and all setup and initialization is done for you. This greatly simplifies an EtherCAT installation, enabling
you to concentrate on motion control and your system, not a complicated configurator. Multiple EtherCAT

Master Network modules (M3-41 and PC based) can be intermixed with other networks such as BACnet®,

Modbus®, and other modules offered within the embedded 5300 controller family.

QuickBuilder provides a simple-to-use EtherCAT Explorer. The Explorer communicates directly with the
EtherCAT Master and graphically presents the network information. It also provides a high-level diagnostics
capability. When using Incentive PC each EtherCAT Master process which is executing appears as a M3-41
module.

6.1 Status Window

The EtherCAT Explorer window is a feature of the QuickBuilder environment. To open the EtherCAT Explorer,
right click on the controller available in Resources. A menu of options will appear; select ‘EtherCAT Explorer’ to
connect to the defined controller.

QuickBuilder Reference Guide 127

Doc. No. 951-530020-010

Once invoked, a window similar to the one below will appear, enabling you to monitor the EtherCAT module and
its Master configuration.

If multiple M3-41 modules (or IncentiveECAT) are present, a folder will appear for each module, with the slaves it
controls listed below. Here is an example of three M3-41 EtherCAT Master networks in one model 5300 controller
with the first M3-41 module selected (highlighted).

128

QuickBuilder™ Reference Guide

Control Technology Corp.

The top left tree is known as the Slave Discovery Window. Both online slaves and the expected slave
configurations appear here. Select a slave entry, and the available property information appears within the
window to its right.

The window on the bottom right is known as the Message Window. As the EtherCAT Master executes,
diagnostic log information is stored in the M3-41 module. By selecting ‘Refresh Log Buffer’ the most current
contents of the log buffer will be displayed. Note that at power up the Licensing information appears in the list,
“Licensed: Drives 4…”. This is the total number of I/O and drives that your EtherCAT Master is authorized to
control.

The panel on the lower left contains a number of buttons. Some are for global access; others are for individual
M3-41 modules. Those operating an individual EtherCAT Master Module (M3-41) require the Slave Discovery
Tree entry with the folder icon (Module #, Slot) to be selected to identify which module is to be accessed. The
following operations are available:

Refresh Slaves – Updates the Slave Discovery Window with all online slaves observed at the last restart for all
installed M3-41 modules. Each slave’s properties are also refreshed to the most current. These properties vary
by drive. Drive information will contain present PDO contents, position and state information, etc.

QuickBuilder Reference Guide 129

Doc. No. 951-530020-010

Read Configs – Updates the Slave Discovery Window with any saved configuration file whose content resides
in the module’s non-volatile storage for all installed M3-41 modules. The information displayed is what is
required to be online for the network to become active.

Create Config – This button erases the non-volatile memory stored in the selected module and writes XML
information matching the current online slave’s to the EtherCAT Master module. This is an alternate approach to
using an EtherCAT Configurator, such as Beckhoff’s, allowing the configuration to be dynamically created from
within QuickBuilder. The actual creation and storage is performed by the EtherCAT Master module, thereby
requiring no file transfer. Note that this operation takes about 20 seconds to complete, because of the length of
time required to erase non-volatile memory. The appropriate Module # must be selected from within the tree list
prior to pressing the Create Config button, or an error message will be displayed:

Note that the PC runtime stores this information in a file called _slaveConfig_[MAC Address].txt located in the
_system\Programs directory.

Configuration files must be used in a production environment to ensure all the
required devices are online prior to executing their controller MSBs. Differing devices
power up at different times and may not initially respond to the EtherCAT Master
online broadcast. Having a configuration file to compare against informs the master
that it must wait for devices to come online prior to proceeding with the boot
operation.

Erase Config – This button erases the current configuration file stored in the selected EtherCAT Master
Module’s non-volatile memory. By default, when no file is stored, and the network is restarted, no verification of
online slaves occurs, and the controller begins operation with whatever devices and I/O are found on the
network. This is known as Slave Discovery Mode and is useful when initially setting up a network. It can take up
to 20 seconds for this command to complete. The appropriate Module # must be selected from within the tree list
prior to pressing the Create Config button or an error message will be displayed.

License – This button displays the EtherCAT Master License form for the selected module. The MAC Address
of the module appears along with the type and number of devices authorized for control by the master. New
license keys can be purchased from CTC technical support, and entered within this form to change the current
authorization.

130

QuickBuilder™ Reference Guide

Control Technology Corp.

Copy the license key you receive by email and paste it into the ‘License Key” text box. Click the Update License
button to update the number of I/O authorized. Click the Refresh button to verify the changes have been made.
You must reboot the controller for the changes to take effect at the network level. Note that the PC runtime stores
this information in a file called _ioOptions_[MAC Address].txt located in the _system\Programs directory.

Refresh Log Buffers – This button displays log messages residing in all EtherCAT Master Modules in the lower
right window. It is useful for diagnostic purposes.
Clear Log Buffer – This button clears the log messages for the selected EtherCAT Master module. Only new
messages that occur after the clear operation will appear after the Refresh Log Buffers button is selected.
Restart Network – This button causes the selected EtherCAT Master module to re-scan the network and display
whatever slaves are found. Prior scan results are overwritten. Available I/O in the controller will not be updated,
and a reboot is required if the configuration changes. The network will not be available until after the restart is
completed. Restarting the network is useful when connecting new slaves to the network or after power cycling a
slave to verify that it is seen on the network. Note that MSBs will also restart.

Reboot Controller – This button causes the controller to be rebooted remotely. This is a hard reset and can take
up to 30 seconds before the controller will be back online.

User Options – This button allows customization of the EtherCAT Master parameters, such as PDO cycle time,
number of virtual drives, timeouts, and retries. Note that the PC runtime stores this information in a file called
options[MAC Address].txt located in the _system\Programs directory.

QuickBuilder Reference Guide 131

Doc. No. 951-530020-010

6.2 Properties

Manuf - Manufacturer description

Grp – Group description

Name – Device Name

Out size – Number of bits the device consumes in the output Ethernet packet

In size – Number of bits the device consumes in the input Ethernet packet

Program Variables (MSB variables, if a drive):

132

QuickBuilder™ Reference Guide

Control Technology Corp.

pstate – present MSB program operational state
inpos – 1 if motor is in position, 0 if it is not
fpos – Current motor position in revolutions
tpos – Present target position in revolutions
perr – Present error (tpos – fpos)
vel – Present motor velocity in revolutions/second
cmode – MSB program commanded mode for the motor

DRV MODE – CANOpen DS402 mode the drive is in for motion control

PDO STATUS – Object 0x6041 representing the device state

PDO CNTLWORD – Object 0x6040 representing the currently written Control Word

PDO ACT VEL – Object 0x606C representing the current velocity

PDO ACT TORQ – Object 0x6077 representing the current torque. On some drives this is the Actual Current
when torque is not available.

PDO ACT ERR – Object 0x60F4 representing the current servo position error

PDO HOME PWRUP – Power up position first seen by the EtherCAT Master

PDO ACT POS – Object 0x6064 representing the actual current position in increments

PDO TARG POS – Object 0x607A representing the target position in increments. This is relevant in Cyclic Sync
Position and Profile Position modes. Interpolated motion mode uses 0x60C1 subindex 1.

PDO TARG VEL - Object 0x60FF representing the target velocity in increments/sec. This is only relevant in
Profile Velocity mode.

PDO DIG INP – Drive Inputs as reported by the cyclic PDO scan

State – Last seen EtherCAT state of this device

Delay – Propagation delay, in ns, of this device as cabled on the network.

FMMU – True if Fieldbus Memory Management unit is bit oriented, false if it is not.

Has DC – Set to 1 if the drive can support being the source of the distributed clock. The EtherCAT Master
selects the first device that ‘Has DC’ as the source of the clock and then periodically reads the time from that
device and writes it to the rest of the slaves. The Master attempts to sync its internal clock to that device as well.

DC Parent Port – The slave named as the Distributed Clock master

DC Active – Information relative to DC Sync, if enabled

Active Ports – Each device can typically have up to 4 ports. This represents the ports being used on this device.

Topology – Each EtherCAT slave has up to 4 internal ports, each represented by a bit.

Parent – Set to the parent node. 0 means it is the parent.

Config address – EtherCAT assigned device address representing its place with regards to being cabled on the
network. First device would be 0x1001.

QuickBuilder Reference Guide 133

Doc. No. 951-530020-010

Station Alias – Programmable station alias used to define axis numbers for MSB assignment

Vendor – Device vendor code

Product Code – Device product code

Rev – Firmware revision of the device

6.3 Log Buffer Timings

When the Log Buffer is viewed the first line after the module identification information contains internal timing
information. This information can be critical in troubleshooting problems or possibly preventing them. The
timing information contains the state of the EtherCAT network scanning, control loop overhead, idle, and slave
sync timings. Below was observed in a six axis system do simple back and forth motion on all drives:

*** Module #1, Slot 4 ***
M3-41A ETHERCAT MASTER
INFO: Time: 275.943, Scanning = 2, Cycle 1.0000 mS, [Overhead 0.3180 mS, Min 0.1580 mS, Max 0.3995 mS, Avg
0.2951 mS],
 Adjusted Tick 1.0000 mS, Correction -6 ns, Max Tick 1.0000 mS, [Idle 0.6640 mS, Min 0.5234 mS, Max 0.8462].
 [Sync Error 0.0002 mS, Min 0.0000 mS, Max 0.0730, Avg 0.0022].

The following is how to interpret these timings:

[Scanning = 2] – The EtherCAT network scanner has three possible states.
· Initializing, 0.
· Scanning but for initial sync, 1.
· Online and executing, 2.

[Cycle 1.0000 mS] – Network control loop scan time, typically 1 mS or 500 µS.

[Overhead] – The time needed to process the PDO packet from the slaves, calculate the new trajectories, update
IO, and prepare the PDO packet for transmission. The Cycle time minus the Overhead time is how much time the
rest of the system has to execute. The Overhead may never be greater than the Cycle time. If it occurs once in a
while and is less than 50 µS a warning will result and recovery attempted, otherwise a fault error. The first time
listed is the time for the last completed cycle.

[Adjusted Tick] – The time that the FPGA timer was last set to, on the last cycle. This will shift slightly to sync
with the reference slave.

[Correction] – The amount of correction added to the last time cycle in order to more closely sync to the
reference slave.

[Max Tick] – The maximum time that the FPGA timer was set to for its periodic interrupt.

[Idle] – The amount of idle time available for the rest of the system to run, with the current time for the last
completed cycle listed first.

[Sync Error] – This is the amount of error or jitter that the master has experienced while attempting to sync to the
slave reference. The first listed time is from the last completed control loop cycle. Note that the average jitter is
only 2.2 µS with a maximum of 73 µS. The 73 µS only lasts for a single cycle as corrections are applied.

134

QuickBuilder™ Reference Guide

Control Technology Corp.

6.4 User Options

The EtherCAT Explorer allows the user the ability to customize the EtherCAT Master’s operation. The
customization currently supported consists of:

· Master PDO cycle loop times of 500 µS, 1 mS, 2 mS, or 4 mS.
· Automatic virtual axis creation.
· Capability to add the virtual axis to the end or beginning of those drives online.
· Retry forever option.
· PDO Timeout & retries.
· Initialization retries.

Invoking the ‘User Option’ form is done by clicking that button within the EtherCAT Explorer:

QuickBuilder Reference Guide 135

Doc. No. 951-530020-010

Once invoked the currently programmed options will appear:

Module PDO Cycle Time – This option sets the EtherCAT master control loop cycle time. The default of 1 mS is
typically fine but in some situations the user may wish to speed up or slow down the loop. For example if the
system is heavily loaded a 2 or 4 mS control loop will work well with most drives. Selections of 500 µS, 1 mS, 2 mS,
and 4 mS are available.

Total Virtual Axes – This option sets the number of virtual axis to ‘Add at’ the ‘Beginning’ or ‘End’ of the online
drive list. A virtual axis runs an MSB just like an online axis except that its feedback position (fpos) is updated
automatically to its incremental tpos on each control loop, thereby simulating motion. The Virtual Axis is reported
to the QuickBuilder as a normal axis.

Retry forever – This option, when selected, will cause the controller and EtherCAT network not to boot until the
stored online configuration is observed. If the option is not selected then the ‘Init Retries’ parameter within the
Advanced Parameters will be referenced and that many retries attempted prior to reporting the fault state to the
controller and aborting operation.

PDO Timeout – This option should not be set unless instructed by CTC technical support. It will automatically
be optimized to the proper setting based upon the PDO Cycle time selected. The option is the amount of time that
the EtherCAT Master will wait for the response to the cyclical PDO packet transmission. PDO Timeout X PDO
Retries should be less than the cycle time to ensure no DC Sync errors.

136

QuickBuilder™ Reference Guide

Control Technology Corp.

PDO Retries – This option should not be set unless instructed by CTC technical support. It will automatically be
optimized to the proper setting based upon the PDO Cycle time selected. The option is the number of PDO
Timeouts that are allowed before aborting operation and faulting. PDO Timeout X PDO Retries should be less
than the cycle time to ensure no DC Sync errors.
Powerup Delay – This option defines how long, in seconds, the M3-41 module should wait, after power up, prior
to beginning its identification of network slaves and initializing the EtherCAT network. It is useful when
attempting to prevent timeouts on equipment that may take a long time to power up and come online.

Init Retries – This option is the number of times the EtherCAT Master will attempt to activate the network and
initialize devices. If a Network Configuration is saved and those devices observed online do not match the
network will be re-initialized and scanned again, with this count decremented by 1. Once a count of 0 is reached
the module will abort, fault, and report an error.

Verify Delay – This option sets the amount of time, in seconds, the M3-41 module should delay after it identifies
all required slave devices online (INIT state) and initializes their PDO’s (PRE_OP state). After the delay occurs
one more INIT cycle will be done and delay prior to updating the PDO mappings within the slave and marking the
devices as online. This is required in some networks where slaves can report that they are online and ready but in
fact other equipment is powering up or the slave still needs a small amount of time to continue initialization.

Available buttons:

Update Options – Clicking this button will cause the module to be set to the settings currently displayed. The
status window will display the results of the operation.

Refresh – Clicking this button will cause the form to be updated with the options currently programmed within the
module.

Cancel – Clicking this button will close the form, without changes and return to the EtherCAT Explorer form.

QuickBuilder Reference Guide 137

Doc. No. 951-530020-010

138

QuickBuilder™ Reference Guide

Control Technology Corp.

7 Chapter 7: Windows 7 and 10 Support

QuickBuilder has been fully tested with Windows 7 and Windows 10, both 32 and 64 bit, 64 bit is the preferred
platform. In fact QuickBuilder is now developed on both of those platforms to ensure compliance. Install
'QuickBuilder Support' first, followed by the latest 'QuickBuilder Setup'. For legacy users a new 'QuickBuilder
Setup' was made available in February 2010, mainly to address security issues that effect the 'C' compiler,
cygwin1.dll.

After the initial install QuickBuilder must be invoked using the 'run as administrator' menu option. This is needed
to establish machine wide licensing. Windows is very security minded and thus many things are limited to a user
level. Once run you can exit immediately and reinvoke using the desktop shortcut, QuickBuilder will then be run
as a normal application.

Failure to 'run as administrator' after install will cause the following to appear:

Followed by:

To ensure this does not happen simply invoke the QBApp.exe file as suggested by the Licensing Error dialog,
right clicking on the exe file as shown:

QuickBuilder Reference Guide 139

Doc. No. 951-530020-010

Simply execute and exit immediately. Note that this is needed regardless of whether you have administrator
privileges. It is not needed if UAC (User Access Control) is turned off.

Numerous problems can arise due to security access problems. This is typically caused by a user attempting to
write to something above their user security level. Although QuickBuilder conforms to Windows 7/10 security,
something as simple as copying a full project from another computer to your disk can cause a security violation
when you open the project. This is because the sub-folder of the project is from another system and not owned
by the user. The simplest way around this is to only copy a project file (qdp) and not the sub-folders. The
folders will automatically be created during translation. If a problem still persists make sure that the user had full
control permissions on the sub-folder. Ideally it is best to keep files in the User's Documents area to avoid
problems. Failure to have the proper security level can cause this message:

Followed by:

140

QuickBuilder™ Reference Guide

Control Technology Corp.

Windows 7/10 has been tested with the following User Access Control setting:

Setting it to "Never notify" will require a restart to become active and will disable UAC. This will resolve most
security confusion if problems should occur.

QuickBuilder Reference Guide 141

Doc. No. 951-530020-010

8 Appendix A: Shortcut Keys

There are a number of shortcut keys that are useful within QuickBuilder. The following table describes these
keys.

Key Description

Control-R Insert Resource

This key is available in the code editor window to automatically insert a resource by name

from a drop-down combo box. This key is also available in the QS4 step editor when

building expressions, or when a variable name is required.

Control-Arrow SFC Diagram selector

The arrow keys “move around” the SFC diagram while editing in the code editor window.

For example, if you are on a step, and want to edit/view the next connected step, then

pressing Control-Down-Arrow would take you to that step.

Control-E Switch editors

This key toggles between the code editor and the QS4 editor windows.

Control-M Make a new step

This key (while in the code editor) creates a new SFC element. Essentially equivalent to the

SFC construct toolbar, this is a non-mouse method to add a new SFC step.

Control-N Add a new statement (after)

This key brings up the QS4 editor to add a new statement after the present statement. It is

equivalent to the Insert Statement After command in the QS4 editor window.

Control-Shift-N Add a new statement (before)

This key brings up the QS4 editor to add a new statement before the present statement. It is

equivalent to the Insert Statement Before in the QS4 editor window.

F3 Find Next

This key finds the next occurrence of the Quick Find text entered in the code editor

window.

142

QuickBuilder™ Reference Guide

Control Technology Corp.

9 Appendix B: Known Anomolies & Warnings

This section lists known issues with the current revision QuickBuilder and suggested workarounds:

Quickstep/QuickBuilder Project Upgrade Warnings

1. Digital Input ActiveState – The digital input activeState property is functional, previously the property

was ignored. Thus setting it to ‘false’ will cause the input to be inverted, ‘true’ being the default state.

2. Reserved words – To handle the importing of Quickstep some new reserved words were added whose

use in older programs will now generate a compile error: _rol, _ror, _servoInfo, at, accel, and, const, cw,

ccw, D, deadband, down, hardstop, I, maxspeed, motion, of, position, P, profile, reset, rotate, scount,

search, servo, shift, softstop, tgoto, timeout, turn, up, zero. If any of these words are used as resources

or step/task names in your program they must be changed. This includes MSB properties referenced

from a main QuickBuilder step using the ‘dot’ property.

3. Reserved Words In Step Names - In looking for step names that may be using a reserved word as its

name, typically the link prior to that having a reserved word will be pink versus white. For example

'motion' is a reserved word, below shows the error:

To correct this problem the step named 'motion' would have to be edited, for example changed to

'motionx', as well as any references. To resolve the pink box and clear that error simple double click on

the box and the parser will then see the step name has been changed and clear the error. Sometimes you

need to click on the clear box below the step as well should a translation error continue to occur.

Negative Numbers in Boolean Expressions

Expressions which are used to generate a boolean (true/false) result must have negative number enclosed in their
own parenthesis, for example -5 would be (-5). Some statements which this would occur are in 'if' and 'while'. For
example the correct way to detect to see if a number is within a particular range would be:

if ((x > (-5)) && (x < 5)) then

Note the extra parenthesis around the -5. Failure to do this will result in the -5 being interpreted as a 0.

Menus can hang open on the Resource Tree

QuickBuilder Reference Guide 143

Doc. No. 951-530020-010

Periodically, and only on some computers, if you right click on the Resource Tree you must make a selection to
close the menu window. This appears to be a Windows issue with the mouse driver and especially occurs with a
wireless mouse. The present fix for this is to either make a selection to close the menu or simply restart
QuickBuilder and the problem typically goes away.

Controller CRC Mode

An enhanced version of the controller CRC mode has been added. Previously every translation generated a
'unique' CRC but now with the introduction of source level debugging the CRC is used to detect code changes in
the controller versus what is resident within your project on the PC. By default the CRC mode is now set to
'common' and is imported that way from previous revisions. A new feature allows you to set the mode to
'common' where by the CRC will only change when the source code changes, not on every translation.

XVar Constants and Strings

Usage of XVar Constants and strings within a project will make that project not backward compatible to releases
including and prior to September 2009, since those programs do not support this feature.

Filenames and Revision Numbers

If a user names a file with more then 20 characters and changes a rev number (i.e
"thisfilenameisover20charectersV1.2.qbp" vs. "thisfilenameisover20charectersV1.3.qbp") when making changes it
appears as though the new version 1.3 will over write his old one 1.2.

Events and Tasks

There can be no more than 96 Events in a system and the total number of running tasks and pending events can
not exceed 96.

M3-40 MPPR

The M3-40 motion module contains numerous properties. If one is not being used it is recommended to leave
them set to the defaults. The default for 'mppr' is currently 4096, this can be changed to any non-zero value.
Setting to zero will cause an error in the motion module.

M3-40 Module Definition in Rack

If the M3-40 motion module is included as a rack resource and the 40 card is not in the controller at runtime, a fault
will occur. The controller initialization code will attempt to initialize the 40 card but its presence will not be seen,
which is an error. Remove the card from the QuickBuilder resource rack if not present in the controller.

144

QuickBuilder™ Reference Guide

Control Technology Corp.

10 Appendix C: Training

PDF versions of the Training slides for QuickBuilder as well as Motion control are available via the below
hyperlinks:

QuickBuilder Training

Motion Control Training

Note that in the top left corner of each presentation page there are notes which should be helpful in
understanding the slide:

QuickMotion Reference Guide 145

Doc. No. 951-530020-010

QuickMotion Reference Guide

Copyright © 2007-2018 Control Technology Corp. All Rights Reserved.

Control Technology Corp.
25 South Street
Hopkinton, MA 01748
Phone: 508.435.9595 • Fax 508.435.2373

Document No. 951-530017-019

 WARNING: Use of CTC Controllers and software is to be done only by experienced and qualified
personnel who are responsible for the application and use of control equipment like the CTC controllers.
These individuals must satisfy themselves that all necessary steps have been taken to assure that each
application and use meets all performance and safety requirements, including any applicable laws, regulations,
codes and/or standards. The information in this document is given as a general guide and all examples are for
illustrative purposes only and are not intended for use in the actual application of CTC product. CTC
products are not designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or liability, intellectual or
otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software described in this document is
provided under license agreement and may be used and copied only in accordance with the terms of the license
agreement. The information, drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means, electronic or mechanical, for
any purpose other than the purchaser’s personal use, without the express written consent of Control Technology
Corporation. Products that are referred to in this document may be either trademarks and/or registered trademarks
of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume
no responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been
caused directly or indirectly by this document.

The information in this document is current as of the following Hardware and Firmware revision
levels. Some features may not be supported in earlier revisions. See www.ctc-control.com for the
availability of firmware updates or contact CTC Technical Support.

Model Number QuickBuilder
Revision

Controller
Firmware
Revision

M3-40
Firmware
Revision

M3-41
Firmware
Revision

IncentiveECAT
Embedded PC

5300 >=1.2.6620
02/15/2018

 >=
5.00.90R70.11

>= 1.45 >= 1.84 >=1.84

http://www.ctc-control.com

146

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickMotion Reference Guide 147

Doc. No. 951-530020-010

1 Chapter 1: Introduction and Overview

This document provides details about adding motion control to a QuickBuilder project. QuickBuilder is CTC’s
integrated desktop development environment for the 5300 and Incentive PC series automation controllers. The
primary programming language used in QuickBuilder is QuickStep4 (QS4). The QuickStep multi-tasking state
language was invented by CTC in the 1980s to simplify the process of programming high performance machine
control applications. Over the years QuickStep has been continually refined, and now it has been extended with
the addition of QuickMotion to be able to easily handle even the most demanding motion control applications in a
very intuitive manner.

The focus of this document is the QuickMotion extension to QuickBuilder. It is assumed that the reader is
already familiar with the QuickBuilder environment and programming language. This document should be used in
conjunction with the QuickBuilder Reference Guide.

This document is valid for use with the following motion modules:

· M3-40A: 2 Axis Servo Module

· M3-40B: 3 axis Stepper/High-speed Counter Module (24V)

· M3-40C: 3 axis Stepper/High-speed Counter Module (5V)

· M3-41A: 5300 Hardware Module for EtherCAT (reference this guide and EtherCAT Application Guide
for added features)

· IncentiveECAT: Embedded PC Real-time Software for EtherCAT (reference this guide and EtherCAT
Application Guide for added features)

Detailed data sheets for these motion modules may be found on CTC’s website, www.ctc-control.com.

 Note: The M3-41A is available both as hardware, for the 5300 PLC, and as a software component as part of a
PC based EtherCAT master, IncentiveECAT. IncentiveECAT executes the exact same M3-40 motion control code
except with enhancements for a virtual hardware environment. IncentivePLC runs on the PC as well, running the
same QuickBuilder software, hence full compatibility with their hardware (5300 PLC) counterpart. From a software
perspective almost all of the commands used on the M3-40 module apply directly to the M3-41A and
IncentiveECAT. References to software features and language instructions that follow for the M3-40 can be
assumed to apply to the M3-41A/IncentiveECAT except as noted.

1.1 Guide to Symbols

Features that warrant caution or special consideration are denoted by a .

A command or statement that is supported by a given mode or block is denoted by a checked box .

Unsupported commands and statements are denoted by an empty checkbox .

http://www.ctc-control.com

148

QuickBuilder™ Reference Guide

Control Technology Corp.

1.2 Brief Overview of Motion Control

1.2.1 Servo Motor Applications

Background

A servo motor is used in a closed loop control system, where the controller has information about both the actual
position and velocity of the motor as well as the desired position (or velocity). The controller then adjusts the
motor's output to remove the difference between the actual and desired values. Because this system has
information about the error, and the output (which is usually proportional to the motor power) increases as the
error increases, it can require very little power when the error is small.

This means that the average power needed for a high performance application may be considerably less than the
peak power, so smaller motors and drives may be used.

There is usually a Servo Drive module between the motion controller and the motor that accepts the control signal
(torque or velocity command) from the motion controller (a low current signal in the range -10 Volts to +10 Volts)
and converts it into the high power (depending on the motor, several amps of current at 24V to 200+V) signals
required by the motor. The Servo Drive must usually be configured to match the Motor (or is designed
specifically for the motor). The drive and the motor are often, but not necessarily, made by the same
manufacturer. The motor may be a simple brush type DC motor (which is low cost but requires periodic
replacement of brushes) or a Brushless DC or AC motor, which requires additional circuitry in the Servo Drive to
handle electronic commutation and will generally require additional sensors and signals from the motor to the
driver.

Controlling the Servo Motor

The Model 5300 automation controller can be used to control up to 64 axes of servo motors. To control motion,
an M3-40A motion module is added to the system. The M3-40A module is a dual axis servo controller that can
control 1 or 2 servo motor systems with Analog Torque or Velocity command and Quadrature encoder feedback.
Additionally M3-41 EtherCAT modules can be add network based drives and IO.

Servo Command Output

The output of the Servo Controller is an Analog signal that can vary from -10V to 10V with 16 bit resolution. The
analog output is used, via a servo amplifier, to control the current in a DC motor generating torque at the shaft.
The amplifier may also handle other functions such as commutation for a brushless motor or it may use the analog
input to control the velocity. Care must be taken in the wiring to minimize the possibility of errors being
introduced into the signal by noise induced from any high power switching circuitry near to the system, since this
will directly affect the quality of the control.

 Shielded cabling must be used between the Servo Controller and the Servo Drive and the distance between
them should be minimized.

Encoder Feedback

An encoder mounted to the motor generates two pulse signals (A, B) that are used by the M3-40A module to
track the motor position. The M3-40A module can also accept a third encoder channel (the Z axis or Index) that
can be used to identify a specific point in the motor rotation. This Z pulse is typically used for accurate homing
of the motor.

The M3-40A encoder inputs accept a quadrature differential signal for the A and B encoder channels. The index
pulse, or Z channel, is also accepted as a differential signal. The direction is counted positive, or clockwise (CW)

QuickMotion Reference Guide 149

Doc. No. 951-530020-010

when the A encoder phase leads the B encoder phase. Indicator LEDs for each servo axis on the module indicate
the states of the A and B channels.

For some Brushless Servo systems, the Servo Drive also uses an encoder for information about the position and
will provide a set of suitable encoder outputs for connection to the Servo Controller. In this case the power for
the encoder is usually provided by the Servo Drive and it is not necessary to connect power for the encoder, but
it is recommended that the controller’s 5V return be connected to the common or return for the servo drive’s
encoder outputs. This limits the common mode voltage between the drive and controller and helps protect the
encoder input circuits from damage caused by over voltage.

 5 VDC power is available from a dedicated 5V connector on the Model 5300 power supply modules. This
connector also has a 5V return that is common to the controller’s 24V return.

 Shielded cabling should be used for the encoder wiring between the Servo Controller and the Servo Drive and
the distance between them should be minimized.

 When the encoder output is provided by the Servo Drive, care must be taken that the signals are actually
encoder signals and are not a simulated encoder generated by the Servo Drive from other signals. When the
outputs are simulated encoder signals, there is generally a delay between the movement of the motor and
the encoder signal generation. When this delay is small this is not a concern, but since the M3-40A updates
the servo command at a rate of over 1250Hz, delays as small as 200µs can be significant.

 Reference the EtherCAT Application Guide for details on the M3-41 and IncentiveECAT modules.

The M3-40A module also has five high speed inputs and five high speed outputs that can be configured for a
wide variety of functions via software. See IO Assignments later in this chapter and the Model 5300 module data
sheets at http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp for more details.

1.2.2 Stepper Motor Applications

Background

Stepper motors are typically used in open loop applications. A stepper motor has a fixed number of magnetic
poles that determine how many steps the motor will move through during one revolution. Most stepping motors
have 200 full steps that can be subdivided into smaller increments via microstepping technology built into the
stepper drive. Microstepping drives can boost the number of steps per revolution to 50,000 or more providing
smoother motion and more precise positioning.

Controlling the Stepper Motor

The Model 5300 automation controller can be used to control up to 64 axes of stepper motors. The motors are
connected to a matched stepper drive, and then the stepper drive is commanded by the Model 5300 motion
module. To control motion, an M3-40B or M3-40C stepper motion control module is added to the system. These
modules are configured in QuickBuilder to match the steps per revolution of the stepper drive so that
programming can be done in user units. The M3-40B/C module is a dual axis stepper controller that can control
up to three stepper axes by putting out a step and direction command to the drive.

http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp

150

QuickBuilder™ Reference Guide

Control Technology Corp.

Encoder Feedback (optional)

Normally, stepper motor applications are designed to operate in an open-loop mode where there is no encoder
feedback. However the M3-40B/C modules have one encoder input for each primary axis and they can be
configured to monitor position via the encoder as a check on the commanded position. The encoder inputs
accept a quadrature differential signal for the A and B encoder channels. The index pulse, or Z channel, is also
accepted as a differential signal. The direction is counted positive, or clockwise (CW) when the A encoder phase
leads the B encoder phase. Indicator LEDs for each servo axis on the module indicate the states of the A and B
channels.

 5 VDC power for encoders is available from a dedicated 5V connector on the Model 5300 power supply
modules. This connector also has a 5V return that is common to the controller’s 24V return.

 Shielded cabling should be used for the encoder wiring and the distance should be minimized.

 When the encoder output is provided by the Stepper Drive, care must be taken that the signals are actually
encoder signals and are not a simulated encoder generated by the Stepper Drive from other signals. When
the outputs are simulated encoder signals, there is generally a delay between the movement of the motor and
the encoder signal generation. When this delay is small this is not a concern, but since the M3-40B/C
updates the stepper command at a rate of over 1250Hz, delays as small as 200µs can be significant.

The M3-40B/C modules also have five high speed inputs and five high speed outputs that can be configured for a
wide variety of functions via software. See IO Assignments later in this chapter and the Model 5300 module data
sheets at http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp for more details.

1.3 Brief Overview of M3-40/41 Motion Module Features

High performance motion control can be easily achieved with Blue Fusion Model 5300 automation controllers by
adding one or more M3-40 motion modules. The M3-40 series modules are two axis motion control modules
specifically designed for the Blue Fusion Model 5300 controller. They can be used to command motion on both
servo and stepper motor drive systems. The M3-40 uses space saving design features that enable it to fit into a
single rack slot in the Model 5300 controller. Up to 32 of the M3-40 modules can be installed into a single Model
5300 system, allowing for up to 64 axes of motion control.

Motion performance is maintained even as axes are added because each M3-40 has its own on-board processors
that handle all motion related processing for two axes. CTC has fitted each dual axis module with a powerful
RISC processor as well as CTC’s new Motion Accelerator Chip (MAC). This gives the M3-40 modules the ability
to run CTC’s latest 64-bit floating point motion loops and handle local high-speed I/O events.

There are currently three M3-40 modules that can be used in the Model 5300 automation controller and one M3-
41:

· M3-40A: 2 Axis Servo Module

· M3-40B: 3 Axis Stepper / High Speed Counter Module, 24V command

· M3-40C: 3 Axis Stepper / High Speed Counter Module, 5V command

· M3-41A: EtherCAT Master for both motion and IO automation control

http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp

QuickMotion Reference Guide 151

Doc. No. 951-530020-010

Hardware Features

Each module is capable of controlling two axes of closed loop motion. The M3-40A can be connected to either
stepper or servo drives. Each M3-40A axis has a precision 16-bit analog command signal that can command both
torque and velocity mode drives, giving the designer great flexibility in motor and drive selection. Alternatively,
each axis can also be set up to output step and direction signals to interface to stepper drives or intelligent servo
indexers. The M3-40B and M3-40C do not have analog command capability and therefore are best suited for
stepper applications.

All modules have two primary axes of control and most hardware and software functionality is divided
accordingly. Each primary axis has encoder feedback inputs that operate at rates up to 17.5 MHz, accommodating
even the fastest linear motors. Each primary axis has five fast user assignable inputs and five fast user assignable
outputs. In addition, it is possible to configure two of the outputs on the M3-40 module (40A/B/C) to command a
third open loop stepper. See the Alternative Stepper Output statement in the I/O Statements section of Chapter 4
for more on this topic.

Software Features

While the M3-40’s hardware is impressive, its software capabilities are what really set it apart from the
competition. The software has been designed to simplify and speed every step of the machine development
process. To set up a motion axis, simply “drop” an axis object into the QuickBuilder Resource Manager. Then it
can be easily configured using convenient user-units and other fill-in-the-blank properties. Dialog boxes and
tuning wizards de-mystify the whole servo setup and tuning process.

CTC has taken a very modular approach to QuickBuilder’s motion control capabilities. To create motion on an
axis, one or more motion commands are placed in an object called a Motion Sequence Block (MSB). After
creation, that MSB can be used by any of the axes at any time. A simple example would be a homing MSB – write
it once, and then use it on as many axes as desired.

To further simplify the motion programming process, CTC has created an extension to the QuickStep language
within QuickBuilder called QuickMotion, which has more than 50 new commands and more than 100 specialized
motion variables. QuickMotion makes programming motion applications very intuitive. For example, if one
wanted to move an actuator 3.76 inches in 1.25 seconds the command would be:

Move to 3.76 in 1.25

Of course, 3.76 could just as easily be a variable or an expression that is calculated on the fly.

M3-40 and M3-41 Module Data sheets

Refer to Document No. 950-534001: Model M3-40A data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534001.pdf for more detailed information on the M3-40A
module.

Refer to Document No. 950-534002: Model M3-40B data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534002.pdf for more detailed information on the M3-40B
module.

http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534001.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534001.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534001.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534002.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534002.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534002.pdf

152

QuickBuilder™ Reference Guide

Control Technology Corp.

Refer to Document No. 950-534003: Model M3-40C data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534003.pdf for more detailed information on the M3-40C
module.

Refer to Document No. 950-534101: Model M3-41 data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534101.pdf for more detailed information on the M3-41 module.

1.3.1 M3-40 & M3-41/IncentiveECAT Motion Module Features

M3-40

· Two axes of servo or stepper control per module
· Up to 64 axes per Model 5300 system
· Position loop update times of 800µs / 2 axes (as fast as 500µs under software selection)
· Encoder feedback up to 17.5 MHz
· 64-bit floating point loop control
· 16-bit analog command (M3-40A only)
· 5 user assignable inputs / axis
· 5 user assignable outputs / axis
· High speed registration capture
· High speed PLS outputs
· 48 user variables per axis

M3-41/IncentiveECAT

· 64-bit floating point loop control
· Up to 16 axes per network. 64 axis with IncentiveECAT. Multiple networks supported as well

as redundant master (PC only) and secondary master
· Virtual axis/master support
· Up to 2000 I/O points using remote I/O
· 500uS, 1 mS, 2 mS, or 4 mS updates on all axes
· Any axis can track/gear/cam off any other
· Registration Capability
· Commands: linear, S-curve, Cam, Spline, Gear, Move on a gear, Segmented moves
· Syncs master to slaves - provides simultaneous motions
· EtherCAT motion modes:
o Cyclic Sync Position

o Interpolated Position

o Profile Position

o Profile Velocity

· Network auto configuration
· Support for absolute encoding
· Link software counters to any input
· Link PWM outputs to any output
· 48 user variables per axis
· M3-41 has 3 encoder inputs which can also be used as a master encoder for EtherCAT axis
· Segmented EtherCAT packets for large networks

http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534003.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534003.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534003.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534101.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534101.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534101.pdf

QuickMotion Reference Guide 153

Doc. No. 951-530020-010

1.3.2 Special M3-40 I/O Functions

· 16 HS Counters (10 MHz): All five inputs as well as the A, B, and Z signal pins on each axis connector
can be configured as high-speed counters.

· Period Measurement (0.1 µsec accuracy): Two pairs of inputs on each axis can be set up to measure
the time between activation of the first and second input in the pair. Ideal for high-speed measurement
and frequency measurement.

· Frequency Outputs: Three outputs on each axis can generate a programmable frequency up to 500 KHz.

· Pulse Outputs: All ten outputs can be pulsed for a programmable time value with an accuracy of 0.5
msec.

· Programmable Limit Switch Outputs: Three outputs on each axis can be configured to automatically
turn on and off as a function of the encoder position. Up to sixteen on/off positions can be configured
per axis. The on/off positions can be changed programmatically on-the-fly. This is especially useful to
compensate for lead or lag time based on operating speed.

1.3.3 Drives & M3-41 IO

Some drives support inputs and outputs at the remote drive level. The MSB property ‘dins’
represents the raw inputs provided by the drive, up to 32 inputs (EtherCAT object 0x60FD.0). The
first 10 inputs may be accessed using ‘din1’ to ‘din10’ bit properties; as with the M3-40 modules.

Outputs operate as they do on the M3-40 module, limited to 8 outputs at the remote drive level
(object 0x60FE.1). Use the ‘setout’ and ‘clrout’ MSB instructions for access, where the first output
is 1.

Local I/O is also present on the 5300 M3-41 EtherCAT module. This module has 6 inputs and 2
outputs which are global to all MSBs. The outputs are referenced as 9 and 10 when using the
‘setout’/’clrout’ instructions. The MSB property ‘global_inputs’ is used to read the 6 inputs, with
the first bit being the first input. The MSB property ‘global_outputs’ can be used in addition to
‘setout’/’clrout’ for read/write operations of the local outputs.

Local global Inputs, P1 connector pins:

P1 -11 DIN1
P1-13 DIN2
P1-15 DIN3
P1 -12 DIN4
P1-14 DIN5
P1-16 DIN6

Local global Outputs, P1 connector pins:

P1 -9 DOUT1
P1-10 DOUT2

154

QuickBuilder™ Reference Guide

Control Technology Corp.

4 1. ‘global_inputs’ and ‘global_outputs’ axis properties may be accessed by QuickBuilder

using the Axis name/property method: axisname.property. These two properties will contain the
same value on all EtherCAT axes.

2. Chapter 6 discusses additional IO capabilities available from the MSB language using
various IO arrays. These arrays give access not only to drive and module based IO but remote
EtherCAT IO blocks such as those from Wago, Turck and Beckhoff. Some of the features include
PLS, PWM, pulse, and atomic multi-bit access of 32 drive inputs/outputs, local and remote IO.

3. IncentiveECAT Version only supports drive I/O.

1.3.4 QuickBuilder Motion Control Features

• Axis objects configured in the Resource Manager

• New tuning wizard simplifies tuning

• Monitor motion parameters in multiple watch windows

• Use QuickScope to chart motion and I/O timing

• Simple English commands

• Over 100 new motion variables

• Full user-unit support

• Soft limits and hard limits

• Asynchronous event handlers

QuickMotion Reference Guide 155

Doc. No. 951-530020-010

1.3.5 IO Assignments

1.3.5.1 IO Assignments - M3-40A

 Any two digital inputs can be configured in QuickBuilder to function as registration inputs 1 and 2. These
digital inputs still function as general purpose inputs even when configured as registration inputs.

156

QuickBuilder™ Reference Guide

Control Technology Corp.

1.3.5.2 IO Assignments - M3-40B

QuickMotion Reference Guide 157

Doc. No. 951-530020-010

1.3.5.3 IO Assignments - M3-40C

158

QuickBuilder™ Reference Guide

Control Technology Corp.

1.3.5.4 IO Assignments - M3-41A

QuickMotion Reference Guide 159

Doc. No. 951-530020-010

2 Chapter 2: Motion Architecture

The Model 5300 PLC uses a powerful distributed architecture approach to solving machine control applications.
The overall machine control program – called a QuickBuilder project – runs on the main CPU of the Model 5300
Automation Controller. It provides the primary guidance for the application and is in charge of communications
with the outside world and the local Model 5300 I/O, motion, and specialty modules. The distributed nature of the
Model 5300 design allows portions of the project to be passed to intelligent Model 5300 modules for local
processing. This distribution of processing tasks and the overall coordination between modules and the main
CPU is taken care of automatically by QuickBuilder.

The result is a significant improvement in machine performance by off loading demanding processor-intensive
functions like motion control tasks to specialized motion control processors on the Model 5300 Motion Modules.
 Even though this process takes place automatically, it’s important for the automation engineer to have a basic
understanding of the architecture of the Model 5300 controller and how it interacts with the QuickBuilder
project.

The 5300 backplane can accommodate multiple modules of the following type:

· M3-40A: 2 Axis Servo Module

· M3-40B: 3 axis Stepper/High-speed Counter Module (24V)

· M3-40C: 3 axis Stepper/High-speed Counter Module (5V)

· M3-41A: 5300 Hardware Module for EtherCAT (reference this guide and EtherCAT Application Guide
for added features)

With the release of EtherCAT motion support for the 5300 a new architecture was introduced, that of virtual
network based devices. Once perfected it became apparent that there was a strong industry need to move the
PLC and motion architecture to an embedded PC platform where a seamless interface could be provided to .Net
programmers. This is known as the IncentivePLC and IncentiveECAT PC based software modules. These
modules run the exact same environment as the 5300 PLC, in real-time, using dedicated cores of the PC. Both a
real-time operating system and Windows run in parallel, communicating through shared memory. IncentiveAPI is
provided to provide a seamless interface to the real-time world from programming languages such as C#, VB.NET,
and C++.

160

QuickBuilder™ Reference Guide

Control Technology Corp.

The structure of the virtual PLC environment looks something like the following:

Both the 5300 PLC and Incentive products are programmed using the exact same tools. Before we get into the
details of how to add motion to a QuickBuilder project, we’ll first review the major elements of the software
architecture:

· QuickBuilder, the software application used to program Model 5300 controllers

· QuickStep, the programming language used in QuickBuilder

· QuickMotion, an extension to the QuickBuilder application that is tailored to handling motion control.

2.1 QuickBuilder

QuickBuilder is CTC’s innovative graphical development environment built using the latest .NET technology,
making it very intuitive to use. It combines all the aspects of an automation project into one easy to use desktop
application. This holistic approach to solving automation projects leads to quicker machine startups and simpler
understanding of even the most advanced automation tasks. The key to simplifying the automation process is to
break the overall process down into the operating states of each of its elements.

QuickMotion Reference Guide 161

Doc. No. 951-530020-010

QuickBuilder desktop showing three tasks. A single step is highlighted in red.

A QuickBuilder project is comprised of one or more tasks. Breaking the program into separate easily defined
tasks greatly simplifies the programming process. A task contains multiple steps – where the steps represent a
given operating state of the machine. Within the step are the actual instructions such as wait for input, turn on
output, move an actuator, etc. It is also here at the instruction level that motion is initiated.

2.2 QuickStep

QuickStep is CTC’s programming language used for the instructions within the steps. QuickStep was originally
invented by CTC in the 1980’s and has been proven in thousands of automation projects. Over the years CTC
has continually refined and upgraded the language. The current version of QuickStep is QuickStep4 (QS4). The
screen captures below show a highlighted step from the flow chart window that is automatically linked to the QS4
editor.

The use of QuickBuilder and QuickStep are covered in their respective manuals, and the user should be familiar
with their use prior to starting a motion application.

162

QuickBuilder™ Reference Guide

Control Technology Corp.

2.3 QuickMotion

QuickMotion is a specialized extension of QuickBuilder that is designed for motion control applications. It has
been optimized to simplify the motion control process and to take advantage of the distributed architecture.
QuickMotion instructions are entered into specialized tasks called Motion Sequence Blocks (MSBs).

The MSBs are coded within the QuickBuilder environment in the same way as steps are coded in QuickStep:
Drag the MSB symbol onto the graphical desktop, give it a name, then use the editor to add the appropriate
instructions. But there are two big differences:

1. an MSB is both a step and a task

2. a single MSB may be used by any number of axes.

QuickMotion Reference Guide 163

Doc. No. 951-530020-010

By way of a practical example, think of the common motion control operation of homing an axis. In older control
schemes, designers were either forced to write this homing code over and over in the program or call some generic
homing routine hard coded by the motion control manufacturer. With QuickMotion, it is easy to create a
customized homing MSB once, give it a name, and then use a QuickStep statement to start that MSB on any axis
whenever an axis needs to be homed.

2.3.1 Adding Motion to the 5300/Incentive Application

The main components used in motion control are:

· The Axis Module: The physical motion module in the rack

· The Axis Object: The QuickBuilder Resource representing an axis on that physical module.

· The MSB: The Motion Sequence Block, which contains one or more motion statements that execute on
the Axis Module’s CPU under the supervision of QuickStep.

164

QuickBuilder™ Reference Guide

Control Technology Corp.

2.3.1.1 The Axis Module

A Model 5300 axis module is inserted into the Model 5300 rack just like any other I/O module. CTC offers axis
modules that can control one or more motion axes. Each motion module contains its own CPU and Motion
Accelerator Chip (MAC), ensuring consistent high performance motion control regardless of the number of axes
to be controlled.

M3-40A: Example of a Model 5300 Axis Module

M3-41A: Example of a Model 5300 EtherCAT Module

QuickMotion Reference Guide 165

Doc. No. 951-530020-010

IncentiveECAT is a software module running on am embedded PC that is responsible for all the motion control.
IncentivePLC runs the main QuickBuilder logic application. Something called MSB's, or Motion Sequence Blocks
executes in real-time within the IncentiveECAT process, detailed later. A popular choice for an embedded PC
integrates the HMI with automation control as shown below:

2.3.1.2 The Axis Object

The Axis object represents a hardware-based or virtual axis associated with a servo or stepper drive. It is
automatically created when a motion module is added to a rack in the Resource Manager. It typically consists of a
controller module with various inputs and outputs that control the servo (or stepper) and usually feedback
signals that are used to monitor position. Each axis can be commanded to perform some sequence of motion
commands by the use of motion sequence blocks (MSBs). These MSBs appear in the QS4 program as stand-
alone graphical elements.

Axis objects have many specialized properties that can be configured using the Property Inspector. Most of
these properties can also be changed dynamically in the QuickBuilder project. Axis Objects have various inputs
and outputs that control the servo (or stepper) and usually feedback signals that are used to monitor position.

When an MSB is selected, the programmed motion command sequence appears in the text editor window – the
same window that is also used to edit QS4 code.

QuickStep4 can only start one motion sequence at a time for a given axis, but the active motion sequence can
start other motion sequences (with some exceptions) that can run in parallel.

An MSB is not associated with any particular axis, which allows the same sequence to be reused many times for
different axes.

166

QuickBuilder™ Reference Guide

Control Technology Corp.

2.3.1.3 The Motion Sequence Block

The Motion Sequence Block (MSB) element holds QuickMotion statement sequences. MSBs appear in the
QuickBuilder project as stand-alone graphical elements. MSBs are not associated with any particular axis. This
allows the same sequence to be reused many times for different axes, much like how a function works. MSBs are
programmed using the QuickMotion language. An MSB may have only one QuickMotion statement, or it may
have hundreds of statements.

The MSB is started on a given axis from QuickStep by using the Start MSB statement.

Once started, an MSB can start another MSB on its own that can run in parallel on the same axis. An MSB
cannot start an MSB on another axis. This can only be done by QuickStep.

Up to 4 foreground MSBs can be running simultaneously. This limitation is imposed to guarantee high
performance deterministic execution. A foreground MSB executes each of its statements at the loop update time
of the Axis Module. This keeps them fast and in sync with the position loop.

In addition to the foreground MSBs, any number of background MSBs can be running simultaneously. The
number of background MSBs is limited only by available memory on the Axis Module.

QuickMotion Reference Guide 167

Doc. No. 951-530020-010

2.4 Controlling Motion from QuickStep

As mentioned earlier, QuickStep is in overall control of the project and as such, QuickStep has the ability to start
and stop MSBs. There are actually only two Quickstep instructions pertaining to motion: Start and Stop.

· Start: Begins execution of the named motion sequence block (MSB) on the specified axis as a
background MSB. This background MSB can then launch foreground MSBs on that axis. QuickStep
can also directly launch foreground MSBs by using the FG option (start <axis> <msb> {optional
FG/BG}, where FG is foreground and BG is background task.

· Stop: Stops execution of all foreground and background MSBs and thereby all motion.

In addition to these commands, QuickStep has extensive abilities to monitor and control MSBs on the axes while
they are running via pre-defined and user-defined variables.

2.4.1 QS4 start Statement

This statement begins execution of the named motion sequence block (MSB) on the specified axis.

It is not an error to start another MSB when there is one already running for a given axis – however, if the named
MSB is already running on a given axis, the start is effectively ignored.

start axis1 MSB1; // start MSB1 on the axis called 'axis1', as
a background thread.

start axis1 MSB1 BG; // start MSB1 on the axis called 'axis1', as

a background thread.

start axis1 MSB1 FG; // start MSB1 on the axis called 'axis1', as
a foreground thread (run on each loop ticks, limited to 4).

2.4.2 QS4 stop Statement

This statement stops execution of all MSBs on the named axis.

Example:

stop axis1; // stop execution of all MSBs on 'axis1', this
stops immediately

stop axis1 slewed using 100; // stop execution of all MSBs on
'axis1', slewed stop at 100 user-units/sec/sec.

168

QuickBuilder™ Reference Guide

Control Technology Corp.

2.4.3 Motion Architecture Summary Diagram

5300 PLC (M3-40/41)

QuickMotion Reference Guide 169

Doc. No. 951-530020-010

IncentivePLC & IncentiveECAT Soft PC

170

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickMotion Reference Guide 171

Doc. No. 951-530020-010

3 Chapter 3: QuickMotion Axis Setup

Adding a motion axis to a QuickBuilder project is very similar to adding any other resource. The first thing that
needs to be done is to add the axis module to the appropriate rack in the controller. This is done by right clicking
the rack and selecting the appropriate module. For this discussion we will be adding a third M3-40A module to
our first 8-slot rack. As with other module types, axes are automatically numbered from left to right starting at the
CPU. So in this case the two axes on the third module are numbered 5 and 6.

The axes first appear with question marks in their names, which must each be edited to a unique name. It is an
error to have unnamed axes in a project. Right click and name the axis.

If the project changes, or the physical connection of the axes to the modules changes, axes can easily be
rearranged in the Resource Manager. A single axis may be moved in the tree or a whole module can be moved as
needed so that the named axes in the Resource Manager correspond to the actual wired axes.

After placing the Axis object in the proper place and naming it, the axis properties should be checked and updated
as necessary. This is done in the property inspector window.

172

QuickBuilder™ Reference Guide

Control Technology Corp.

3.1 Axis Properties

When an Axis object is highlighted in QuickBuilder’s
Resource Manager, the following alphabetical property list
for the axis is displayed. Required and Recommended
properties to set up are reviewed below. Default values are
given in []. To learn more about these as well as the other
properties, see the Variables Chapter later in this guide.

Required — When setting up an axis, the following
properties must be set up in order for the Servo or Stepper
Control module to properly interface with the connected
motor and drive:

· cmode: Determines the command signal the
controller sends out. Set to [Torque], Velocity, or
Stepper.

· tmax / vmax: Depending on the drive type set, the
maximum torque or velocity that will be realized by a
10V command from the controller. [1Nm / 1000RPM]

· ppr: The number of feedback counts per revolution
[4000]

· sppr: When operating in stepper mode, this value
must be set to correspond to the steps/rev of the
controlled stepper drive.

Recommended — Once the required properties have been
entered, the axis can be tuned. However, it is recommended
that the following properties also be checked and adjusted
as necessary.

· acc / dec: Check that the acceleration / deceleration
rates are appropriate. [10000000/10000000]

· driveenable: Set this to the output number that will
be used to enable the servo drive. (Highly
recommended that this be used. Use positive input
number for true state=high; use negative number
for true state=low.) [0=not used]

QuickMotion Reference Guide 173

Doc. No. 951-530020-010

· inposw: The in-position window scaled in user units. This is used to determine when the drive has reached the
commanded position. Use positive input number for true state=high; use negative number for true state=low.
 [0.01]

· overnegin / overposin: (Hardware over-travel limits) Set these to the input number to be used to signal
positive and negative over-travel. Use positive input number for true state=high; use negative number for true
state=low. [0=not used]

· neglim / poslim: (Software over-travel limits) Set these to the input number to be used to signal positive and
negative overtravel. [-1E+50 / 1E+50]

· perrlimit: This is the maximum allowed following error in user units before a fault is generated. [0=disable
checking]

· uun/uud: User-units numerator and denominator. This fraction is used to convert revolutions to user units.
[1/1]

Other — Many of the other properties are either automatically adjusted by the tuning wizard or are used for more
specialized functions. Refer to Chapter 5: Variables for more details.

3.1.1 Basic Tuning

For basic tuning of an axis there is only one adjustment needed: adjust the Bandwidth slider until the desired
performance is reached. Moving the slider to the right increases the servo loop bandwidth and hence the move
performance. By checking the high box, the slider impact is doubled. If moved too far, the motor will become
unstable and begin to emit a buzzing sound and vibration even with the motor at rest. If this occurs, move the
slider back to the left until this condition is eliminated.

 Note: Tuning parameters adjusted using the wizard are updated in volatile memory. To save them to the non-
volatile memory of the controller it is necessary to download the project to the controller after tuning.

174

QuickBuilder™ Reference Guide

Control Technology Corp.

3.1.2 Fine Tuning

While the Basic Tuning method just discussed works well for most general purpose applications, higher
performance applications or those with unusual loads or friction will typically require more adjustments. For best
results in fine tuning an axis, it is useful to observe the velocity profile of the axis and how it responds to various
adjustments to the tuning properties. This can be done by using QuickScope within QuickBuilder or by using an
external oscilloscope to monitor the velocity output signal of the drive. The other wizard adjustment items are
listed below:

PPG: This is the position loop proportional gain scaled in 1000/min units. This increases the response of the
position loop and stiffness.

Feed-forward: This increases the position loop velocity feed-forward gain.

Loop Type: Adjust the loop type from 100% PID to 100% PDF structure.

Damping: This has the effect similar to adding or removing friction from the system.

For advanced applications, all of these parameters with the exception of motor inertia can be changed
programmatically or interactively through a QuickBuilder Watch Window. There are also several other tuning
variables available for the experienced motion engineer. Refer to Chapter 5: Variables for details.

QuickMotion Reference Guide 175

Doc. No. 951-530020-010

3.2 Tuning an axis (5300 M3-40 Only)

QuickBuilder simplifies the tuning process by utilization of an innovative new tuning wizard for each axis. To
access the tuning wizard, simply right click on the axis and select Tune. Doing so will bring up a window like the
one shown below. Note that each axis has its own tuning wizard window. Multiple windows may be active and
displayed simultaneously.

To tune an axis with the wizard, the first step is to enter the motor inertia in the bottom box of the wizard. Once
this is entered, the wizard is set up to critically damp the motor. Since the wizard adjusts tuning parameters in real
time, the best way to use it is to set up a safe repeating move for the axis and then make adjustments in the wizard
to optimize the motion profile.

Once tuning has been configured it may be save to the axis non-volatile memory but clicking on the 'commit'
button. To remove tuning parameters from non-volatile motion board storage click the 'clear' button. By default
the tuning parameters are saved with the QuickBuilder program and re-written each time the project is loaded.
Committing the parameters to the motion board will override those in the program. This will set the nonvolatile
axis variable to 1 when active.

176

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickMotion Reference Guide 177

Doc. No. 951-530020-010

4 Chapter 4: QuickMotion Programming

This chapter covers the QuickMotion commands and their usage with MSBs.

 These statements cannot be used in a QuickStep step! The MSB statement set has been created to simplify
the motion programming process and make powerful motion control applications accessible to a wide range of
users. These statements are optimized for high performance execution on motion modules. In addition to the
motion statement set, CTC has provided over 100 pre-defined motion variables that greatly simplify development.
 The motion related variables are covered within their own chapter, later in this guide.

4.1 Operating Modes

POSITIONING
MODE

TRACKING
MODE

set mode tracking

set mode positioning

SLEWING
MODE

slew begin

slew end

Positioning

In this mode, the axis is able to perform absolute and incremental time-based motion, including SegmentedMoves
and time-based CAMs.

The axis must have completed any pending positioning operations before changing to a different operating mode.

Slewing

In this mode, the axis generates a series of interpolated positions based upon a constant (but alterable) velocity.

The axis must be stopped by using slew end in order to perform any positioning operations.

Tracking

The axis is able to perform position-tracking in this mode. This includes following, gearing and position-based
CAMs. The axis must complete all pending tracking operations before changing to a different operating mode.

178

QuickBuilder™ Reference Guide

Control Technology Corp.

4.2 Expressions

In QuickMotion, expressions consist of variables, constants, and operators. Variables are listed in Chapter 6:
Variables.

The following operators, listed in order of grouped precedence, are available in QuickMotion:

() parenthesis

|| logical-or

&& logical-and

| bitwise-or

& bitwise-and

!= not-equal

== equal

<= less-than-or-equal

< less-than

> greater-than

>= greater-than-or-equal

+ add

- subtract

* multiply

/ divide

% modulo

! logical-not

~ bitwise-not

- negate

QuickMotion Reference Guide 179

Doc. No. 951-530020-010

4.3 Utility Statements

Summary:

stop { slewed using rate }

drive enable

drive disable

delay time ms

variable = expression

zero feedback position

zero target position

zero following error

reset

if condition then variable = expression

wait until condition

 Stop Positioning Slewing Tracking BG MSB

 FG MSB

syntax

stop { slewed using variable }

parameters

 variable optional rate at which to stop the axis in user unit

stop; // stop the axis
stop slewed using rate; // stop the axis by slewing to 0 at
specified rate

In positioning mode:

Non-slewed – This statement immediately aborts the present motion operation as well as halts the target
position generator from updating the target position (tpos), thereby (eventually) stopping motion. This
form of stop may not be desirable in all cases (such as when the axis has excessive following error), since
the target position may be greatly different than the feedback position and the feedback position will still
seek the target position.

Slewed – This statement first copies the current feedback position (fpos) into the target position (tpos)
and then generates a controlled deceleration by slewing to zero velocity using the rate specified.

If the axis is in slewing mode, a slew end is issued thereby placing the axis in positioning mode. The optional
stop mode slewed is ignored in this mode.

If the axis is in tracking mode, the numerator of the gear ratio is set to zero – but the axis remains in tracking
mode. The optional stop mode slewed is ignored in this mode.

180

QuickBuilder™ Reference Guide

Control Technology Corp.

 Enable/Disable Drive Positioning Slewing Tracking BG MSB

 FG MSB

syntax

drive enable

drive disable

Enables or disables the drive associated with the axis, thereby allowing motion to occur. If the driveenable
variable has been set to an output number, that output is automatically turned on when the drive enable command
is encountered or turned off when the drive disable command is encountered. In some cases, the motor may
slowly decelerate to a zero velocity when disabling.

drive enable; // enable the drive for this axis
drive disable; // disable the drive for this axis

 Invoking the drive enable command sets the target position (tpos) to the feedback position (fpos).

 Time Delay Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

delay time ms

parameters

time an expression representing time in milliseconds

This statement delays execution of the active MSB for the specified number of milliseconds.

delay 2500 ms; // delay for 2.5 seconds

 Timeout Initialization Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set timeout ticks

parameters

ticks Number of ticks until a timeout occurs causing any active ‘on timeout’ event handlers
to take action.

This command initializes a private msb timer which is decremented on every tick if the ‘on timeout’ command is
active. To disable execute an ‘on timeout ignore’ command. The timeout value must be set after every timeout, it
acts as a down counter, invoking the event handler when 0 is reached. .

set timeout 100; // Set timeout to 100 ticks

QuickMotion Reference Guide 181

Doc. No. 951-530020-010

 Assignment Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

variable = expression

parameters

variable a variable to change the value of

expression an expression

The value of the specified expression is evaluated and stored to the named variable.

//calculate a new value for result
result = 34.857 * oldresult;

 Zero Feedback Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero feedback position

Zeros the target position, but maintains following error (fposc = fposc - (ppr * tpos) then tpos = 0). Operates the
same as zero target position.

//set the current position as zero
zero feedback position;

 Zero Target Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero target position

Zeros the target position, but maintains following error. Operates the same as zero feedback position, but is more
readable in stepper mode.

//set the current position as zero
zero target position;

 Zero Following Error Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero following error

182

QuickBuilder™ Reference Guide

Control Technology Corp.

This statement zeros the feedback position (fpos/fposc) and target position (tpos), thereby removing any

following error.

// relax the system by zeroing the following error
zero following error;

 Unless you are current limiting and driving into a hard stop (or similar application), there is no
reason to use "zero following error" (and it's probably wrong in most applications to use it). Zero
position feedback is what should normally be used. Remember that following error is maintained
when zeroing the position

feedback and 99.99% of the time that is what is desired. Think of it like this:

tpos = 1.000

fpos = 0.999

After "zero feedback position":

tpos = 0.000

fpos = -0.001

You don't want to lose that 0.001 of error, but you still want to call wherever you are zero — that is
generally the case. Because tpos (the target to seek) runs the show, that is what you want to be
precisely zero. All motion is relative/absolute to the target position, NOT the feedback position, as
that wouldn't make sense.

Zero following error is used, for example, in nut-driving applications where one limits the torque,
drives to an unreachable position (because as the nut is torqued, the torque limit is hit), and then
watches for current limit and then zeroes the following error — thus, removing the torque, etc.

 Reset Faults Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

reset

Resets any fault (if possible to).

reset; // reset axis faults

 If/Assignment Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

QuickMotion Reference Guide 183

Doc. No. 951-530020-010

if condition then variable = expression

parameters

condition a Boolean test condition

variable a variable

expression an expression

This statement evaluates the specified condition. If true, the expression is evaluated and variable is set to the
resulting value. If false, MSB program flow continues at the next MSB statement.

// if the position error for the axis exceeds
// 0.25 set a variable ‘fault’ to 2
if perr > .25 then fault = 2;

 Wait Until Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait until condition

parameters

condition condition to test

This statement waits for until the specified condition is true.

// wait here until chamber temp exceeds min
wait until temp > 32.849;

184

QuickBuilder™ Reference Guide

Control Technology Corp.

4.4 Program Flow Statements

Summary:

[label]

start MSB mode

end { and start MSB mode }

abort MSB

goto label

if condition goto label

on asynchevent asynchhandler

 Statement Label Positioning Slewing Tracking BG MSB

 FG MSB

syntax

[label]

A label within an MSB is used as a marker for the destination of a goto or similar statement.

It is often required to iterate or branch depending on the state of some external input/output or internal condition
– a label is used to mark the destination.

// this label is called Top
[Top]

 Start Positioning Slewing Tracking BG MSB

 FG MSB

syntax

start MSB mode

parameters

MSB the name of the MSB to start

mode FG start as a high-priority (tick) MSB
BG start as a low-priority (non-tick) MSB

This statement activates an MSB – if the MSB is already active, this statement is effectively ignored.

Up to 4 foreground (FG) MSBs may be running simultaneously.

There is no logical limit to the number of active background (BG) MSBs.

// start the MSB called PressCap and run as a foreground MSB
start PressCap FG;

QuickMotion Reference Guide 185

Doc. No. 951-530020-010

 End Positioning Slewing Tracking BG MSB

 FG MSB

syntax

end { and start MSB mode }

parameters

MSB the name of the MSB to start

mode FG start as a high-priority (tick) MSB
BG start as a low-priority (non-tick) MSB

This statement ends execution of this MSB. An optional MSB can be specified to start after this one completes.

An end or goto statement should be the last statement in any MSB.

// this is the end of the MSB
end;

// end the current MSB and then start the MSB called WeldCap
// as a foreground MSB
end and start WeldCap FG;

 Abort Positioning Slewing Tracking BG MSB

 FG MSB

syntax

abort MSB

parameters

MSB the name of the MSB to abort (stop) the execution of

This statement ends execution of another MSB. If the named MSB is not active, the statement is effectively
ignored.

// kill only the WeldCap MSB
abort WeldCap;

 Goto Positioning Slewing Tracking BG MSB

 FG MSB

syntax

goto label

parameters

label the name of the label to branch to

186

QuickBuilder™ Reference Guide

Control Technology Corp.

This statement changes program flow to the specified label.

// jump to the MSB label called Top
goto Top;

 If/Goto Positioning Slewing Tracking BG MSB

 FG MSB

syntax

if condition goto label

parameters

condition a Boolean test condition

label the name of the label to branch to

This statement evaluates the specified condition. If true, MSB program flow continues at the specified label. If
false, MSB program flow continues at the next MSB statement.

// If the axis’s input1 is on goto the label MakeMove

if din1 goto MakeMove;

 Asynchronous Event Handling Positioning Slewing Tracking BG MSB

 FG MSB

syntax

on asynchevent asynchhandler

parameters

asynchevent One of the following:

riseof n Rise of specified general purpose

 input.

fallof n Fall of specified general purpose

 input.

hardfault When a non-recoverable fault occurs.

capture Capture of specified input trigger.

pls output PLS output 1 to 5 activated.

timeout 'timerticks' variable decrements to

 0 (use ‘set timeout' to initialize

 msb private value).

asynchhandler One of the following:

ignore Cancel asynchronous event

 monitoring.

start MSB {FG/BG}{arm} Starts the specified MSB in

 BG (background) mode unless FG is

QuickMotion Reference Guide 187

Doc. No. 951-530020-010

 specified, if capture then optional

 {arm} at end of statement.

goto label {arm} Branch on event, if capture

 then optional {arm} at end of

 statement.

This statement controls asynchronous event handling.

If asynchhandler is set to start…, then an MSB is started automatically when the specified event occurs. If the
MSB is already active when the event occurs, a second instance is not started. If not specified background mode
is used (BG).

If asynchhandler is set to goto…, then a branch to that label occurs upon the event, within the same MSB.

If asynchhandler is set to cancel, then no operation will occur upon event. Each event is unique to a specific
MSB although only one MSB may monitor a capture or specific pls output event.

If asynchevent is set to timeout then the ‘set timeout <ticks>’ command must be set for down counting to begin
(500uS/tick). Branching based upon a timeout will occur regardless of motor operations and it is up to the MSB to
properly recover and/or stop motors.

Example ‘on timeout’:

x = 0;
y = 0;
set timeout 5000 * 2; // 5 second timeout
on timeout goto timedout;
[top]
// x will increment for 5 seconds and then a branch to [timedout] will occur
x = x + 1;
delay 100 ms;
goto top;
[timedout]
// y will increment after 5 seconds and continue forever
y = y+1;
delay 100 ms;
goto timedout;

188

QuickBuilder™ Reference Guide

Control Technology Corp.

4.5 Set Statements

Summary:

set common bit number state

set common var number value

set loopperiod value

set mode positioning

set mode tracking

set timeout ticks

set target position value

set feedback position value

set target position counts vcounts

set feedback position counts vcounts

set simulated feedback on/off

offset position value

offset position counts vcounts

set master mode { using global }

 Set Loop Period Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set loopperiod value

parameters

value The desired loop time in uS, default value is .0008 (800uS). The minimum is 500uS.

This statement sets motion interrupt loop period. The current loop period and rate are available via the axis
‘loopperiod’ and ‘looprate’ variables (looptime group). The period selected should be evenly divisible for
accuracy. Thus .0005 has a rate of 2000 ticks/second, .0008 is 1250 ticks/second (1/.008). Setting one axis sets the
other and it is recommended to only change the loop time at initialization, prior to the ‘drive enable’ command.

set loopperiod 800; // Set loopperiod to the default, 800 uS
 // (not needed since powerup default

 Set Positioning Mode Positioning Slewing Tracking BG MSB

 FG MSB

syntax

set mode positioning

Sets the operating mode of the axis to positioning.

set mode positioning; // switch to positioning mode

QuickMotion Reference Guide 189

Doc. No. 951-530020-010

 Set Tracking Mode Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set mode tracking

Sets the operating mode of the axis to tracking.

set mode tracking; // switch to tracking mode

 Set/Offset Target/Feedback Position(s) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set target position value

set feedback position value

set target position counts vcounts

set feedback position counts vcounts

offset position value

offset position counts vcounts

parameters

value new or offset for the named position (user-units)

vcounts new or offset for the named position (counts)

These statements modify the target and/or feedback positions. The new value (or offset) may be specified in
user-units, or in feedback counts (by use of the keyword counts). The first two forms set the target or feedback
position to a specific absolute value in user-units. The third and fourth forms set the target or feedback position
to a specific absolute value in counts. The last two forms modify the target and feedback positions
simultaneously by adding the specified offset to both.

 Following error is maintained when these statements are executed.

 The axis must not be active (i.e. actively generating a target position by use of a move statement) when any of
these statements are executed.

// set the feedback position (fpos) to 2.149
set feedback position 2.149;

// offset both the target and feedback positions by 1100 counts
offset position counts 1100;

 Set simulated feedback Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

190

QuickBuilder™ Reference Guide

Control Technology Corp.

set simulated feedback on/off

parameters

on/off off - normal operation, feedback from encoder. on - feedback simulated and from tposc
on each servo loop.

Enables or disables simulated feedback, setting fposc to originate from the encoder (off) or tposc (on). 'tposc' is
the incremental amount to move on the next servo loop. Thus when simulated the desired increment will be
achieved on each loop. This command is useful for both test purposes and when using a virtual master. The
simulated axis can publish its master position across the controller backplane, based upon its moves. See the
'Virtual Master' section. This command is also useful during open loop stepper operation when using the pls
functionality.

set simulated feedback on; // this will cause fposc to = tposc after each loop period, drive must not be
enabled

 Set Master Encoder Source Positioning Slewing Tracking BG MSB

 FG MSB

syntax

set master mode { using global }

parameters

mode feedback1 master position sourced from axis 1 feedback

feedback2 master position sourced from axis 2 feedback

target1 master position sourced from axis 1 target

target2 master position sourced from axis 2 target

feedbackZ master position comes from axis 1&2 Z-inputs

virtual master position on this axis is to be calculated as a

 virtual source, reference ‘move master at’ for

 setup (master axis).

common master position from controller backplane as

 determined by variant register 36827 (slave axis)

global global (optional) This position information is made public to

 the controller backplane. Distributed to ‘common’

 nodes as determined by variant register 36827.

This statement sets the source of the axis master encoder. The default source for MSBs executing on the first axis
is feedback2. This means the first axis is using the second axis as the master. This command executes
independently on each access thus to change axis 1 to be the master a ‘set master feedback1’ must be executed
by MSB’s on both axis. The default for the second axis is feedback1.

The source feedbackZ is derived by using the first axis’ Z-channel input as the “A”-channel for the master
encoder and the second axis’ Z-channel input as the “B”-channel for the master encoder.

For an axis to make its master public the ‘using global’ option is used. This allows the axis to publish its position
information to other axis that executes the ‘set master common’ command.

QuickMotion Reference Guide 191

Doc. No. 951-530020-010

Variant register 36827 is used to define how global master information is distributed amongst slaves. The variant
is a 4 row, 3 column array with the first 4 rows defining possible global master sources to reference and the
columns referenced as follows:

[0] – enabled position information updates (every 4 mS to all slaves), set 1 to enable, 0 to disable.

[1] – master axis whose position information is to be distributed to slaves, 1 to N where N is all the axis in a
controller rack. Note that the master axis MSB must have executed the ‘set master global’ command.

[2] – 32 bit field with each bit representing a slave axis to whom the master axis information is to be
distributed. Bit 0 would be axis 1, Bit 31 is axis 32.

4.6 Common bits and variables

Summary:

set common bit number state

wait common bit number state

set common var number value

wait common var number range

Common bits and common vars are used to communicate state information:

a. between QuickMotion based modules

b. between QuickMotion and QuickStep 4

c. between axes on a single module such as an M3-40A

There are 256 common bits and 256 common vars. Common bits are Boolean, and common vars are bytes and
therefore have values from 0 through 255.

The common bits are globally shared between all QuickMotion modules as well as QuickStep 4. Any changes
made to common bits are “seen” by all QuickMotion modules and the main CPU running QuickStep 4.

The first 32 common vars are overlaid on top of the 256 common bits – changes made to a common var may alter
up to 8 common bits.

The remaining 244 common vars are module-local – changes are only seen local to the module. This is useful to
communicate state information between axes on a two-axis QuickMotion module such as an M3-40A.

A user may decide whether to use just common bits or just common vars or even a combination of the two
depending on the application.

From QS4, common bits are accessed via the $CBITS[] system variable and common variables are accessed via
the $CVARS[] system variable.

192

QuickBuilder™ Reference Guide

Control Technology Corp.

There are several QuickMotion instructions that deal with common bits and vars:

· set common bit

· wait common bit

· set common var

· wait common var

Within QuickMotion, common bits and vars can be used in expressions through the notation:

cbit[n] where n is 0 through 255

cvar[n] where n is 0 through 255

For example:

[top]
if cbit[10] goto op10;
if cbit[11] goto op11;
if cbit[12] goto op12;
goto top;

[op10]
move to 1.0;
wait for in position;
goto top;

[op11]
move to 0.0;
wait for in position;
goto top;

[op12]
move to 2.25;
wait for in position;
goto top;

 Set Common Bit Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set common bit number state

parameters

number bit number (0-255)

state true or false

QuickMotion Reference Guide 193

Doc. No. 951-530020-010

This statement sets the specified “common bit” to the given state.

 Wait For Common Bit Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait common bit number state

parameters

number bit number (0-255)

state true or false

This statement waits until the specified “common bit” is at the desired state.

 Set Common Var Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set common var number value

parameters

number variable number (0-255)

value an integer value (0-255)

This statement sets the specified “common state variable” to the given value.

 Wait For Common Var Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait common var number range

parameters

number variable number (0-255)

range x a value of x

x-y a value of x through y inclusive

! x a value other than x

! x-y a value outside the range of x through y

This statement waits until the specified “common state variable” is within/outside the given range.

194

QuickBuilder™ Reference Guide

Control Technology Corp.

4.7 I/O Statements

Summary:

setout outputlist

clrout outputlist

pulse output for n

pls output using reference definitions

pls output state

wait for[****]transition[****]of[****]input { or[****]condition }

generate output output rate freq

generate n steps on pair

variable = ctr[n]

ctr[n] = expression

ctr[n] = offset

generate alternate mode

 Set Output(s) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

setout outputlist

parameters

outputlist a comma delimited list of outputs to set

This statement sets one or more outputs to the on state.

The output number can be 1-5 (dual axis mode) or 1-10 (1½ axis mode).

setout 2; // turns on the second output on the module
setout 1, 3; // turns on the first and third outputs

 Clear Output(s) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

clrout outputlist

parameters

outputlist a comma delimited list of outputs to clear

This statement sets one or more outputs to the off state.

The output number can be 1-5 (dual axis mode) or 1-10 (1½ axis mode).

clrout 2; // turns off the second output on the module

QuickMotion Reference Guide 195

Doc. No. 951-530020-010

clrout 1, 3; // turns off the first and third outputs

 Pulse Output Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

pulse output for n

parameters

output the output to pulse

1-5 (dual axis mode)

1-10 (1½ axis mode)

n the time to pulse the output, an expression as milliseconds

This statement causes the specified output to pulse for the specified duration. If the output is already on when
this statement executes, the output state is unchanged – however it will be turned off after the specified time.

If another statement changes the state of the output to off before the allotted duration, the generation of the
pulse is aborted.

The generated pulse is accurate within ½ of a millisecond.

// turns on the 2nd output on the module for 500ms

pulse 2 for 500;

 PLS Define Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

pls output using reference definitions

parameters

output the output (1-5) to control via a PLS

reference the encoder count scaled reference variable to compare to:

fposc Feedback position of axis msb

mposc1 - mposc5 Master position counters #1

 through #5

mposc Master position counter

smodc Slave position (modulo)

smark Slave marked position

tmc1 tmc2 Temporary master counters #1 & #2

tsc1 tsc2 Temporary slave counters #1 & #2

sdc Slave decrement counter

fposc1 Feedback position of axis 1

 (fposcA)

196

QuickBuilder™ Reference Guide

Control Technology Corp.

fposc2 Feedback position of axis 2

 (fposcB)

tmodc Temporary master counter mod mmc

sfposc Secondary feedback position of

 axis

definitions a comma-separated list of up to 16 PLS definitions:

on x to y Turn output on when the reference

 is within the bounds specified

 by x through y (may be

 expressions)

The first statement defines or redefines a PLS (software-based programmable limit switch) associated with a given
output. A definition over-writes the previous definition for an output (if one was defined already).

 When a PLS is defined/re-defined it will be disabled and will not compute the state for the output. To enable a
PLS after it is defined/re-defined, a pls on statement must be issued:

// define a PLS for output #1
// output will be on when fposc is within 10-200 or 400-430
pls 1 using fposc on 10 to 200, on 400 to 430;

// enable the PLS for output #1
pls 1 on;

 When using open loop stepper tposc is not available for PLS thus issue the command 'set simulated feedback
on' to have tposc copied to fposc, on each control loop, allowing the use of this command.

 PLS Enable/Disable Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

pls output state

parameters

output the output to control via a PLS

1-5 (dual axis mode)

1-10 (1½ axis mode)

state on or off

This statement enables (“on”) or disables (“off”) a PLS for an output.

On - Enables the pls functionality initialized for a particular output with the PLS Define statement.

Off – Disables the pls functionality initialized for a particular output with the PLS Define statement.

 If the output is on when a PLS is disabled, it will remain on – unless the user re-enables the PLS (to re-compute
the PLS output), or they clrout the output.

QuickMotion Reference Guide 197

Doc. No. 951-530020-010

 Wait For Input Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait for transition of input { or condition }

parameters

transition rise or fall

input the general purpose input to wait upon

1-5 (dual axis mode)

1-10 (1½ axis mode)

condition an optional exit condition

This statement waits for the specified transition of the specified general purpose input to occur.

The MSB will not continue execution until the transition occurs – unless there was a condition specified and the
condition evaluated to true.

// delay execution of MSB until input1 transitions from off to on
wait for rise of 1;

 When this statement is used with the optional exit condition and the statement is part of a BG MSB, it is
possible to miss transitions of the general purpose input. Therefore, the optional exit condition form should be
used with care in BG MSBs.

 Generate Pulses Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

generate output output rate freq

parameters

output 1-10

freq the frequency (in Hz) to generate pulses; rounded to an integer

This statement begins or ends generation of pulses using a specific output. If pulses are being generated on an
output, then setout, clrout and pulse output commands given to the same output have the following behavior:

setout no pulse generation occurs; the output will be active

clrout pulse generation occurs for non-zero freqs

pulse output no pulse generation occurs until the pulse output completes

198

QuickBuilder™ Reference Guide

Control Technology Corp.

When a frequency of 0 is specified, no pulse generation occurs. This effectively turns the output back into a
general-purpose output.

The minimum frequency that can be generated is 1 Hz. The maximum frequency that can be generated is well
over 500 kHz.

The accuracy of the generated signal varies by frequency (lower frequencies are more accurate). The following
table summarizes the accuracy for several frequencies:

<100 Hz +/- 0.001 Hz

500 Hz +/- 0.005 Hz

1 kHz +/- 0.02 Hz

2 kHz +/- 0.1 Hz

5 kHz +/- 0.5 Hz

10 kHz +/- 2 Hz

20 kHz +/- 8 Hz

50 kHz +/- 50 Hz

100 kHz +/- 200 Hz

250 kHz +/- 1.5 kHz

500 kHz +/- 5 kHz

 Due to a hardware limitation, this statement is only usable with outputs 3, 4, 5 (Axis 1) and outputs 3, 4, 5 (Axis
2). The use of outputs other than those listed will be ignored.

 The number of generated pulses cannot be controlled – only the frequency of the generated pulses.

 Generate Steps Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

generate n steps on pair

parameters

n the number of steps to generate in 500 µsec

pair the step/direction pair to output steps on:

QuickMotion Reference Guide 199

Doc. No. 951-530020-010

1. axis 1 step/direction pair (M3-40A/B/C outputs 3&4)
2. axis 2 step/direction pair (M3-40A/B/C outputs 3&4)
3. alternate step/direction pair (outputs 5 on each axis)

This statement generates step and direction pulses on the specified step and direction pair.

If the expression n evaluates to a negative number, then the direction will be negative.

All of the pulses will be emitted in the next 500µs loop period.

 Any setout, pulse or generate output used in parallel with this command will cause erroneous step/dir pulses
to be emitted. One should not use these commands in conjunction with generate steps.

 This command when used with cmode set to stepper mode will command additional pulses out the step/dir

outputs.

 Counter read, write, offset Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

variable = ctr[n]

ctr[n] = expression

ctr[n] = offset

parameters

n the counter number (0 through 7)

variable the variable to store the current value of the counter to

expression a new value for the counter

offset an offset for the counter (subtracted from the current counter value)

These specialized forms of the assignment statement give read/write/offset access to the axis counters.

On the M3-40A, -40B, and -40C, there are 8 counters/axis that accumulate off-to-on transitions of the following:

ctr[0] digital input 1
ctr[1] digital input 2
ctr[2] digital input 3
ctr[3] digital input 4
ctr[4] digital input 5
ctr[5] 'A' channel input (non-quadrature)
ctr[6] 'B' channel input (non-quadrature)
ctr[7] 'Z' channel input (non-quadrature)

The first form of the statement stores the current counter value in a variable.

The second form of the statement changes the current counter value.

200

QuickBuilder™ Reference Guide

Control Technology Corp.

The third form of the statement offsets the current counter value.

The first and third forms are often used together:

totalcounts = 0;
[top]
// wait until input #1 rises
wait for rise of 1;
// get the current counter value
x = ctr[7];
// accumulate
totalcounts = totalcounts + x;
// offset so no counts are missed
ctr[7] -= x;
goto top;

 Alternate Stepper Output Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

generate alternate mode

parameters

mode on generate stepper outputs on alternate pins

off generate stepper outputs on standard pins

On a M3-40A/B/C, (and when in stepper mode in the case of the M3-40A), the step and direction outputs are
normally output on axis (TBx) pin pairs (15, 16).

These cards also allow a third-axis to be controlled by temporarily outputting step and direction pulses on TB1
pin 22 (step) and TB2 pin 22 (direction).

To output on this alternate pair, the command generate alternate on should be issued. To output on the
standard pair, the command generate alternate off should be issued.

 One needs to be careful as only the destination of the step and direction signals change – the axis still
believes that motion is being commanded on the primary axis (and thus updates its idea of where the absolute
stepper position is). Therefore, it is good practice to zero the target position (zero target position) before
switching to or from this alternate mode:

// move my axis 30 revs
zero target position;
generate alternate off;
move at 5 for 30 using 10,10;
wait for in position;

// move axis #3 20 revs
zero target position;
generate alternate on;
move at 10 for 20 using 10,10;
wait for in position;

QuickMotion Reference Guide 201

Doc. No. 951-530020-010

// move me again 10 revs
zero target position;
generate alternate off;
move at 5 for 10 using 10,10;
wait for in position;

202

QuickBuilder™ Reference Guide

Control Technology Corp.

4.8 Simple Motion

Summary:

move to position { using acc, dec }

move at maxvelocity to position { using acc, dec }

move trap to position using rate

move in time to position {mode n }

move for displacement { using acc, dec }

move at maxvelocity for displacement { using acc, dec }

move trap for displacement using rate

move in time for displacement {mode n }

wait for in position

new endposition position using rate

new endposition relative displacement using rate

slew begin

slew at velocity in time

slew for displacement

slew end

 Move Absolute, Triangular Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move to position { using acc, dec }

parameters

position absolute end position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

This statement generates a triangular move to the specified end position. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos using default acceleration and deceleration rates. */

move to drillpos;

QuickMotion Reference Guide 203

Doc. No. 951-530020-010

/* Move in the positive direction to the Z pulse using default
acceleration and deceleration rates. */

move to ZPULSE_POS;

 Move Absolute, Speed-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move at maxvelocity to position { using acc, dec }

parameters

maxvelocity unsigned maximum velocity, user-units/sec

position absolute end position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

This statement generates a trapezoidal move to the specified end position. If it is not possible to reach the
specified maximum velocity maxvelocity, then a triangular move is generated. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos using default acceleration and deceleration rates and
the rapidrate variable for a max velocity. */

move at rapidrate to drillpos;

 Move Absolute, Trapezoidal Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move trap to position using rate

parameters

position absolute end position, user-units

rate acceleration/deceleration rate, user-units/sec/sec

204

QuickBuilder™ Reference Guide

Control Technology Corp.

This statement generates a 1/3-1/3-1/3 trapezoidal move (1/3 of the time accelerating, 1/3 constant velocity, 1/3
decelerating) to the specified end position. The acceleration and deceleration rate must be specified.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos using the variable rapidacc to set acceleration and
deceleration rates. The velocity used will be based on
the calculation to achieve a trap move. */

move trap to drillpos using rapidacc;

 Move Absolute, Time-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move in time to position {mode n }

parameters

time time, sec

position absolute end position, user-units

n acc / dec ramp multiplier

This statement generates a 1/3-1/3-1/3 trapezoidal move to the specified end position in the specified time. The
optional mode feature decreases the amount of time spent on acceleration and deceleration. The n
parameter must be a positive, non-zero integer. By increasing the value of n, the acceleration and
deceleration times are equally reduced, allowing more time at constant speed.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos setting the calculated velocity, accel and decel rates
to make a trapezoidal move in the time specified by the variable
movetime. */

QuickMotion Reference Guide 205

Doc. No. 951-530020-010

move in movetime to drillpos;

 Move Incremental, Triangular Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move for displacement { using acc, dec }

parameters

displacement incremental position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

This statement generates a triangular move for a specified displacement. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move an incremental distance specified by the variable
spanmove using default acceleration and deceleration rates */

move for spanmove;

 Move Incremental, Speed-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move at maxvelocity for displacement { using acc, dec }

parameters

maxvelocity unsigned maximum velocity, user-units/sec

displacement incremental position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

206

QuickBuilder™ Reference Guide

Control Technology Corp.

This statement generates a trapezoidal move for a specified displacement. If it is not possible to reach the
specified maximum velocity maxvelocity, then a triangular move is generated. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move an incremental distance specified by the variable
spanmove using default acceleration and deceleration rates and
using the variable slowspeed as a max velocity. */

move at slowspeed for spanmove;

 Move Incremental, Trapezoidal Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move trap for displacement using rate

parameters

displacement incremental position, user-units

rate acceleration/deceleration rate, user-units/sec/sec

This statement generates a 1/3-1/3-1/3 trapezoidal move (1/3 of the time accelerating, 1/3 constant velocity, 1/3
decelerating) for a specified displacement. The acceleration and deceleration rate must be specified.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move the incremental distance specified by the variable offset
using the variable rapidacc to set acceleration and deceleration
rates. The velocity used will be based on the calculation to
achieve a trap move. */

move trap for offset using rapidacc;

 Move Incremental, Time-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move in time for displacement {mode n }

parameters

QuickMotion Reference Guide 207

Doc. No. 951-530020-010

time time, sec

displacement incremental position, user-units

n acc / dec ramp multiplier

This statement generates a 1/3-1/3-1/3 trapezoidal move for a specified displacement in the specified time. The
optional mode feature decreases the amount of time spent on acceleration and deceleration. The n
parameter must be a positive, non-zero integer. By increasing the value of n, the acceleration and
deceleration times are equally reduced, allowing more time at constant speed.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move the incremental distance specified by the variable offset
setting the calculated velocity, accel and decel rates to make a
trapezoidal move in the time specified by the variable
movetime. */

move in movetime for offset;

 Wait For In Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait for in position

This statement temporarily stops the execution of the active MSB until the target generator has reached its final
value and the position error, perr is within the programmed in-position window.

// Move speed-limited
move at slowspeed for spanmove;

// Wait till motor is within the programmed in-position window
wait for in position;

// Turn on output 1 for 1 second
pulse 1 for 1000 ms;

 Set New End Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

new endposition position using rate

new endposition relative displacement using rate

208

QuickBuilder™ Reference Guide

Control Technology Corp.

This statement modifies the end position for the active move command. If there is no active move, then this
statement is effectively ignored. The first form of this statement changes the end position to a new absolute
position. The second form of this statement changes the end position relative to the current position. Using a
displacement of 0 effectively stops motion here without generating a fault (unlike the stop command). Both
statements require a rate to be specified. This rate is used as the acceleration/deceleration rate for the modified
profile.

The newvel variable may be set to a nonzero value in order to specify a velocity. A trapezoidal move will be done
whenever possible, if the end position does not allow for that then a triangular move will result. S-curve is not
supported when using newvel although you may start out with an S-curve move and it will change to a
trapezoidal or triangular with the new target and if newvel is nonzero, velocity.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with this motion command.

Example 1: After din1 is activated change the end position to -3 mm.

/* This example demonstrates how a move can be modified
on-the-fly by using the new endposition command */

[top]
zero feedback position;

// start moving to 25 mm
move at 5 to 25;

// if din1 is activated during the move, change the end
// position of the move to -3 mm
wait for rise of 1;
new endposition -3 using 10;

wait for in position;
delay 3000;
goto top;

Example 2: The move will be terminated 3mm after din1 is activated. Speed is only changed when it
is time to decel to the new end position.

/* This example demonstrates how a move can be modified
on-the-fly by using the new endposition command. */

[top]
zero feedback position;

move at 5 to 25;
wait for rise of 1;

new endposition relative 3 using 10;
wait for in position;

delay 3000;

QuickMotion Reference Guide 209

Doc. No. 951-530020-010

goto top;

Example 3: Change target from 30 to 35, acceleration from 3 to 10 and velocity from 5 to 10 during
the acceleration phase of the move.

 Slew (begin) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew begin

This statement changes the operating mode of the axis to slewing.

slew begin; // change from position mode to slew mode

 Slew At Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew at velocity in time

parameters

velocity new slew velocity, user-units/sec

time time, sec

This statement alters the current slew velocity. The velocity is changed smoothly over the specified time. For an
immediate speed change, specify 0.0 for time.

// change from position mode to slew mode
slew begin;

210

QuickBuilder™ Reference Guide

Control Technology Corp.

// change from current speed to feedrate in 0.5 seconds
slew at feedrate in 0.5;

 Slew For Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew for displacement

parameters

displacement ending relative slew position, user-units

This statement alters the current slew velocity over time (to a slew velocity of 0.0) such that some displacement is
consumed. If the current slew velocity is 0.0, then this statement is ignored.

The displacement should be unsigned, as the sign of the current slew velocity is used to sign the displacement.

 // change from position mode to slew mode
slew begin;

// change from current speed to feedrate in 2 seconds
slew at feedrate in 2;

// delay execution of MSB until input3 transitions from off to on
wait for rise of 3;

// slew to a stop in the distance specified by the variable
// registrationoffset
slew for registrationoffset;

 Slew (end) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew end

This statement changes the operating mode of the axis to positioning. A zero-speed slew (in 0.0 time) is first
generated if the axis is currently slewing at a non-zero velocity.

// change from position mode to slew mode
slew begin;

// change from current speed to slowjog in 0.5 seconds
slew at slowjog in 0.5;

// delay execution of MSB until input1 transitions from on to off
wait for fall of 1;

QuickMotion Reference Guide 211

Doc. No. 951-530020-010

// stop motion and return to position mode
slew end;

212

QuickBuilder™ Reference Guide

Control Technology Corp.

4.9 Gearing

Summary:

gear at numerator : denominator

gear at numerator : denominator in counts

gear at numerator : denominator in counts after acounts

gear for slavecounts in mastercounts

gear for slavecounts in mastercounts after acounts

offset slave by slavecounts in time

wait master counts

wait slave counts

wait source within start , end

wait source outside start , end

zero masslv counters

 Gear At Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

gear at numerator : denominator

parameters

numerator new gear ratio numerator

denominator new gear ratio denominator

This statement instantaneously changes the gear ratio of the slaved axis to the specified values.

 Gear At In Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

gear at numerator : denominator in counts

gear at numerator : denominator in counts after acounts

parameters

numerator new gear ratio numerator

denominator new gear ratio denominator

counts counts of the master encoder

acounts counts of the master encoder to "wait for" before applying the gear/at...in...

This statement changes the gear ratio of the slaved axis to the specified values over some number of master
counts. An optional after condition can be applied to delay applciation of the gear/at/in.

QuickMotion Reference Guide 213

Doc. No. 951-530020-010

 Gear For In Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

gear for slavecounts in mastercounts

gear for slavecounts in mastercounts after acounts

parameters

slavecounts counts of the axis encoder

mastercounts counts of the master encoder

acounts counts of the master encoder to "wait for" before applying the gear/for...in...

This statement temporarily modifies the gear ratio of the slave axis such that a slavecounts correction (offset)
occurs over a master-feedback displacement of mastercounts. The slavecounts correction may be positive or
negative. An optional after condition can be applied to delay application of the gear/for/in.

 Offset Slave Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

offset slave by slavecounts in time

parameters

slavecounts counts of the axis encoder

time time, sec

This statement offsets the position (and therefore phase) of the axis such that a slavecounts correction (the
offset) occurs over a period of time. The slavecounts correction may be positive or negative.

 Wait for Counts of Master Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait master counts

parameters

counts counts of the master

This statement waits until the specified number of master encoder counts has been generated.

 Wait for Counts of Slave Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

214

QuickBuilder™ Reference Guide

Control Technology Corp.

wait slave counts

parameters

counts counts of the axis (slave)

This statement waits until the specified number of axis (slave, target-position) counts has been generated.

 Wait Within Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait source within start , end

parameters

source master1, master2, master3, master4 or slave

start a modulo starting bound

end a modulo ending bound

This statement waits for the modulo position (either mposc1-4 or sposc) to lie within the specified bounds.

 Wait Outside Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait source outside start , end

parameters

source master1, master2, master3, master4 or slave

start a modulo starting bound

end a modulo ending bound

This statement waits for the modulo position (either mposc1-4 or sposc) to lie outside the specified bounds.

 Clear Temporary Gearing Counters Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero masslv counters

parameters

masslv master clears tmc1 and tmc2

slave clears tsc1 and tsc2

QuickMotion Reference Guide 215

Doc. No. 951-530020-010

This statement atomically clears the temporary master or slave counters.

216

QuickBuilder™ Reference Guide

Control Technology Corp.

4.10 Position Capture & Registration

Summary:

set capture transition of input input { gate input gateinput gatestate }

set capwin range start, end using reference { arm }

wait capture { if limit of limit goto limitlabel }

(Also reference the EtherCAT Applications Guide for additional details pertaining to network drive control).

 Set Capture Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set capture transition of input input { gate input gateinput gatestate }

parameters

transition rise, fall or edge (any)

input the input# (1-10, representing all the inputs on the M3-40A card)

gateinput the input# (1-10, representing all the inputs on the M3-40A card)

gatestate on or off

This statement initializes the parameters to be used for all captures on this axis, specifying the input (capInput) to
use and the optional gated input. If gating is specified, then the specified gating input (capGate) must be at the
specified gating state (capGateState).

The following variables are computed and available after a successful capture:

capposc capture position in encoder counts
cappos capture position in user units
capTriggered flag set to 1 when capture occurs

Note: capposc and cappos are only valid when capTriggered is a 1. Once armed capposc/cappos will reflect the
value latched when the capture input goes active but is not necessarily within the defined capture window.
capTriggered verifies the capture window against the latched capposc/cappos, prior to setting.

If more than one running MSB on an M3-40A card arms the same input for capture, unexpected capture results
may occur.

Only one input may be armed for capture at a time per axis. If another input is presently armed when this
command is issued, the other input is effectively disarmed.

 Set Capture Window Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set capwin range start, end using reference { arm }

QuickMotion Reference Guide 217

Doc. No. 951-530020-010

parameters

start Start window position to compare against reference. Reference >= start.

end End window position to compare against reference. If equals start then no window
exists and capture will occur based on input. Reference <= end.

reference the encoder count scaled reference variable to compare to:

fposc feedback position

mposc1 - mposc5 master position counters #1 through #5

mposc master position counter

smodc slave position (modulo)

smark slave marked position

tmc1 tmc2 temporary master counters #1 & #2

tsc1 tsc2 temporary slave counters #1 & #2

sdc slave decrement counter

fposc1 feedback position of axis 1 (fposcA)

fposc2 feedback position of axis 2 (fposcB)

tmodc temporary master counter mod mmc
sfposc secondary feedback position of axis

arm If included will arm the capture, if not arm will need to be done by a Wait or On
command.

This statement initializes a window to be monitored for valid captures to occur, anything outside this window is
considered invalid and ignored. If the capture occurs outside this window it will automatically be re-armed within
the loop period (default 800 uS). If ‘arm’ is specified this statement will automatically arm the capture prior to
completing this instruction. The capwinStart variable is the start of range and the capwinEnd variable is the end
of range, inclusive.

 When using open loop stepper tposc is not available thus issue the command 'set simulated feedback on' to
have tposc copied to fposc, on each control loop, allowing the use of this command.

 Wait Capture Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait capture { if limit of limit goto limitlabel }

parameters

limit optional master encoder count limit

limitlabel optional label to branch to if limit is reached

This statement waits for the capture and arms the capture input. If the capture occurs the next statement in the
MSB is executed. A maximum limit of counts prior to exiting (capLimit/capLimitflag) can be set. This limit
references the ‘reference’ set by ‘set capwin’ and the sign must be adjusted accordingly. The capWait variable
will be set to 1 while the ‘wait capture’ is active, 0 if not.

If a limit (capLimit) is specified, then the statement will branch to the specified goto limitlabel after that number
of master encoder counts has passed.

218

QuickBuilder™ Reference Guide

Control Technology Corp.

4.11 S-Curve

S-Curve support is optionally available for the move commands, from a stopped position. When using timed
commands the distance, acceleration, and velocity will be calculated for the given time and then translated to an
S-Curve move. The time will not be the same as the non S-Curve move but all other parameters will be, including
position. Variables of interest are:

‘runv’ - velocity fed to the PID algorithm internal use only, read only.

‘jerk_a/jerk_d’ - acceleration/deceleration actual jerk, read only .

‘jerk_a_req/jerk_d_req’ – requested acceleration/deceleration jerk in units/sec3, read/write. Set to 1 for
automatic calculation.

‘sign’ – nonzero for S-Curve move, 1 for CCW rotation and -1 for CW rotation, read only.

The minimum jerk that can be used is calculated by the formula (a
max

 * a
max

)/v
max

), applied independently to the

requested acceleration and deceleration jerk. The maximum velocity is the same as the non S-Curve move and
defined by the expression:

sign = 1;
if (delta < 0) {

sign = -1;
delta = -delta;

}
a
max
 = sign * acceleration;

d
max
 = -sign * deceleration;

V
max
 = sqrt(2.0 * a

max
 * d

max
 * sign * delta / (d

max
 - a

max
));

If ‘jerk_a_req/jerk_d_req’ is 0 then a normal move will be attempted. If only one is set then ‘jerk_a/jerk_d’ will be
set equal. If the requested jerk is greater than the minimum then it will be used. The variables ‘jerk_a/jerk_d’ are
the actual jerk used for the move. Also note that S-Curve uses twice the acceleration and deceleration specified
by the non S-Curve move request.

Below shows a sample S-Curve where the jerk is set to 1, thereby having the motion card calculate the optimum
jerk and the velocity set to a large number so that the motion card will calculate the maximum velocity possible for
the move. Note that the step graph is the segment (substep), 1 to 7, of the S-Curve, with 0 being segment 1. If for
some reason the proper velocity or distance can not be attained by the parameters given, the non S-Curve curve
move will be used. The end position can not be changed and a slew stop will do the non S-Curve stop. In the
example below the motion card will calculate the maximum velocity and optimum jerk. Note there is little or no
segment 4 (constant velocity). Also linear segments 2 and 6 are 0.

QuickMotion Reference Guide 219

Doc. No. 951-530020-010

Resulting motion S-Curve using QuickScope:

 800uS is the default loop period. If 500uS is desired use the ‘set loopperiod .0005’ command prior to drive
enable.

220

QuickBuilder™ Reference Guide

Control Technology Corp.

4.12 Linear and Circular Interpolation (Vectors)

Reference the EtherCAT Applications Guide for details.

QuickMotion Reference Guide 221

Doc. No. 951-530020-010

5 Chapter 5: Camming and Data Tables

Camming tables in QuickMotion are two-dimensional arrays of floating-point data. There are 6 tables available for
use, numbered 0 through 5, each having up to 2000 rows and always 2 columns. These columns are named “x”
and “y”. Although their primary use is to hold data for spline- and CAM-based motion, they can be used to hold
arbitrary data such as positions for recipe-based motion. Although limited to 6 tables, these tables can also be
swapped out dynamically and refreshed with new data when loaded from the controller file system.

Spline tables use the “x” column as time and the “y” column as a relative position. CAM tables use the “x”
column as a relative master position and the “y” column as a relative slave position.

Since spline and CAM tables use relative position data, the first point pair in these tables must be 0.0, 0.0
(time/master-position of 0, position/slave-position of 0). The exception to this is with CAM tables where the y
component can be non-zero in newer firmware revisions, thereby establishing an offset. In addition, for any
tables used for spline and CAM operations, all “x” values must be increasing, that is: a given row’s “x” must be
greater than the previous row’s “x”. Also, the minimum number of rows (pairs) in these tables is 3.

 It is recommended that CAM tables and instructions be used whenever possible. Significant enhancements
have been made to camming which have currently not been carried forward to splines. Some of this consists of
the ability to start on non-zero y column values, ability to start anywhere within a table, and forward and reverse
table traversing.

Points in a spline or CAM table are also referred to as knots, as they represent critical loci that must be passed
through when interpolation occurs.

For example, in the following spline table:

0.0 0.0
1.5 2.0
2.0 2.5
3.0 3.0
4.0 2.0
5.0 0.0

there are 6 knots. Since this is a spline table, the last 5 knots are interpreted as follows:

At time = 1.5 seconds, the position of the axis should be 2.0 user-units beyond where the axis started
this spline move.
At time = 2.0 seconds, the position of the axis should be 2.5 user-units beyond where the axis started
this spline move.
At time = 3.0 seconds, the position of the axis should be 3.0 user-units beyond where the axis started
this spline move.
At time = 4.0 seconds, the position of the axis should be 2.0 user-units beyond where the axis started
this spline move.
At time = 5.0 seconds, the position of the axis should be back where the axis started this spline move.

The position of the axis between these “knots” is determined by the interpolation method specified by the QM
code when the table is started.

The three available interpolation methods in QM for spline (and CAM tables) are:

222

QuickBuilder™ Reference Guide

Control Technology Corp.

linear a straight-line joins each knot

quadratic a piecewise 2nd degree polynomial is fitted between this knot and the next; the first
derivative of the first point is forced to 0.

cubic a piecewise 3rd degree polynomial is fitted between this knot and the next two knots; the
first and second derivatives of the first point is
forced to 0.

The following graph shows different interpolation methods using the following table of knots:

0.000 0.000

0.500 1.250

1.000 1.500

1.750 2.000

2.250 3.250

2.750 3.375

3.000 4.000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

l inear quadratic cubic knots

CAM tables are interpreted similar to their time-based spline counterparts. For example, in the following CAM
table:

0.0 0.0
2.5 1.0
4.0 -1.0
5.0 0.0

the last 3 knots are interpreted as follows:

QuickMotion Reference Guide 223

Doc. No. 951-530020-010

At a relative master position of 2.5 user-units, this (slave) axis should be 1.0 user-units beyond where it
started.
At a relative master position of 4.0 user-units, this (slave) axis should be 1.0 user-units before where it
started.
At a relative master position of 5.0 user-units, this (slave) axis should be where it started.

The master position is kept in the QM variable, mpos and is scaled to user-units by dividing by the axis

parameter mppr. No other scaling occurs (i.e. uun and uud are not utilized). A raw (counts) variable is also

available in mposc.

 Unlike splines, Cam tables may start on a non-zero relative position (y). This position is used as an offset.

 'activeCAM_row' may be set to any desired row upon which mpos will be initialized to that which is the 'x'
value of that row, allowing the table to start in that position.

 'invertmaster' variable is by default set to 0, meaning the cam table is traversed moving from row 0 to N. If
'invertmaster' is set to 1 the cam table position will begin at the end of the table and traverse N to 0.
'activeCAM_row' determines the start position, initialized by the precompute command either to the end or start
of the table based upon 'invertmaster'. Prior to a 'table start' command 'activeCAM_row' can be changed to a
different start position. 'invertmaster', when set causes mpos to decrement on positive master pulses, thus the
reverse traversing of the table.

 'camming_invertend' variable is by default set to 0, meaning follow the logic described above for
'invertmaster'. If you wish to invert the logic of the 'invertmaster', with regards to camming table positioning only,
set this flag. The 'invertmaster' variable will still control whether mpos is added or subtracted from based upon
the master but 'caming_invertend', if set, allows you to start at the other end of the camming table. The direction
you traverse the camming table is important since if you are at the start of the table and go slightly negative you
will hold position but if you go past the end of the table the command will be considered completed.

invertmaster camming_invertend
 0 0 master difference added to mpos, assume moving from beginning
 of camming table to end (thus go beyond end COMPLETE).
 0 1 master difference added to mpos, assume moving from end
 of camming table to beginning (thus go beyond beginning COMPLETE).
 1 0 master difference subtracted from mpos, assume moving from end
 of camming table to beginning (thus go beyond beginning COMPLETE).
 1 1 master difference subtracted from mpos, assume moving from beginning
 of camming table to end (thus go beyond end COMPLETE).

224

QuickBuilder™ Reference Guide

Control Technology Corp.

5.1 Loading Tables

Summary:

table n clear

table n addpair xexpression , yexpression

table n addseries pairs

table n copy from rowOffset1 to table m rowOffset2 numRows

table n loadoffset rowOffsetFile, numPairs,rowOffsetTable

table n loadseries source fileNumber

In order to use a table, it must be loaded with point pairs. There are several QM statements which facilitate
loading of tables. These statements allow tables to be loaded either directly from within program code, thus static
data, or dynamically from binary table files which reside on the controller file system. The commands that effect
table loading are:

 Table Clear Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n clear

parameters

n the table to clear

Clears a table of all of its points, thus setting the number of data points to 0, within a table.

table 1 clear;

There can be no active motion command when this statement is issued.

 Table Add Pair Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n addpair xexpression , yexpression

parameters

n the table to add a point pair to

xexpression an expression which when evaluated will be utilized as the

value in the “x” column

yexpression an expression which when evaluated will be utilized as the

value in the “y” column

This statement adds a point pair to a table. This statement is used when the table is computed at MSB runtime
since the pair is computed by two expressions.

QuickMotion Reference Guide 225

Doc. No. 951-530020-010

table 2 addpair 3.75 + ztime, q + zoffset;

 There can be no active motion command when this statement is issued.

 An error will occur if there are already 2000 rows in the table.

 Table Add Series Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n addseries pairs

parameters

n the table to add a point pair to

pairs a series of one or more pairs (in the form of x,y), colon-

delimited

This statement adds constant point pairs to a table.

// add 4 point pairs to table 1

table 1 addseries 0.0,0.0 : 1.0,1.5 : 2.0,1.75 : 3.0,2.0;

 There can be no active motion command when this statement is issued.

 An error will occur if adding these pairs will result in a table with more than 2000 rows.

 Table Copy Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 table n copy from rowOffset1 to table m rowOffset2 numRows

parameters

n The table which is source of the copy.

rowOffset1 The source table row offset, 0 is no offset.

m The table which is destination of the copy.

rowOffset2 The destination table row offset, 0 is no offset, -1 is

append.

numRows The number of rows to copy, 0 is all.

This statement allows for one table to be copy or appended to another table. The destination table does not need
to exist. The offsets can be used to merge table data.

table 1 copy from 0 to table 2 0 0; // Copy all of table 1 to 2

226

QuickBuilder™ Reference Guide

Control Technology Corp.

 Table Loadoffset Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n loadoffset rowOffsetFile, numPairs,rowOffsetTable

parameters

n The table to set the offset information on.

rowOffsetFile The file row offset to begin transfer on, 0 is no offset.

numPairs The number of cam file pairs to transfer, 0 is all.

rowOffsetTable The cam table row offset to begin storing file at, 0 is

start.

This statement works in conjunction with the 'loadseries' command, setting the offsets to be used. The offsets
can be used to merge table data. This command only initializes parameters for 'loadseries' and does not directly
effect the table.

table 1 loadoffset 0 0 0; // Default, transfer all from start .

 Table Loadseries Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 table n loadseries source fileNumber

parameters

n The table to load the cam file into.

source The location on disk where file will be found, ‘flash’ or

‘ram’ (/_system/Datatables or /RAMDISK/Datatables).

fileNumber The file to transfer, ‘camtable#.tbl’, where # is any

valid positive number. A variable may be referenced as

well.

This statement requests a cam file to be transferred from the controllers file system. The file is transferred to the
MSB for local storage and must be precomputed prior to operation. The ‘loadoffset’ parameters are referenced
for this command as to where within the file and table to begin the transfer.

table 1 loadseries ram 1; // Load file ‘camtable1.tbl’

The file format of 'camtable#.tbl' consists of a binary file of 32 bit float pairs with a file record structure as:

float rows[NUMROWS][2];

Where NUMROWS is the number of cam file pair entries, with the first starting at 0, 0. The same rules as the
'addseries' command exists. Each float is stored in little endian format with X being the first float.

As an example of a 3 row table with the values of:

0, 0
250, 25.67

QuickMotion Reference Guide 227

Doc. No. 951-530020-010

500, 50.48

The binary data within a file would consist of 24 bytes, 4 bytes per entry in little endian and IEEE-754 floating
point format. Below is byte representation of the required file, in hex:

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x7A 0x43 0x29 0x5C 0xCD 0x41
0x00 0x00 0xFA 0x43 0x85 0xEB 0x49 0x42

IEEE-754 conversion calculator is available at:

http://babbage.cs.qc.cuny.edu/IEEE-754/Decimal.html

For example, 50.48, is 0x4249EB85, reversed when stored in the file since in little endian format (low byte first).

http://babbage.cs.qc.cuny.edu/IEEE-754/Decimal.html

228

QuickBuilder™ Reference Guide

Control Technology Corp.

5.2 Using Tables for Spline/CAM

Summary:

table n continue

table n precompute

table n start imethod tscale , rpscale , repeatcount

table n start imethod cam mpscale , spscale , repeatcount

stop table

 Table Continue Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n continue

parameters

n The table to continue that was previously stopped.

Continues a cam table that was stopped by the ‘stop table’ command. Note that this command should only be
used if the master position stopped at the beginning of the next table row position otherwise any row that is
currently being executed during a ‘stop table’ (immediate stop) will be re-executed. The master position allows for
a slewed stop. Upon execution of ‘stop table’, with the servo not moving, would then save all the camming
information so that you can exit camming, jog into position, and then continue with the same camming table from
where left off with the ‘table n continue’ command.

table 1 continue;

There can be no active motion command when this statement is issued.

 In many cases this command is no longer needed since the 'activeCAM_row' can be set prior to 'table start'.
Only supported in camming mode, not spline.

 Table Pre-compute for Spline/CAM Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n precompute

parameters

n the table to pre-compute

This statement readies a table for use by a spline/CAM motion. After points have been added to a table, there are
a series of computations that need to occur before the table can be utilized for spline and CAM motion
operations. This statement causes those computations to occur.

QuickMotion Reference Guide 229

Doc. No. 951-530020-010

There is no need to issue this command if a table is being utilized simply for data (i.e. for tbln, tblx or tbly
operations).

Failure to precompute a table before starting the table will cause a hard fault.

 It takes roughly 250ms to precompute a 1000 row table.

 The table must contain at least 3 points and all ‘x’ column values must be increasing or an error will occur.
The first point in the table must be 0.0,0.0 otherwise an error will occur.

 In camming mode 'invertmaster' set to 0 will cause 'precompute' to initialize the table to move
from start to end, if set then from end to start, with positive master position motion.

// prepare the table for CAM use

table 1 precompute;

 Table Start Spline Motion Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n start imethod tscale , rpscale , repeatcount

parameters

n the table to utilize for motion

imethod linear uses linear interpolation

quadratic uses 2nd order interpolation

cubic uses 3rd order interpolation

tscale time scale factor: the values in the “x” (time) column in

the table are effectively divided by this number

rpscale relative position scale factor: the values in the

“y” (relative position) column in the table are effectively

multiplied by this number

repeatcount the number of times to “run through” the table (0=forever)

This statement starts spline motion using the specified table.

The current (target) position is used as the starting relative-position for the motion.

The table must be ready for use (i.e. a table precompute operation has been successfully completed on the table).

 “In position” will be true only when the table has completed all required repeats. If 0 (forever) is specified for
the repeatcount, then “In position” will never be true unless a stop table is issued.

 The scale factor tscale must evaluate to a value greater than 0 otherwise an error will occur.

230

QuickBuilder™ Reference Guide

Control Technology Corp.

 The scale factor rpscale must evaluate to a value other than 0 otherwise an error will occur.

 The scale factor rpscale is not affected by uun or uud. The generated position is also unaffected by uun
or uud.

[top]

zero feedback position;

table 1 start quadratic 1.0, 1.0, 0; // run through the table
forever, 'table stop' command will cause the background motion
command to stop.

 Table Start CAM Motion Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n start imethod cam mpscale , spscale , repeatcount

parameters

n the table to utilize for motion

imethod linear uses linear interpolation

quadratic uses 2nd order interpolation

cubic uses 3rd order interpolation

mpscale master-position scale factor: the values in the

“x” (master-position) column in the table are effectively

divided by this number

spscale relative slave-position scale factor: the values in the “y”

(relative slave position) column in the table are

effectively multiplied by this number

repeatcount the number of times to “run through” the table (0=forever)

This statement starts CAM motion using the specified table.

The master position (mpos, mposc) is not cleared when this statement is executed, the activeCAM_row will be

used to offset into the cam table and that position will become mpos/mposc. 'table precompute' will set the
activeCAM_row to 0.

The current (target) position is used as the starting relative slave-position for the motion.

The table must be ready for use (i.e. a table precompute operation has been successfully completed on the table).

 If the master position “backs up” past 0 (its initial position) and the “repeats left to do” counter is greater
than 1, then the “repeats left to do” counter is decremented and the master-position wraps. If the
repeatcount was specified as 0 (forever), then the master-position will always wrap.

QuickMotion Reference Guide 231

Doc. No. 951-530020-010

 “In position” will be true only when the table has completed all required repeats. If 0 (forever) is specified for
the repeatcount, then “In position” will never be true unless a stop table is issued.

 The scale factor mpscale must evaluate to a value greater than 0 otherwise an error will occur.

 The scale factor spscale must evaluate to a value other than 0 otherwise an error will occur. The scale factor
rpscale is not affected by uun or uud. The generated position is also unaffected by uun or uud.

[top]

zero feedback position;

table 1 start quadratic cam 1.0, 1.0, 1;

 Table Stop Positioning Slewing Tracking BG MSB

 FG MSB

syntax

stop table

This statement stops spline or CAM motion. If in CAM motion then the current table state is saved in case a
'table continue' command is executed.

If there is no active table start (spline/CAM) motion, then this command is effectively ignored and no fault
occurs.

Unlike other stop statements, stop table will never generate a hard fault.

wait until mpos > 9;

stop table;

232

QuickBuilder™ Reference Guide

Control Technology Corp.

5.3 Accessing Table Data

As mentioned earlier, tables may also be used to store/retrieve data. In QM, there are special array access
operators called tblx[], tbly[] and tbln[] that allow the user to retrieve information from a table.

tblx[] and tbly[] retrieve the “x” value (tblx) or “y” value (tbly) from a given row in a table. tbln[]
retrieves the total number of rows in a table.

Their syntax is as follows:

tblx[table#, row]

tbly[table#, row]

tbln[table#]

 Any attempt to read a value outside the bounds of the table will result in a value of 0.

They can be used in any QM expression, as show in the example QM code below:

// use table 1 for "move in time" pairs

// x will hold the move time (although it can hold anything we want)

// y holds an absolute position

// note that 'x' values in the table don't have to be

// in increasing form as they do for spline/cam

// since we are using the table just as data

// also note that there is no 'precompute' as the table is

// just being used for data and not spline/cam

table 1 clear;

table 1 addseries 1.0,1.0 : 0.5,1.5 : 2.0,3.75 : 1.0,6.0;

[top]

zero feedback position;

// set index to 0 (indexes into tables are 0-based)

i = 0;

QuickMotion Reference Guide 233

Doc. No. 951-530020-010

// grab how many pairs are in table 1

n = tbln[1];

[loop]

// done?

if i >= n goto top;

// grab data

move in tblx[1,i] to tbly[1,i];

wait for in position;

delay 1000;

// increment index

i = i + 1;

goto loop;

5.3.1 Diagnosing Table Issues

When table data is loaded by an MSB it can be difficult to determine if it is correct from a diagnostic viewpoint.
Diagnostic variables exist that can be monitored to allow a user to walk through the table to visually or
programmatically verify data from QuickBuilder. A Quickbuilder Debug Window can be used to view the
Diagnostic Variables listed below:

Diagnostic
Variables Description Type

debugTable Cam table to view, from 0 to 5, representing table 1 to 6 since 0 based. read-write

debugTableRows Number of rows presently in the selected cam table, debugTable. read-only

debugTableRow Current row number to view in the selected cam table, debugTable. read-write

debugTableX X value for selected debugTableRow. read-only

debugTableY Y value for selected debugTableRow. read-only

234

QuickBuilder™ Reference Guide

Control Technology Corp.

 The above variable are only available from a QuickBuilder Debug Window, when executing an MSB use the
tblx, tbly, and tbln commands discussed in the previous section.

5.4 Microsoft Excel as Table Data

It is relatively simple to use data from Microsoft Excel as table data.

One can easily create four columns with x-data, a column containing a comma (“,”), y-data and lastly a column
containing a colon (“:”) as follows:

Since the QuickBuilder editor allows free-form lines, the data can simply be copied and pasted into QM code in an
MSB such as:

table 1 clear;

table 1 addseries

// paste Excel cells here
;

QuickMotion Reference Guide 235

Doc. No. 951-530020-010

 The last colon (“:”) in the last row will need to be removed using this method.

 Refer to the loadseries command to dynamically load tables from a binary file stored on the
controller's file system.

5.5 Virtual Master

At times a virtual master is required. This can be done in one of two ways:

1. Use the move master command to generate background pulses on the selected access based on timer loop
tick counts. This allows the same access to operate normally, as an axis.

2. Setup a simulated axis, which runs as though it was receiving real encoder input, although it is not. The
master position can then be published so others can track to it. Just about all motion commands are valid
during a simulation, including s-curve.

Once a method of generating a master position is determined it can then be published across the backplane of the
controller using variant 36827 (see Virtual Master Broadcasting).

 Move Master Position Positioning Slewing Tracking BG MSB

 FG MSB

syntax

move master at rate for limit { using ramp }

move master at rate forever limit { using ramp }

parameters

rate The pulse rate of the encoder in pulses added per position

loop period (800us default on the M3-40A).

limit The total number of pulses to generate.

ramp Optional ramp added or subtracted from rate at the position

loop period (800us on the M4-40A).

This statement virtually “moves” the master encoder by changing its “position” at the specified rate for a certain
number of generated pulses (first form, specified by limit). If the limit is set to 0 then just the rate will change,
dynamically, using any specified ramp, from the current rate.

To generate a continuous stream of pulses, use the second form. move_master_ramp and move_master_rate
variables can be referenced to check current settings of virtual master.

Reference set master mode { using global } for additional information.

Example:

// stop the virtual axis
move master at 0 forever using 1;
// set the virtual access global
set master virtual using global; // this will place the master information in dual ported memory for
broadcast to slave axis

236

QuickBuilder™ Reference Guide

Control Technology Corp.

// start the virtual axis
move master at 100000 forever using 1;

One of the drawbacks of the 'move master at' command is that it is based on the loop period and not user units.
This can make things difficult to program. The benefit is the axis is available for motion. If an axis can be
reserved and dedicated as a master then a simulated feedback can be used. In essence the axis becomes a virtual
axis, responding to commands as it would on a real axis:

set simulated feedback on; // this will cause fposc to = tposc after each loop period, drive must not be
enabled

5.5.1 Broadcasting (M3-40 only)

When the 'set master virtual using global' command is given, mposc delta counts (mposc - last_mposc) are placed
in a dual ported memory for broadcast by the controller, across the backplane. This allows muliple axis to follow a
master. Up to 4 masters are currently support with a broadcast update rate of 4ms. Prior to broadcasting, the
controller must be initialized with the proper master/slave information

A special variant table located at 36827 supplies the interface to control virtual broadcasting. In Quickbuilder
define a table of type 'int' with an override of 36827.

Once created the variable table columns are defined as follows where masterNum is 0 to 3 (up to 4 masters):

MasterArray[masterNum][0] - 0 disables broadcasting, non-zero enables.

MasterArray[masterNum][1] - Master axis number, 1 to 32.

MasterArray[masterNum][2] - Slave axis bit positions, up to 32 supported (16 2 axis cards). Which slaves to
replicate master information to.

Example:

QuickMotion Reference Guide 237

Doc. No. 951-530020-010

MasterArray[0][0] = 0; // disable any running master

MasterArray[0][1] = 1; // Axis number 1 will be a master

MasterArray[0][2] = 14; // Axis 2, 3, and 4 are slaves referencing master: 0x0000000E

5.6 Segmented Moves and Examples

Summary:

segmove table clear

segmove table accdec to vel using rate

segmove table accdec to vel for displacement

segmove table slew until position

segmove table stop at position using rate

segmove table start relative

Topics:

· Concept

· Commands

· Examples

5.6.1 Concept

A segmented move is a precompiled move with multiple distances, acceleration, and velocities tied together.
Below is the velocity profile of an example segmented move.

Up to 16 Segmented Move “tables” can be defined with up to 20 segments each residing within them. Once a
segment table has been defined and then started, you can redefine that same table while it runs without affecting
the segment table in progress.

Below is an example of a segmented move with 5 segments using table 1. You define each acceleration or
deceleration ramp and each constant velocity ramp as a separate segment.

238

QuickBuilder™ Reference Guide

Control Technology Corp.

5.6.2 Commands

Creating and running a table is easy and uses the following procedure:

1. Clear the Table.
2. Create up to 20 acc/dec and constant velocity segments.
3. Start the Table.

Clear Segmented Move Table Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table clear

parameters

 table what table to clear: 1 to 16

This command clears any existing table information
Example: segmove 1 clear;

 Add Segmented Move to Table at rate Positioning Slewing Tracking BG MSB

QuickMotion Reference Guide 239

Doc. No. 951-530020-010

 FG MSB

syntax

 segmove table accdec to vel using rate

parameters

 table Which table to add to: 1 to 16

vel Velocity, user-units/sec

rate Acceleration/deceleration rate, user-units/sec/sec

This command adds an acc/dec segment from the current velocity to the new <vel> at the specified <rate>.
Example: segmove 1 accdec to Vel1 using Acc1;

Add Segmented Move to Table over
displacement

 Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table accdec to vel for displacement

parameters

 table Which table to add to: 1 to 16

vel Velocity, user-units/sec

displacement Incremental position, user-units

This command add an acc/dec segment from the current velocity to the new <vel> over some <displacement>.
Note this is an incremental acc/dec segment.
Example: segmove 1 accdec to Vel2 for Pos2;

Add Segmented Move to Table (slew) Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table slew until position

parameters

 table Which table to add to: 1 to 16

position Velocity, user-units/sec

This command adds a constant velocity segment until reaching some specified <position>. This is an absolute
position from the start of the profile. Prior segments in table must represent movement before this command is
accepted, otherwise a fault will occur as table is built
Example:
segmove 1 slew until Pos3;

Add Segmented Move to Table (stop) Positioning Slewing Tracking BG MSB

240

QuickBuilder™ Reference Guide

Control Technology Corp.

 FG MSB

syntax

 segmove table stop at position using rate

parameters

 table Which table to add to: 1 to 16

position Position to stop at, user-units

rate Acceleration/deceleration rate, user-units/sec/sec

This command stops motion at the specified position, with a given rate. This will cause motion to stop at an
absolute position at a specified deceleration rate. Prior segments in table must represent movement before this
command is accepted, otherwise a fault will occur as table is built.
Example:
segmove 1 stop at Position using Accel;

Add Segmented Move to Table (relative) Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table start relative

parameters

 table Which table to add to: 1 to 16

This command starts a relative segmented move – a “zero feedback position” occurs automatically upon
executing this command.
Example:
segmove 1 start relative;

5.6.3 Examples

The following pages include screen shots of move profiles and the code used to create them.

QuickMotion Reference Guide 241

Doc. No. 951-530020-010

[Top]
segmove 1 clear; //clear segment table 1
segmove 1 accdec to 10 for 10; //accel to a vel of 10 over a dist of
10
segmove 1 slew until 20; //move at current vel 10 till position
20
segmove 1 accdec to 30 for 20; //accel to a vel of 30 over a dist of
20
segmove 1 slew until 70; //move at current vel 30 till position
70
segmove 1 accdec to 20 for 30; //decel to a vel of 20 over a dist of
30
segmove 1 slew until 120; //move at current vel 20 till position
120
segmove 1 accdec to 0 for 10; //decel to a vel of 0 over a dist of
10(stop)
wait for in position; //Wait for previous moves to be
complete
segmove 1 start relative; //Start the move
delay 500 ms; //delay 500 ms;
goto Top; //goto Top and repeat

242

QuickBuilder™ Reference Guide

Control Technology Corp.

[Top]
segmove 1 clear; //clear segment table 1
segmove 1 accdec to 10 using 10; //accel to a vel of 10 using accel of
10
segmove 1 slew until 35; //move at current vel 10 till position
35
segmove 1 accdec to 40 using 200; //accel to a vel of 40 using accel of
200
segmove 1 slew until 70; //move at current vel 40 till position
70
segmove 1 accdec to 5 using 30; //decel to a vel of 5 using accel of 30
segmove 1 slew until 120; //move at current vel 5 till position
120
segmove 1 accdec to 0 using 60; //decel to a vel of 0 using accel of
60(stop)
wait for in position; //Wait for previous moves to be
complete
segmove 1 start relative; //Start the move
delay 500 ms; //delay 500 ms;
goto Top; //goto Top and repeat

QuickMotion Reference Guide 243

Doc. No. 951-530020-010

[Top]
segmove 1 clear;
segmove 1 accdec to 10 for 10;
segmove 1 slew until 20;
segmove 1 accdec to 30 for 20;
segmove 1 slew until 100;
segmove 1 accdec to 20 for 30;
segmove 1 accdec to 0 for 2;
wait for in position;
delay 500;
segmove 1 start relative;
goto Top;

244

QuickBuilder™ Reference Guide

Control Technology Corp.

[Top]
segmove 1 clear;
segmove 1 accdec to Vel1 for Pos1;
segmove 1 accdec to Vel2 for Pos2;
segmove 1 slew until Pos3;
segmove 1 accdec to Vel1 for Pos2;
segmove 1 accdec to 0 for Pos1;
wait for in position;
delay 500;
segmove 1 start relative;

QuickMotion Reference Guide 245

Doc. No. 951-530020-010

6 Chapter 6: Motion Variables

6.1 QuickMotion User-defined Variables

When entering code into an MSB, variables are automatically defined as they are typed in. A total of 48 user
variables per axis are allowed. Each variable is automatically created as a double-precision floating point variable.
 When you translate a QuickBuilder program the number of variables used on each axis will be displayed, should
too many be referenced an error will be flagged:

Variables used in an MSB are automatically assigned to each axis that uses that particular MSB.

For example in the following example two MSB variables are used: speed and dist.

// move at assigned speed for assigned distance
[top]
move at speed for dist;
wait for in position;
delay 500;

goto top;
end;

In this sample project, this is the only MSB that QuickStep is calling for the axis named ax1, the speed and dist
variables are automatically added to the ax1 object at the time of translation in QuickBuilder. Note that they will
not be shown in the resource tree under an axis object until the project is translated, because it is only at this
point that QuickBuilder knows which axes are using which MSBs.

Because a single MSB can be used by more than one axis, the actual variable name has the axis name pre-pended
to it so that it can be uniquely accessed by QuickStep (QS4). So in the above example, the variable dist used on

246

QuickBuilder™ Reference Guide

Control Technology Corp.

ax1 has a name of ax1.dist that is used to access it from QuickStep. If that same MSB were to be used on ax2 as
well the dist variable ax2.dist would be used in QuickStep.

Note that axis prefixes are only used at the QuickStep level and not within MSBs. The MSB cannot directly
access a variable from an MSB running on a different axis. If this information is needed, it can be obtained by first
assigning the desired MSB variable to a QuickStep variable. This QuickStep variable can then be assigned to a
variable in the other MSB. The methodology for reading and writing variables between QuickStep and an MSB is
shown below.

QS4 Example code:

// QS4 Sample code showing how to update variables between
// QuickStep and MSBs

// set the MSB variable x for Axis1 DrillPosition
// where, DrillPosition is a QuickStep variable
Axis1.x = DrillPosition;

// set the MSB variable speed for Axis1 to 5
Axis1.Speed = 5;

// set the QuickStep variable AxOneTarget
// to the MSB variable Axis1.Target
AxOneTarget = Axis1.Target

Axis1 MSB Example code:

// MSB Sample code showing how to use updated variables
// between QuickStep and MSBs

Halfspd = Speed/2;

/* Make a trap move to the DrillPosition specified in the QS4 step at
half speed */
move at Halfspd to x;

wait for in position; // Wait for move to complete
pulse 1 for 1000; // Turn the drill output on for 1 sec

/* Move to Target at the speed specified above. */

move at Speed to Target;

QuickMotion Reference Guide 247

Doc. No. 951-530020-010

6.2 QuickMotion Pre-defined Variables

In addition to user-defined variables, there are approximately 100 pre-defined variables for an axis in the
QuickMotion language.

Many of these variables correspond to properties in the QS4 world.

The pre-defined variables are organized on the following pages into tables by function. The functional groups
are:

· Status Variables – These are read-only variables that give information as to the status of a given axis,
such as fault code, in position, over-travel reached, etc.

· Control Variables – These are a mix of read-only and read-write variables used to set general control
conditions for the axis and how it interfaces with the drive. Some of these can only be adjusted before
the axis is enabled.

· Tuning Variables – These variables are all read-write and they are used to adjust the control loop
characteristics. These values can be adjusted while the axis is running either by using the tuning wizard
in QuickBuilder, or by directly changing the value of the variable.

· Feedback Variables – These variables are a mix of read only and read-write that set the characteristics of
the encoder feedback. This is where the counts per revolution and the user unit conversions are set.

· IO and Register Variables – These variables are used to read the status of the Axis I/O; change the
status of outputs, and assign special functionality to an I/O point such as input to be used for positive
over travel. Additionally general purpose global registers are available.

· Tracking Variables - This is a large set of variables used to set up electronic gearing and registration
type applications. These variables greatly simplify these types of applications from a programming
perspective, plus they dramatically improve performance.

· Capture Variables - These variables are used for registration/capture routines.

· Diagnostic Variables - These variables are useful in monitoring low level functionality internal to
QuickMotion.

· Quickstep Variables - These variables are used when programming in Quickstep rather than
QuickBuilder.

· Fault Variables - These variables are used to analyze axis fault conditions.

· Setup Variables - These variables are used to initialize and/or check certain parameters read during
initialization and setup.

· RFID Variables - These variables are used with Turck RFID readers. Reference the EtherCAT
Applications Guide.

· Vector Variables - These variables are used for vector moves during the implementation of 2D, 3D
Linear Interpolation, and 2D Circular Interpolation (EtherCAT only).

248

QuickBuilder™ Reference Guide

Control Technology Corp.

Status Variables Description Type

axisnum EtherCAT Only: Contains the axis number an MSB is running on,
starting at 1.

INT32, read-write

activeCAM_row Active cam row presently executing in cam table. INT32, read-only

camRequest 1 requesting cam file from controller disk, 0 idle, else error code. INT32, read-only

capStatus Capture status, bit 8 (axis 1), bit 9 (axis 2). 1 = active. INT16, read-only

enabled Holds the state of drive enable. When used with EtherCAT this
reflects the state of power on the drive (Voltage Enabled) and ready
to run. Will be set after a 'drive enable' instruction if executes
without error.

BYTE8, read-only

fault1
fault2 (not used)
fault3 (not used)
fault4 (not used)

Fault status words, reference Chapter 8. BYTE8, read-only

faulted Set to true when a fault has occurred. BYTE8, read-only

inpos Holds the state of in position.

In Position is true when the target generator is inactive and when
the position error (perr) is within bounds set by inposw. When
used with EtherCAT this reflects that the drive is "in position" that
was commanded.

BYTE8, read-only

overpos Set to true when target position (tpos) >= poslim or when the
associated hardware positive overtravel limit is active.

BYTE8, read-only

overneg Set to true when target position (tpos) <= neglim or when the
associated hardware negative overtravel limit is active.

BYTE8, read-only

overtrq Set to true when the commanded torque trqc has been clamped to
the torque limit (either tmax or tlim). Not used for EtherCAT.

BYTE8, read-only

pstate Current axis motion state (M3-40):

enum PSTATE {
 IDLE, // ready to run
 RUNNING, // processing sub-steps
 COMPLETE, // done running, awaiting IDLE
 STOP, // stop
 SLEWSTOP, // slewed stop
 SLEWING, // slewing

BYTE8, read-only

QuickMotion Reference Guide 249

Doc. No. 951-530020-010

Status Variables Description Type

 PRESPLINE, // pre 'SPLINE' move
 PRECAM, // pre 'CAM' move
 CONT_CAM, // continue ‘CAM’ move that was stopped
 INSPLINE, // in 'SPLINE' move
 INCAM, // in 'CAM' move
 TABLESTOP, // stop table
 TRACKING, // geared
 PRETRACKING // initialization for TRACKING (geared)
mode
};

EtherCAT (IncentiveECAT and M3-41):

enum PSTATE {

 IDLE, // ready to run
 RUNNING, // processing sub-steps
 COMPLETE, // done running, awaiting IDLE
 STOP, // stop
 SLEWSTOP, // slewed stop
 SLEWING, // slewing
 PRESPLINE, // pre 'SPLINE' move
 PRECAM, // pre 'CAM' move
 CONT_CAM, // continue ‘CAM’ move that was stopped
 INSPLINE, // in 'SPLINE' move
 INCAM, // in 'CAM' move
 TABLESTOP, // stop table
 TRACKING, // geared
 PRETRACKING // initialization for TRACKING (geared)
mode
 EXIT_TRACKING,
 ECAT_COMPLETE_PENDING,
 ECAT_PROFILE_POS_INIT,
 ECAT_PROFILE_POS_STARTING1,
 ECAT_PROFILE_POS_STARTING1A,
 ECAT_PROFILE_POS_STARTING2, // 20
 ECAT_PROFILE_POS_RUNNING,
 ECAT_PROFILE_POS_WAIT_INPOS,
 ECAT_PROFILE_VEL_INIT,
 ECAT_PROFILE_VEL_WAIT_DELAY1,
 ECAT_PROFILE_VEL_WAIT_DELAY2,
 ECAT_PROFILE_VEL_WAIT_DELAY3,
 ECAT_PROFILE_VEL_WAIT,
 ECAT_PROFILE_TORQUE_INIT,
 ECAT_PROFILE_INIT_CSP,
 ECAT_PROFILE_INIT_INTERPOLATED,
 ECAT_PROFILE_WAIT_CSP1,
 ECAT_PROFILE_WAIT_CSP2,
 ECAT_MODE_WAIT_CSP, // 33
 ECAT_MODE_WAIT_INTERPOLATED,
 ECAT_MODE_WAIT_PROFILE, // This just idles, awaiting
 // for the Profile request to be processed.

 ECAT_PROFILE_INIT_QSTOP,
 ECAT_PROFILE_WAIT_QSTOP1,

250

QuickBuilder™ Reference Guide

Control Technology Corp.

Status Variables Description Type

 ECAT_PROFILE_WAIT_QSTOP2,
 ECAT_PROFILE_WAIT_QSTOP,
 ECAT_PROFILE_AT_VEL, // 40
 ECAT_PROFILE_AT_TORQUE,
 ECAT_HOMING_INIT,
 ECAT_HOMING_STARTING1,
 ECAT_HOMING_STARTING1A,
 ECAT_HOMING_STARTING2, // 45
 ECAT_HOMING_RUNNING,
 ECAT_HOMING_WAIT_INPOS_KOLLMORGEN,
 ECAT_HOMING_WAIT_INPOS,
 ECAT_HOMING_WAIT_INPOS_IAI,
 ECAT_PROFILE_POS_WAIT_ABORTING, // 50
 ECAT_PROFILE_VEL_STOP,
 ECAT_PROFILE_VEL_STOPPING,
 ECAT_HOMING_ABORT_START,
 ECAT_HOMING_ABORT_WAIT, // 54
 ECAT_OFFLINE = -1,
 ECAT_USER_OFFLINE = -2 // User requested offline
};

tracking_pstate EtherCAT only, used mainly for vector moves on axis that is
following main axis (Arc and linear interpolation). Same states as
'pstate'.

Contains the current execution state of the drive during a ‘move on
a gear’ operation. ‘pstate’ must be in TRACKING mode for this
property to be valid.

INT32, read only

time A settable, accurate time counter (sec). This is a floating point
variable with precision of the control loop period (800uS default,
M3-40. 1mS, M3-41/IncentiveECAT). The value will increment
by the control loop period value each interrupt cycle. time = time
+ period;

DOUBLE, read-write

touchProbeStatus EtherCAT Only:

Maps directly to drive object 0x60b9.

INT32, read only

zpulse* Set to true when the Z-pulse has been seen.

*Note: Currently this does not work properly and only detects the
first Z-pulse. Workaround is to watch for a change in ztheta as an
indication of Z-pulse. Not used on EtherCAT, only M3-40.

BYTE8, read-only

QuickMotion Reference Guide 251

Doc. No. 951-530020-010

Control
Variables Description Type

acc Default acceleration rate for absolute and incremental motion.
Scaled in user-units/sec/sec.

FLOAT32, read-write

cmode Control mode – controls the structure of the position/velocity
loops.

M3-40:

Torque (0) – Control loop outputs a torque command (velocity
loop is active).

Velocity (1) – Control loop outputs a velocity command to the drive
(velocity loop is inactive).

Stepper (2) – Control loop outputs step and direction pulses
to the drive (velocity loop is inactive).

Open loop (16) – Or this with Torque mode for open loop,
direct dac control. Write directly to trqc, -10 to 10 (float)
representing volts.

M3-41/IncentiveECAT:

$CYCLIC_SYNC_POSITION_MODE 0 (default)
$PROFILE_VELOCITY_MODE 1
$INTERPOLATED_MODE 3
$PROFILE_POSITION_MODE 4
$PROFILE_TORQUE_MODE 5 (not supported)
$CYCLIC_SYNC_TORQUE_MODE 6 (not supported)
$CYCLIC_SYNC_VELOCITY_MODE 7 (not supported)
$HOMING_MODE 8
$VELOCITY_MODE 9

This variable cannot be changed while the axis is enabled

BYTE8, read-write

dec Default deceleration rate for absolute and incremental motion.
Scaled in user-units/sec/sec.

FLOAT32, read-write

encoder_mode EtherCAT Only:

Enable Absolute Positioning mode by setting the encoder_mode axis
property variable to a 1, prior to executing the ‘drive enable’
command. This will set the current position to that read from the
drive, assuming battery backup, rather than 0. A value of 0 is for an
incremental encoder. This variable can also be automatically set by
using the axis property pull-down menu option: absolute.

INT32, read-write

gtimebase A global timebase variable that affects both axes. This
variable in conjunction with the per-axis timebase sets the

FLOAT32, read-write

252

QuickBuilder™ Reference Guide

Control Technology Corp.

Control
Variables Description Type

effective per-axis natural time base of the target generator.

This parameter should only be set through a reference to the
first axis in an MSB or from a QS4 program.

Should not be used on M3-41/IncentiveECAT as it will
increment the time between control loops used in calculations
but not change the control loop period itself. Defaults to 1.0
since the control loop time is:

loop time = Tick Period * gtimebase;

homing_speed1 EtherCAT only:
Some homing modes require multiple speeds, with this one being the
speed to the switch (object 0x6099.1).

FLOAT32, read-write

homing_speed2 EtherCAT only:
 Some homing modes require multiple speeds, with this one being
the speed to the index (object 0x6099.2).

FLOAT32, read-write

inpos_t EtherCAT only:
Settling time for in position prior to notifying application in
milliseconds. This value is written to the drive object 0x6068.0 if it
is available.

INT32, read-write

inpos_w EtherCAT only:
In Homing and Profile Position mode this is the in position window
that is acceptible prior to acknowledging motor is in position.
Object 6067.0 is written to if available. In CSP and other modes the
perr must be less than inpos_w in order for inpos to be set as 1.

This variable maps to inposw which is available on M3-40 boards.

FLOAT32, read-write

invel_t EtherCAT only:
Time required, in milliseconds, to be at the target velocity, Profile
Velocity mode. Maps to object 0x606E.0.

INT32, read-write

invel_w EtherCAT only:
In Profile Velocity mode this is the window velocity is to be
maintained in. inpos_w X Target Velocity. Object 606D.0 is
written to if available.

FLOAT32, read-write

jerk_a_req Requested acceleration jerk (default 0), units/sec3. Jerk (S-curve
generation) for absolute and incremental motion (scaled in user-
units/sec/sec/sec). If set to zero (0.0), then S-curve generation is
disabled. Set to -1 for automatic calculation based on move.

FLOAT32, read-write

jerk_d_req Requested deceleration jerk (default 0), units/sec3. Jerk (S-curve
generation) for absolute and incremental motion (scaled in user-
units/sec/sec/sec). If set to zero (0.0), then S-curve generation is
disabled. Set to -1 for automatic calculation based on move.

FLOAT32, read-write

jerk_a Actual acceleration jerk used, units/sec3. FLOAT32, read-only

QuickMotion Reference Guide 253

Doc. No. 951-530020-010

Control
Variables Description Type

jerk_d Actual deceleration jerk used, units/sec3. FLOAT32, read-only

newvel New velocity is used in conjunction with the 'new endposition'
command to request a different velocity than is current. If 0 then is
ignored.

FLOAT32, read-write

sppr Steps/rev to output when in stepper mode (when cmode is Stepper).
 Not used on M3-41/IncentiveECAT.

INT3, read-write

stoprate Rate at which to do a slewed stop (uu/sec/sec) FLOAT32, read-write

theta Motor angle. In EtherCAT this value is incremented by the
position change (+/-) each control loop tick. UINT32.

INT16, read-only

time Incremented by loop period each interrupt. DOUBLE, read-write

timebase Used to override the natural time base of the target generator. When
set to 1.0 (the default value), the target generator’s “time” is un-
scaled. When set to a value between 0.0 and 1.0, the target
generator’s “time” is slowed-down, effectively generating lower
velocities. When set to 0.0, motion stops.

Changing the timebase only effects commanded motions, it does not
alter other commands such as delay. Do not change on EtherCAT
systems, should stay as default of 1.0.

FLOAT32, read-write

tlim M3-40:

Torque limit (Nm) – torque command limit.

EtherCAT:

Does not apply to most EtherCAT systems. Used on some drives
in PROFILE TORQUE MODE and by IAI, reference the
EtherCAT Applications Guide.

FLOAT32, read-write

tmax M3-40:

Scale factor – maximum torque (Nm) that is generated at the motor
when the control loop commands 10V to the drive.

This is set using the property inspector and cannot be changed in
QM code. Consult the connected motor and drive specifications to
properly set this value.

This property is valid when cmode is Torque.

EtherCAT:

FLOAT32, read-write

254

QuickBuilder™ Reference Guide

Control Technology Corp.

Control
Variables Description Type

Used on most drives to limit the torque while in CSP mode.
Reference the EtherCAT Applications Guide for specifics.

vmax M3-40:

Scale factor – velocity generated when the control loop commands
10V to the drive.

Scaled in RPM (rotational) or linear-units/min (linear).

This is set using the property inspector and cannot be changed in
QM code. Consult the connected motor and drive specifications to
properly set this value.

This property is valid when cmode is Velocity.

EtherCAT:

Used to limit velocity in CSP mode to a maximum. Also to set the
maximum velocity for Velocity and Position modes and homing
speeds in Homing modes.

FLOAT32, read-write

ztheta M3-40:

Motor angle of Z.

EtherCAT:

Not used.

INT16, read-only

Tuning Variables Description Type

_highBW Internal use only. Not used with EtherCAT. BYTE8, read-write

_inertia Internal use only (tuning inertia). Not used with EtherCAT. DOUBLE, read-write

_wn Internal use only (tuning wn). Not used with EtherCAT. DOUBLE, read-write

_zeta Internal use only (tuning zeta). Not used with EtherCAT. DOUBLE, read-write

aff Velocity-loop acceleration feed-forward gain. Not used with
EtherCAT.

FLOAT32, read-write

QuickMotion Reference Guide 255

Doc. No. 951-530020-010

Tuning Variables Description Type

Scaled as Nm/(rev/sec)/sec or Nm/(linear-unit/sec)/sec of
commanded velocity.

kd Velocity-loop derivative gain (D). Not used with EtherCAT.

Scaled as Nm-sec/(rev/sec)or Nm-sec/(linear-unit/sec) of velocity
error.

FLOAT32, read-write

kfilt A compensation value for the Kalman-filter used in the velocity
estimator. Not used for EtherCAT.

FLOAT32, read-write

kgain A compensation value for the Kalman-filter used in the velocity
estimator. Not used for EtherCAT.

FLOAT32, read-write

ki Velocity-loop integral gain (I). Not used with EtherCAT.

Scaled as Nm/(rev/sec)/sec or Nm/(linear-unit/sec)/sec of velocity
error.

FLOAT32, read-write

kv Velocity-loop proportional gain (P). Not used with EtherCAT

Scaled as Nm/(rev/sec) or Nm/(linear-unit/sec).

FLOAT32, read-write

kvf Velocity-loop factor (0.0-1.0). Not used with EtherCAT.

When set to 1.0, the velocity loop is a classic PID structure. When
set to 0.0, the velocity loop is a classic PDF structure. When set to
a value in between, the velocity loop is a combination of both.

FLOAT32, read-write

nonvolatile Writing a 1 will cause tuning parameters to originate from
nonvolatile serial flash instead of the defaults used in the property
window when the program was first created. 0 clears this feature
(one per axis). Not used for EtherCAT

BYTE8, read-write

pdead Position-loop dead-band (user-units). if perr <= pdead then perr =
0.

FLOAT32, read-write

pff Position-loop velocity feed-forward gain (0.0 – 1.0). Not used on
EtherCAT.

FLOAT32, read-write

ppg Position-loop proportional gain. Not used with EtherCAT.

Scaled as 1000/min.

FLOAT32, read-write

vff Velocity-loop velocity feed-forward gain. FLOAT32, read-write

256

QuickBuilder™ Reference Guide

Control Technology Corp.

Tuning Variables Description Type

Scaled as Nm/(rev/sec) or Nm/(linear-unit/sec) of commanded
velocity.

EtherCAT:

Used on some drives to set velocity feed forward value when
initiating CSP mode. Not all drives support it, typically object
0x60B1.

Feedback
Variables Description Type

camming_invertend Inverts logic of invertmaster with regards to camming table start
position and assumed direction traversing. By default 0, follow
invertmaster, 1 to do opposite of invertmaster (!invertmaster).

BYTE8, read-write

encoderZ
Z encoder input. Not used on EtherCAT

INT64, read-only

encoderZ3 Combination of Axis 1 and Axis 2 Z inputs A/B. Not used on
EtherCAT.

INT64, read-only

fpos The feedback position scaled in user-units. DOUBLE, read-only

fposc The feedback position scaled in encoder counts. INT64, read-only

gratio Present gear ratio. DOUBLE, read-only

inposw In Position window. Controls when the axis is deemed in position.
Scaled in user-units. Typically EtherCAT object 0x6067 when
supported. Also used for EtherCAT settling to make sure perr is
smaller than inposw when the drive has finished move.

DOUBLE, read-write

invertcmd M3-40:

Whether to invert the sign of the command output:

0 = no inversion

1 = invert

dac voltage = - dac voltage

EtherCAT: Not used.

BYTE8, read-write

invertfeed Whether to invert the way the feedback encoder counts:

0 = count normally

1 = count inverted

BYTE8, read-write

 invertmaster Whether to invert the way the master encoder counts:

0 = count normally

1 = count inverted

BYTE8, read-write

QuickMotion Reference Guide 257

Doc. No. 951-530020-010

Feedback
Variables Description Type

mppr Master encoder counts per revolution (or per linear unit for linear
feedback devices).

INT32, read-write

neglim Negative over-travel limit, scaled in user-units.

overneg = tpos <= axistc->neglim;

DOUBLE, read-write

perr The position error (scaled in user-units). DOUBLE, read-only

perrlimit The limit before a following-error fault is generated. The variable is
scaled in user-units.

0 = disable following-error fault check

DOUBLE, read-write

ppr Feedback encoder counts per revolution (or per linear unit for linear
feedback devices).

INT32, read-write

poslim Positive over-travel limit, scaled in user-units.

overpos = tpos >= axistc->poslim;

DOUBLE, read-write

runv Calculated run velocity fed to PID algorithm. Used internally as
next tick time velocity.

FLOAT32, read-write

settling EtherCAT only:

Time in seconds to allow things to settle when commanding a new
move while already in motion and will be changing directions.

DOUBLE, read-write

sign Nonzero for SCurve move, 1 for CCW, -1 for CW.

EtherCAT also uses it to show direction of all moves.

BYTE8, read-only

stepsout
Stepper pulses output. Not used on EtherCAT.

INT64, read-only

substep Segmented move current step on. Trapazoidal is 0 to 2, S-Curve is
0 to 6. Used for diagnostics.

BYTE8, read-only

sfmod The secondary position modulus. Used to control when sfposc
wraps around to 0.

INT64, read-write

sfpos Secondary feedback position (in revolutions).

sfpos = sfposc * (1/ppr)

DOUBLE, read-only

sfposc A secondary feedback position (scaled in counts).

A separately maintained feedback position similar to fposc with the
exception that the position will “wrap” (modulo) at 0 and at sfmod
(unless sfmod is set to 0).

sfposc = fposc % sfmod;

INT64, read-only

258

QuickBuilder™ Reference Guide

Control Technology Corp.

Feedback
Variables Description Type

tpos The target position scaled in user-units. DOUBLE, read-only

tr EtherCAT Only: Translation ratio. Result of uun/uud used by the
program.

DOUBLE, read-only

tposc The target position scaled in encoder counts. INT64, read-only

trqc M3-40:

The commanded torque value (Nm). Note that if in torque mode
and cmode open loop bit set (bit 5) then this becomes DAC analog
output -10 to 10V, floating point.

EtherCAT:

Used only on velocity drives as torque compensation. Presently
not used by any drives, reserved for future use.

FLOAT32, read-only

uud User-units conversion factor (denominator).

Motion commands are divided by this value (after multiplying by
uun) to scale user-units to revolutions (or linear unit or linear
feedback devices).

INT32, read-write

uun User-units conversion factor (numerator).

Motion commands are multiplied by this value (then divided by
uud) to scale user-units to revolutions (or linear unit or linear
feedback devices).

INT32, read-write

units_ratio EtherCAT Only:

User-units conversion factor (uun/uud as a double).

If uun is set to 0 then units_ratio will be used for more precise ratio
settings then uun/uud.

DOUBLE, read-write

vcmd Commanded velocity (in rev/sec or linear-units/sec).

EtherCAT:

Used to set target velocity for drives and modes that require.
Presently just MOTIONLINX uses this variable, otherwise set to
default of 1.0.

M3-40 - read-only

EtherCAT - read-
write

vel Feedback velocity (in rev/sec or linear-units/sec). FLOAT32, read-only

QuickMotion Reference Guide 259

Doc. No. 951-530020-010

Feedback
Variables Description Type

verr Velocity error (in rev/sec or linear-units/sec). Not used with
EtherCAT.

FLOAT32, read-only

zfpos Holds the last feedback position before it was modified by a “zero
feedback position” or “zero following error” statement. Not used
with EtherCAT.

DOUBLE, read-only

ZPULSE_POS The next Z-pulse location in the positive direction; user-units. Not
used with EtherCAT.

DOUBLE, read-only

ZPULSE_NEG The next Z-pulse location in the negative direction; user-units. Not
used with EtherCAT.

DOUBLE, read-only

ztpos Holds the last target position before it was modified by a “zero
feedback position” or “zero following error” statement. Not used
with EtherCAT.

DOUBLE, read-only

IO and Register
Variables Description Type

ctr0-ctr7 Axis counters (64-bit). These variables count off-to-on transitions
of the eight axis-related inputs (5 digital inputs, A, B and Z).

variable input (M3-40A/B/C)

ctr0 din1

ctr1 din2

ctr2 din3

ctr3 din4

ctr4 din5

ctr5 A-encoder channel

ctr6 B-encoder channel

ctr7 Z-encoder channel

EtherCAT: See EtherCAT Applications Guide.

INT64, read-write

din1 – din5 The state of digital inputs 1 through 5.
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

din6 – din10 The state of digital inputs 6 through 10.

Valid only when the module is in 1½ axis mode
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

dout1 – dout5 The state of digital outputs 1 through 5.
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

dout6 – dout10 The state of digital outputs 6 through 10.

Valid only when the module is in 1½ axis mode
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

260

QuickBuilder™ Reference Guide

Control Technology Corp.

IO and Register
Variables Description Type

dins The state of digital inputs 1 through 5 (or 10 if in 1 ½ axis mode) as
a single integer.

Each input has its own binary value starting with 1 for din1, 2 for
din2, 4 for din3, 8 for din4, etc. As an example, if din3 and din5
were both on, dins would equal 20.
EtherCAT: See EtherCAT Applications Guide.

INT32, read-only

douts The state of digital outputs 1 through 5 (or 10 if in 1 ½ axis mode)
as a single integer.

Each output has its own binary value starting with 1 for dout1, 2 for
dout2, 4 for dout3, 8 for dout4, etc. As an example, if dout3 and
dout5 were both on, douts would equal 20.
EtherCAT: See EtherCAT Applications Guide.

INT32, read-only

driveenable The digital output number to use for “drive enable.”

Positive input number for true state=high

Negative number for true state=low

0 = use no output

When an output is assigned for use as drive enable, all set/clear
operations to that output are ignored.

BYTE8, read-write

global_flag1 to
global_flag5

EtherCAT only:

5 general use global flag registers directly accessible by all MSB's
and QuickBuilder program.

DOUBLE, read-write

global_inputs M3-41 Only:

Local I/O is present on the 5300 M3-41 EtherCAT module. This
module has 6 inputs which is global to all MSBs. The MSB
property ‘global_inputs’ is used to read the 6 inputs, with the first
bit being the first input.

INT32, read-only

global_outputs M3-41 Only:

Local I/O is present on the 5300 M3-41 EtherCAT module. This
module has 2 outputs which are global to all MSBs. The outputs
are referenced as 9 and 10 when using the ‘setout’/’clrout’
instructions. The MSB property ‘global_outputs’ can be used in
addition to ‘setout’/’clrout’ for read/write operations of the local
outputs.

INT32, read-write

global_reg1 to
global_reg32

EtherCAT only:

32 general use global registers directly accessible by all MSB's and
QuickBuilder program.

DOUBLE, read-write

overposin The digital input number to use for positive over-travel.

Positive input number for true state=high

Negative number for true state=low

 0 = disable positive over-travel checking

BYTE8, read-write

overnegin
The digital input number to use for negative over-travel.

Positive input number for true state=high

Negative number for true state=low

BYTE8, read-write

QuickMotion Reference Guide 261

Doc. No. 951-530020-010

IO and Register
Variables Description Type

0 = disable negative over-travel checking

running The digital output number to use for “MSB active” (running).

0 = use no output

When an output is assigned for use as “MSB active” (running), all
set/clear operations to that output are ignored.

BYTE8, read-write

Tracking
Variables Description Type

antibackup Whether or not to allow the slave to generate geared pulses in
response to negative displacements of the master

0 = allow generated pulses in all cases
1 = accumulate negative displacements of the master and generate
geared slave pulses when accumulated total > 0

BYTE8, read-write

master_feedback EtherCAT Only:

Any axis can track another axis by simply dropping into tracking
mode. To reference which axis to track, use the variable
‘master_feedback’, which by default is 1. Set this variable to the
axis you wish to track, set whether to reference fpos or tpos of the
master axis, and then drop into tracking mode.

// ******** TRACKING MODE **********

[SetTracking]

 zero master counters;

 master_feedback = 1;

// Set we will track axis 1

// Set the feedback mode first so when enter tracking it is

// referencing correct master. ‘set master feedback’ references

// the other axis fposc or feedback position.

// ‘set master target1’ references the other axis tpos position.

 set master feedback;

 set mode tracking; // Enter tracking mode

M3-41:

Another option, only available on the M3-41 hardware module, is
the provision for directly connecting up to 3 local quadrature
encoders. These encoders can be used as master references by the
EtherCAT axis. To reference these encoders, the master_feedback
variable is set to 1001, 1002, or 1003, for each of the respective
encoder inputs. Once master_feedback is referencing a local
encoder, its present value will appear in ‘mpos’ and ‘mposc’ MSB
variables. In addition, all local encoder counts can be accessed
using the ‘ctr’ array, index 5 to 7 from an MSB, or ctr5, ctr6, and
ctr7 from QuickBuilder.

Master_feedback = 1001, ctr[5]/ctr5, P1 connector pins:

INT32, read-write

262

QuickBuilder™ Reference Guide

Control Technology Corp.

Tracking
Variables Description Type

P1-19 A0+

P1-20 A0-

P1-21 B0-

P1-22 B0+

Master_feedback = 1002, ctr[6]/ctr6, P1 connector pins:

P1-23 A1+

P1-24 A1-

P1-25 B1-

 P1-26 B1+

Master_feedback = 1003, ctr[7]/ctr7, P1 connector pins:

P1-27 A2+

P1-28 A2-

P1-29 B2-

P1-30 B2+

mcinv The bit-oriented variable controls when mposc1-5 are cleared. Bit
0, the least-significant bit, controls mposc1. Bit 1, the next
significant bit controls mposc2, etc.

Bit 16 to bit 20 controls whether mposc# is cleared upon entering
tracking mode. If set cleared.

Bit 21 to bit 22 controls whether tsc1/tsc2 is cleared upon entering
tracking mode. If set cleared.

INT32, read-write

mdelta1 Master position delta, counts

This variable holds the displacement that occurred in the master
encoder between position captures. Essentially this is the last
value of mposc1 before mposc1 is cleared due to a position
capture.

Cleared upon entering tracking mode.

INT32, read-only

mdelta2 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc2 before mposc2 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

QuickMotion Reference Guide 263

Doc. No. 951-530020-010

Tracking
Variables Description Type

mdelta3 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc3 before mposc3 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

mdelta4 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc4 before mposc4 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

mdelta5 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc5 before mposc5 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

mmc Master position modulus (0=functionality disabled)

This variable is used as a modulus for the variables mposc1-5 and
tmod. Whenever updated, mmc is applied by formula:

mposc1 = mposc1 mod mmc

mposc2 = mposc2 mod mmc

mposc3 = mposc3 mod mmc

mposc4 = mposc4 mod mmc

mposc5 = mposc5 mod mmc
tmodc = tmodc mod mmc

INT32, read-write

mposc Master position, counts

This variable is cleared when the mode is changed to tracking.
This variable is unaffected by mmc or changes to mposc1-5.

This counter rolls over at 65536 times the value of mppr when in
tracking mode.

INT64, read-write

mposc1
Master position, counts (modulo by mmc)

INT32, read-only

264

QuickBuilder™ Reference Guide

Control Technology Corp.

Tracking
Variables Description Type

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #1 makes an off-to-on transition
unless the 0-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 16 in mcinv set
will disable clearing upon entering tracking mode.

mposc2 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #2 makes an off-to-on transition
unless the 1-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 17 in mcinv set
will disable clearing upon entering tracking mode.

INT32, read-only

mposc3 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #3 makes an off-to-on transition
unless the 2-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 18 in mcinv set
will disable clearing upon entering tracking mode.

INT32, read-only

mposc4 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #4 makes an off-to-on transition
unless the 3-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 19 in mcinv set
will disable clearing upon entering tracking mode.

INT32, read-only

mposc5 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #5 makes an off-to-on transition
unless the 4-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 20 in mcinv set
will disable clearing upon entering tracking mode

INTE32, read-only

move_master_counts Move master counts target if not forever. INT32, read-only

move_master_rate_targ
et

Move master rate target setting (virtual master).
INT32, read-only

move_master_ramp Move master ramp setting (virtual master) INT32, read-only

QuickMotion Reference Guide 265

Doc. No. 951-530020-010

Tracking
Variables Description Type

move_master_rate Move master rate setting (virtual master) INT32, read-only

mpgai Master position during gear…at…in, counts

This variable holds the number of consumed master position
counts during the last gear…at…in statement

INT32, read-only

mpgfi Master position during gear…for…in, counts

This variable holds the number of consumed master position
counts during the last gear…for…in statement

INT32, read-only

sdc Slave decrement counter

This counter decrements for every output slave count whereas tsc1
and tsc2 increment.

INT32, read-write

spgai Slave position during gear…at…in, counts

This variable holds the number of consumed slave position counts
during the last gear…at…in statement.

INT32, read-only

spgfi Slave position during gear…for…in, counts

This variable holds the number of consumed slave position counts
during the last gear…for…in statement.

INT32, read-only

smodc Slave position counter.

This variable is cleared when the mode is changed to tracking.

INT32, read-only

smod Slave position modulus

This variable is used as a modulus for the variable smodc.
Whenever smodc is updated, smod is applied by formula:

smodc = smodc mod smod

INT32, read-write

smark Slave modulo marker position, counts

When an input transistions in conjunction with the bits specified in
smarkrise and smarkfall, this variable is computed by formula:

smark = sphase – smodc

INT32, read-only

smarkrise This bit-oriented variable controls when smark is calculated.
When the input corresponding to a set bit in smarkrise makes an
off-to-on transition, smark is calculated.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

266

QuickBuilder™ Reference Guide

Control Technology Corp.

Tracking
Variables Description Type

smarkfall This bit-oriented variable controls when smark is calculated.
When the input corresponding to a set bit in smarkfall makes an
on-to-off transition, smark is calculated.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

sphase Slave marker position phase, counts

Used to offset smark.

INT32, read-only

tmc1 Temporary master position counter 1

This variable is auxiliary, settable counter that tracks master
position.

These variables can be zeroed atomically by zero master counters.
Cleared when changing mode to TRACKING.

INT32, read-write

tmc2 Temporary master position counter 2

This variable is auxiliary, settable counter that tracks master
position.

These variables can be zeroed atomically by zero master counters.
Cleared when changing mode to TRACKING.

INT32, read-write

tmodc Temporary master position counter mod mmc. User cleared only. INT32, read-write

tsc1 Temporary slave position, counter 1

This variable is auxiliary, settable counter that tracks slave
position.

INT32, read-write

tsc1rise This bit-oriented variable controls when tsc1 is cleared. When the
input corresponding to a set bit in tsc1rise makes an off-to-on
transition, tsc1 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

tsc1fall This bit-oriented variable controls when tsc1 is cleared. When the
input corresponding to a set bit in tsc1fall makes an on-to-off
transition, tsc1 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

tsc2 Temporary slave position, counter 2

This variable is auxiliary, settable counter that tracks slave
position.

INT32, read-write

tsc2rise This bit-oriented variable controls when tsc2 is cleared. When the
input corresponding to a set bit in tsc2rise makes an off-to-on
transition, tsc2 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

QuickMotion Reference Guide 267

Doc. No. 951-530020-010

Tracking
Variables Description Type

tsc2fall This bit-oriented variable controls when tsc2 is cleared. When the
input corresponding to a set bit in tsc2fall makes an on-to-off
transition, tsc2 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

tracking_pstate EtherCAT Only: See Status Variables. INT32, read_only

tracking_sign EtherCAT Only: If the axis is tracking this variable is set to 1 or -
1 depending on the direction of rotation.

INT32, read_only

tracking_status EtherCAT Only: If an axis is tracking this variable represents the
current state of motion:

enum QS2STATE {

NOT_INITIALIZED,

STOPPED_READY,

WAIT_START,

ACCELERATING,

AT_MAX_SPEED,

DECEL_TO_NEW_MAX_SPEED,

DECEL_TO_STOP,

SOFT_STOP,

REG_MOVE,

HOME,

NOT_USED1,

FOLLOWING,

NOT_USED2,

COMMAND_ACCEPTED
};

BYTE8, read-only

tracking_tpos EtherCAT Only: If an axis is tracking then this is the target
position scaled in user-units.

DOUBLE, read-only

tracking_tposc EtherCAT Only: If an axis is tracking then this is the target
position scaled in encoder counts.

INT64, read-only

vmdelta Virtual master delta counts. INT32, read-only

Capture
Variables Description Type

capArmed Capture armed, non zero. If capture is armed and this variable is
cleared any capture will be ignored (equivalent to disabling
capture).

BYTE8, read-write

capEdge Edge to monitor for capture as set by the ‘set capture’ instruction.
 2 – any edge, 1 – rising edge, 0 – falling edge.

INT16, read-only

capGate Capture input used to gate the trigger input, if -1 then always
gated.

INT16, read-write

268

QuickBuilder™ Reference Guide

Control Technology Corp.

capGateState Gate active as on or off, 0 it waiting for gate to be high, 1 if waiting
for gate to be low.

INT16, read-only

capInput Capture input to be used as a trigger. INT16, read-only

capLimit Capture limit value INT64, read_write

capLimitflag Set if capture limit occured BYTE8, read-only

capMod EtherCAT only:
Defaults to 1 and applies a modulus to the captured value.

INT32, read-write

capOffset Amount to move after a capture occurs, fposc + capOffset = new
end position. If 0 then move continues as was originally
instructed.

INT64, read-write

cappos Capture position in user units. capposc * 1/ppr. DOUBLE, read-only

capposc Capture position in counts. This will be fposc + encoder offset if
not in Tracking mode. If Tracking then sfposc + encoder offset.
Latched when defined capture input goes active.

INT64, read-only

capStatus
Capture status, bit 8 (axis 1), bit 9 (axis 2). 1 = active. INT16, read-only

capTriggered Capture occurred flag, non zero. capposc/cappos contains the
latched position when occurred.

BYTE8, read-write

capWait If 1, an MSB is waiting on a ‘wait capture’ instruction, else 0. BYTE8, read-only

capwaitBranch Capture MSB offset branch value. INT16, read-only

capwinEnd End of capture range as set by the ‘set capwin’ instruction. If
same as capwinStart then no window is active.

INT64, read-write

capwinStart Start of capture range as set by the ‘set capwin’ instruction. If
same as capwinEnd then no window is active.

INT64, read-write

capwinType Capture window type (0-17):

fposc (0) feedback position

mposc1 - mposc5 (1-6) master position counters #1 through
#5

mposc (7) master position counter

smodc (8) slave position (modulo)

smark (9) slave marked position

tmc1 tmc2 (10/11) temporary master counters #1 & #2

tsc1 tsc2 (12/13) temporary slave counters #1 & #2

sdc (14) slave decrement counter

fposc1 (15) feedback position of axis 1 (fposcA)

fposc2 (16) feedback position of axis 2 (fposcB)

tmodc (17) temporary master counter mod mmc
sfposc (18) secondary feedback position of axis

EtherCAT: Reference EtherCAT Application Guide.

INT16, read-only

msource Master source setting:
0x01 – feedback1
0x02 – feedback2

BYTE8, read-only

QuickMotion Reference Guide 269

Doc. No. 951-530020-010

0x03 - feedbackz
0x04 – target1
0x05 – target2
0x06 – common
0x07 - virtual

Bit OR of above:
0x80 - global

EtherCAT: Reference EtherCAT Application Guide.

Diagnostic
Variables Description Type

activeBG_MSBs Number of active background MSB's running on axis. BYTE8, read-only

activeFG_MSBs Number of active foreground MSB's running on axis. BYTE8, read-only

debugTable Cam table to view, from 0 to 5 INT32, read-write

debugTableRows Number of rows presently in the selected cam table, debugTable. INT32, read-only

debugTableRow Current row number to view in the selected cam table, debugTable. INT32, read-write

debugTableX X value for selected debugTableRow. FLOAT32, read-only

debugTableY Y value for selected debugTableRow. FLOAT32, read-only

last_ALStatusCode EtherCAT Only:

Last AL Status code read from drive.

INT32, read-write

last_errorCode EtherCAT Only:

Last error code read from drive, typically object 0x603F.

INT32, read-write

last_errorRegister EtherCAT Only:

Last error register from drive, typically 0x1001.

INT32, read-write

last_errorType EtherCAT Only:

Used internally by M3-41/IncentiveECAT.

INT32, read-write

lastOverall Last full loop time of all axis in uS.

EtherCAT: Not used.

FLOAT32, read-only

loopperiod Periodic motion loop interrupt time in uS. FLOAT32, read-only

looprate Number of motion loop interrupts/second. FLOAT32, read-only

270

QuickBuilder™ Reference Guide

Control Technology Corp.

minLoopTime Minimum actual individual axis loop execution time (uS) reached.

EtherCAT: Not used.

FLOAT32, read-only

maxLoopTime Maximum actual individual axis loop execution time (uS) reached.

EtherCAT: Not used.

FLOAT32, read-only

minOverall Minimum actual axis loop execution time (uS) reached for all axis.

EtherCAT: Not used.

FLOAT32, read-only

maxOverall Maximum actual axis loop execution time (uS) reached for all axis.

EtherCAT: Not used.

FLOAT32, read-only

overflowFlag Motion loop overflow flag, set to 1 if loop time exceeded while in
the loop (800uS default, reference 'set loopperiod')

EtherCAT: Not used.

INT32, read-only

scanning EtherCAT Only:

Variable set according to EtherCAT scan state. 0 = not scanning,
1= initializing, 2 = operational and scanning.

INT32, read-only

wStatus EtherCAT Only:

Status Word read from the drive, object 0x6041.

INT16, read-only

wControlWord EtherCAT Only:

Control Word used to issue commands to the drive, object 0x6040.

INT16, read-only

Setup Variables Description Type

axisptr EtherCAT Only:
Properties such as fpos, tpos, etc., are local to an axis and not
shared with other axis MSBs. This limitation can be overridden by
using the ‘axisptr’ property of an MSB. This property controls
what axis the MSB will retrieve its property value on a read and
write operation. It is typically set to the value of ‘axisnum’, which
is the axis number of that axis executing the MSB. Setting this axis
number to any other value will override what axis the property is
retrieved from.

INT32, read-write

dim_factor_num EtherCAT Only:
Reserved for later use with velocity drives.

INT32, read-write

dim_factor_denom EtherCAT Only:
Reserved for later use with velocity drives.

INT32, read-write

dwSlaveID EtherCAT Only:
Slave ID for this axis.

INT32, read-only

eCAT_driveType EtherCAT Only:

The type of drive and axis number that an MSB is executing can be
referenced programmatically via the ‘eCAT_driveType’ and

INT32, read-only

QuickMotion Reference Guide 271

Doc. No. 951-530020-010

Setup Variables Description Type

‘axisnum’ property variables. ‘axisnum’ contains the axis number,
where 1 is the first. ‘eCAT_driveType’ is defined as follows:

$DRIVE_COPLEY 2
$DRIVE_YASKAWA 3
$DRIVE_ELMO (not supported) 4
$DRIVE_KOLLMORGEN 5
$DRIVE_SANYO_DENKI 6
 $DRIVE_EMERSON 7
$DRIVE_AMC 8
$DRIVE_VIRTUAL 9
 $DRIVE_IAI_ACON_MODE3 11
$DRIVE_ABB_MICROFLEX 12
$DRIVE_ABB_MITSUBISHI 13
$DRIVE_ABB_PANASONIC 14
$DRIVE_ABB_LINMOT 15
$DRIVE_MOTIONLINX 17
$DRIVE_WAGO_ENCODER_631 18
$DRIVE_WAGO_ENCODER_637 19

eCAT_manufID EtherCAT Only:
EtherCAT ESI manufacturer ID.

INT32, read-only

eCAT_productCode EtherCAT Only:
EtherCAT ESI product code.

INT32, read-only

qs_decel_time EtherCAT Only:
Reserved for future VFD quick stop deceleration time.

INT32, read-write

vel_accel_time EtherCAT Only:
Reserved for future VFD velocity acceleration time.

INT32, read-write

vel_decel_time EtherCAT Only: Reserved for future VFD velocity deceleration
time.

INT32, read-write

vmin EtherCAT Only:
Reserved for future VFD velocity minimum.

FLOAT32, read-write

RFID Variables Description (EtherCAT Only) Type

RFID_channel Selects the RFID channel to be operated on by the properties
that follow. Entries of 1 to RFID_totalChannels are the valid
selections, with 0 disabling access. All properties should be
initialized to their proper values before setting the
RFID_channel to a non-zero value.

INT32, read-write

RFID_totalChannels Represents the total number of RFID channels available in the
system.

INT32, read-only

RFID_state Represents the current state of the RFID interface logic state
machine as it executes any requests issued by the RFID_control
property variable. Possible values are as follows:

RFID_OFF 0
RFID_IDLE 1
RFID_READING_1 2

INT32, read-write

272

QuickBuilder™ Reference Guide

Control Technology Corp.

RFID Variables Description (EtherCAT Only) Type

RFID_READING_2 3
RFID_READING_WAIT_DONE 4
RFID_WRITING_1 10
RFID_WRITING_2 11
RFID_WRITING_3 12
RFID_WRITING_4 13
RFID_WRITE_DONE 15
RFID_WRITE_WAITTAG 20
RFID_READ_WAITTAG 21
RFID_WAITNOTAG 22
RFID_ERROR 30

RFID_error Turck specific error where bits 7 to 0 represent the category and
bits 15 to 8 are the description. Any time the RFID_error
property is non-zero an error is present. To clear the error the
RFID reader must be reset using the RFID_control property
RESET bit. See EtherCAT Applications Guide for error codes..

INT32, read-only

RFID_address This address is forwarded to the RFID reader to determine
where in its memory block to begin accessing data for read and
write operations. A value of 0 is the first address.
RFID_address is auto-incremented after any read or write by the
amount in RFID_bytesTransferred therefore set it back to the
desired start location after each read or write.

INT32, read-write

RFID_index The index is used to select which
RFID_data_readl/RFID_data_readh or
RFID_data_writel/RFID_data_writeh array item is to be
operated on. Where 0 is the first item, up to 31 (32 array items
for 256 bytes total possible).

 int RFID_data_readl[32];
 int RFID_data_readh[32];
 int RFID_data_writel[32];
 int RFID_data_writeh[32];

INT32, read-write

RFID_data_readl The first 32 bit integer or 4 bytes of data transferred from the
RFID tag. This property is an array of 32 deep, indexed by the
RFID_index property.

int RFID_data_readl[32];

INT32, read-write

RFID_data_readh Read/write, the second 32 bit integer or 4 bytes of data
transferred from the RFID tag. This property is an array of 32
deep, indexed by the RFID_index property in parallel to
RFID_data_readl.

int RFID_data_readh[32];

INT32, read-write

RFID_data_writel Read/write, the first 32 bit integer or 4 bytes of data transferred
to the RFID tag. This property is an array of 32 deep, indexed

INT32, read-write

QuickMotion Reference Guide 273

Doc. No. 951-530020-010

RFID Variables Description (EtherCAT Only) Type

by the RFID_index property.

 int RFID_data_writel[32];

RFID_data_writeh The second 32 bit integer or 4 bytes of data transferred to the
RFID tag. This property is an array of 32 deep, indexed by the
RFID_index property in parallel to RFID_data_writel.

 int RFID_data_writeh[32];

INT32, read-write

RFID_status 32 bit integer with only the first 8 bits reflecting the status as
returned by the Turck RFID reader.

· Done – (Bit 7) Slice is ready to receive command. This bit will
be off until previous command bit is turned off.

· Busy – (Bit 6) Slice is currently processing command. This is
normally on when transceiver is waiting for a tag to be
presented.

· Error – (Bit 5) Slice has encountered an error during last
command. Refer to Error_Cat and Error_Desc for details.
This bit is not always set so check RFID_error for nonzero.

· Trans_Conn – (Bit 4) Transceiver is correctly connected and
communicating with the slice.

· Trans_On – (Bit 3) Transceiver has been turned on by slice.
· TP – (Bit 2) Tag present; Tag is present in transceiver field.

LED on transceiver will blink rapidly.
· TFR – (Bit1) Tag Fully Read; Tag has been present in

transceiver field long enough so that entire tag memory has
been stored in buffer. This bit does not need to be on to
indicate a command has been completed.

INT32, read-only

RFID_control 32 bit integer which is used to request RFID transactions to
occur, read and writing different aspects of the tag and
transceiver. Some of the bits are defined by Turck but have been
enhanced by CTC for additional features.

INT32, read-write

RFID_controlActive Represents the value actually being transferred to the Turck
RFID controller at any moment. During operation bits are
set/cleared automatically by the M3-41 module, especially when
transferring multiple blocks of data. Useful for diagnostic
purposes.

INT32, read-only

RFID_count Represents the value actually being transferred to the Turck
RFID controller as the needed byte count. This property is
automatically set based upon the RFID_bytesTotal required.
Useful for diagnostic purposes.

INT32, read-only

RFID_bytesTotal This property must be set to the total number of bytes to be
transferred to/from the RFID reader. If to the reader
RFID_data_writel/h array is used, if from the reader
RFID_data_readl/h is used. For a single transfer this is typically
set to 8. This property is also used in conjunction with the
‘host read’ and ‘host write’ commands when transfers are done

INT32, read-write

274

QuickBuilder™ Reference Guide

Control Technology Corp.

RFID Variables Description (EtherCAT Only) Type

with the RFID_data_readl and RFID_data_writel properties.
These properties can be used to transfer strings to/from
Quickbuilder variants.

RFID_bytesTransferred This property represents the number of bytes that have been
transferred during a read/write RFID operation as well as ‘host
read’ and ‘host write’. If a ‘host read’ is used to read a
QuickBuilder variant string this property will represent the
length of the string after the access.

INT32, read-write

RFID_tagIDl This property is automatically set when a TAG ID read
operation is performed. This property represents the lower 4
bytes.

INT32, read-write

RFID_tagIDh This property is automatically set when a TAG ID read
operation is performed. This property represents the upper 4
bytes.

INT32, read-write

RFID_lasttagIDl This property is automatically set when a TAG ID read
operation is performed and a unique id is found, different than
that previously read. This property represents the lower 4
bytes. The RFID_lasttagIDl/h is checked against the latest tag id
read to ensure no duplicates are found, if that option is enabled.

INT32, read-write

RFID_lasttagIDh This property is automatically set when a TAG ID read
operation is performed and a unique id is found, different than
that previously read. This property represents the upper 4
bytes. The RFID_lasttagIDl/h is checked against the latest tag id
read to ensure no duplicates are found, if that option is enabled.

INT32, read-write

Vector Variables Description (EtherCAT Only) Type

accX Calculated acceleration along the X axis of the last vector move. DOUBLE, read-only

accY Calculated acceleration along the Y axis of the last vector move. DOUBLE, read-only

accZ Calculated acceleration along the Z axis of the last vector move. DOUBLE, read-only

accVector Circular Interpolation:
Acceleration in radians/second2 that is being used for the calculated
profile.

DOUBLE, read-only

angle Circular Interpolation:
Initialized to 0 and records the calculated angle as it sweeps.

2D and 3D Linear Interpolation:
Calculated angle of the last vector move.

FLOAT32, read-only

angleStart Circular Interpolation:
The angle at which motion should start where 0 is vertical on the Y
axis, minus angle moves left, and positive angle moves right. The
‘angleSweep’ variable is added to this angle.

DOUBLE, read-write

QuickMotion Reference Guide 275

Doc. No. 951-530020-010

Vector Variables Description (EtherCAT Only) Type

angleSweep Circular Interpolation:
The desired amount of angular motion that is to occur relative to the
radius center point. A positive angleSweep rotates clockwise,
negative, counter clockwise.

DOUBLE, read-write

axisY The axis number, from 1 to N, which will be the Y axis, commanded
from the X axis. The Y axis must be set for either 2D or 3D
interpolation to occur.

INT32, read-write

axisZ 3D Linear Interpolation:
The axis number, from 1 to N, which will be the Z axis, commanded
from the X axis.

INT32, read-write

decVector Circular Interpolation:
Deceleration in radians/second2 that is being used for the calculated
profile.

DOUBLE, read-only

decX Calculated deceleration along the X axis of the last vector move. DOUBLE, read-only

decY Calculated deceleration along the Y axis of the last vector move. DOUBLE, read-only

decZ Calculated deceleration along the Z axis of the last vector move. DOUBLE, read-only

magnitude 2D and 3D Linear Interpolation:
Calculated size of the last vector move.

DOUBLE, read-only

radius Circular Interpolation:
The radius in user units of the arc to be drawn. A negative radius
flips the arc.

DOUBLE, read-write

vectorY Circular Interpolation:
The calculated center of the arc for the Y axis will be stored here for
diagnostic reference, in machine units. Make sure you update
vectorY after a circular move if the next move is linear
interpolation.

3D Linear Interpolation:
The desired Y position on an X/Y/Z grid in user units, based upon
revolutions. Note that this value is overwritten after a circular
interpolated move for diagnostic purposes.

2D Linear Interpolation:
The desired Y position on an X/Y grid in user units, based upon
revolutions.

DOUBLE, read-write

vectorZ Circular Interpolation:
The calculated center of the arc for the X axis will be stored here for
diagnostic reference, in machine units.

3D Linear Interpolation:
The desired Z position on an X/Y/Z grid in user units, based upon
revolutions. Note that this value is overwritten after a circular
interpolated move for diagnostic purposes.

DOUBLE, read-write

276

QuickBuilder™ Reference Guide

Control Technology Corp.

Vector Variables Description (EtherCAT Only) Type

velVector Circular Interpolation:
Velocity in radians/second that is being used for the calculated
profile.

DOUBLE, read-only

velX Calculated velocity along the X axis of the last vector move. DOUBLE, read-only

velY Calculated velocity along the Y axis of the last vector move. DOUBLE, read-only

velZ Calculated velocity along the Z axis of the last vector move. DOUBLE, read-only

QuickMotion Reference Guide 277

Doc. No. 951-530020-010

6.3 Host Register Access

The Host Read/Write commands are used to directly access all the main controller's registers, including variant
storage. These registers consist of, but are not limited to:

· Analog I/O
· Digital I/O
· Data tables
· Volatile and non-volatile Variant scalar, vector and tables
· Generic integer registers
· Non-volatile register
· Communications

Reference the Quickstep Register Guide for a summary of available registers:

http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf

Summary:
host read variable, register {, row, column}

 host write variable, register {, row, column}

 Host Read Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 host read variable, register {, row, column }

parameters

 variable Local user variable or axis property to have ‘register’

stored to it.

register Main controller QuickBuilder register as defined in the

Model 5300 Quick Reference Register Guide. May be constant

or variable access.

row Optional row used only for variant register table access.

May be constant or variable access.

column Optional column used only for variant register table

access. May be constant or variable access.

This statement pauses execution of the MSB while the contents of a QuickBuilder register is retrieved from the
main processor. The register value is then stored into the local ‘variable’ or axis ‘property’. The data type will
automatically be converted to that of the local storage. Both integer based registers and variant vectors and
tables are supported. When reading a variant, one cell at a time in the table (if any) is read. If no row or column is
specified, 0 is assumed.

// Read the controller tick timer referencing a variable
// and store to ‘userVar’
reg = 13002;
host read userVar, reg;
// Read the controller tick timer using constant register
// number and store to ‘userVar’
host read userVar, 13002;

http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf

278

QuickBuilder™ Reference Guide

Control Technology Corp.

 Host Write Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 host write variable, register {, row, column }

parameters

 variable Local user variable or axis property to store to controller

‘register’.

register Main controller QuickBuilder register as defined in the

Model 5300 Quick Reference Register Guide. May be constant

or variable access.

row Optional row used only for variant register table access.

May be constant or variable access.

column Optional column used only for variant register table

access. May be constant or variable access.

This statement pauses execution of the MSB while the contents of a local ‘variable’ or axis ‘property’ is written to
a QuickBuilder register on the main processor. The data type will automatically be converted to that of the
QuickBuilder register, thus double will be converted to integer, etc. Both integer based registers and variant
vectors and tables are supported. When writing a variant, one cell at a time in the table (if any) is written. If no
row or column is specified, 0 is assumed.

// Clear the controller tick timer, register 13002,
// referencing the contents of ‘userVar’.
userVar = 0;
reg = 13002;
host write userVar, reg;
// Clear the controller tick timer, register 13002,
// using a constant value.
host write 0, 13002;

QuickMotion Reference Guide 279

Doc. No. 951-530020-010

7 Chapter 7: Quickstep Support

QuickMotion has been designed for high integration with the QuickBuilder language and include such features as
program interaction and user units. A legacy product, Quickstep, uses a register interface for motion control.
This interface is not as tightly coupled but there is a large existing code base thus an MSB emulation mode has
been created which allows the M3-40 module to appear as a 2219 motion control card, used on the 2700 series
controllers, or 5140, within the 5100/5200 controller family.

Register emulation is always available from a read only perspective. In order to fully support the emulation mode
a special MSB has been created and must be loaded. This MSB is the output of a QuickBuilder project where
initial parameters and any minor MSB customization can be made. To simplify initial use a fully compiled project
is available that can be loaded into a 5300 controller for Quickstep program support, QS2MSB. This project is
available from the download portion of CTCs' web site. In the example provided, 2 axis, are supported. To
support more axis simply add the card to the QuickBuilder project as well as 'start axis' references, or if
QuickBuilder is not available, you may simply copy and rename the files with the appropriate axis names. Note
the files which are available after compiling QS2MSB, within the controller sub-directory:

These files consist of the binary output, generated by QuickBuilder, for MSB's (AXIS??_MSB??_msbname.bin)
and their respective configuration parameters (PARAM_AXIS??.bin). They must be placed in the controller
'/_system/Programs/Motion' subdirectory. Upon power up or reset the M3-40A module will automatically look in
this directory and if the files are present then an auto-boot sequence will begin. Namely, the files will be loaded
into the M3-40 card and automatically executed. If a servo has been tuned and parameters saved to the card, the
PARAM file settings will be ignored and only the MSB binary file will be loaded.

Once loaded and running most legacy Quickstep motion applications will run, unchanged.

 Note that the emulation will appear similar to a 2700, 2219 module. Any extended features available within the
5100/5200 controller 5140 module are not currently supported. The Register interface is fully available on all
motion products. If only Registers are desired the above .bin files do not have to be loaded. The .bin files are
used to simulate full Quickstep motion instructions thus if MSB's are used in a normal QuickBuilder program, they
are not needed.

280

QuickBuilder™ Reference Guide

Control Technology Corp.

7.1 Registers

Most of the motion registers supported by the 2700/5100/5200 controller are available within the 5300/Incentive
environment, regardless of whether the emulation mode is run or not. If emulation is not running then write
operations are not supported. These registers consist of:

Motion Registers Grouped by function then axis

The 5300 firmware is designed to access up to 16 axes. For the 14XXX register
values below substitute the axis number for ‘ax’ to get the correct register. Axis #1
= 1; For example the position of axis #1 is stored in register 14001.

140ax Position (counts), R only [QuickBuilder reference = fposc]

141ax Error (counts), R only [QuickBuilder reference = perr * ppr * (uun/uud)]

142ax Velocity (counts / sec), R only [QuickBuilder reference = vel * ppr * (uun/uud)]

143ax Status, R only:

Status Description

0 Axis not initialized

1 Stopped and ready

2 Motion imminent: waiting for start

3 Accelerating

4 At max speed.

5 Decelerating to new max speed

6 Decelerating to stop

7 Soft stop

8 Registration move (armed, not moving)

9 Home

10 Following (not used)

128-255 Error (not used)

144ax Integral Error (count-seconds), R only (not supported)

145ax Velocity Feedforward [QuickBuilder reference
=QS2_VAR_NEW_VEL_FEEDFORWARD]

146ax Deceleration (counts/sec^2) [QuickBuilder reference =
QS2_NEW_DECELERATION]

147ax Dedicated Inputs, R only:

This is a bit map of the input signals

Bit Number Description Bit Number Description

QuickMotion Reference Guide 281

Doc. No. 951-530020-010

0 (lsb) Reg. (not
supported)

4 Rev EOT

1 Home 5 Fwd EOT

2 Start 6 Z/Index (not
supported)

3 Kill 7 Not Used

148ax Acceleration Feedforward [QuickBuilder reference =
QS2_VAR_NEW_ACC_FEEDFORWARD]

149ax Analog Output, R/W - 32,767 = -10.000V; 32,767 = 10.000V, [QuickBuilder
reference = rint(dac_mv * 3.2767)]

Motion Registers Grouped by axis then function

For the 15xxx, 16xxx, 17xxx register values below substitute the axis number for ‘bx’ to get
the correct register. Axis #1 = 0; For example the position of axis #1 is stored in register
15000.

15bx0 Position (counts), R only [QuickBuilder reference = fposc]

15bx1 Error (counts), R only [QuickBuilder reference = perr * ppr * (uun/uud)]

15bx2 Velocity (counts / sec), R only [QuickBuilder reference = vel * ppr * (uun/uud)]

15bx3 Status, R only:

Value Description Value Description

0 Axis not initialized 6 Decelerating to stop

1 Stopped and ready 7 Soft stop (not used)

2 Motion imminent:
waiting for start

8 Registration move
(armed, not moving)

3 Accelerating 9 Home

4 At MAX speed 10 Following (not used)

5 Decelerating to new
MAX speed

128-
255

Error (not used)

15bx4 Integral Error (count-seconds), R only (not supported)

282

QuickBuilder™ Reference Guide

Control Technology Corp.

15bx5 Velocity Feedforward, also used to specify the Output in Direct mode [QuickBuilder
reference = QS2_VAR_NEW_VEL_FEEDFORWARD], output in direct mode not supported,
use Analog Output instead (15bx9).

15bx6 Deceleration (counts/sec^2), R only [QuickBuilder reference =
QS2_NEW_DECELERATION]

15bx7 Dedicated Inputs, R only:

This is a bit map of the input signals

Bit Number Description Bit Number Description

0 (lsb) Reg. (not
supported)

4 Rev EOT

1 Home 5 Fwd EOT

2 Start 6 Z/Index (not
supported)

3 Kill 7 Not Used

15bx8 Acceleration Feedforward [QuickBuilder reference =
QS2_VAR_NEW_ACC_FEEDFORWARD]

15bx9 Analog Output, R/W -32,767 = -10.000V; 32,767 = 10.000V [QuickBuilder reference =
rint(dac_mv * 3.2767)]. On 2219 this is read only and Velocity Feedforward is written to for
Analog Output.

16bx0 Reg. Start, R/W – Position at which the registration will be enabled [QuickBuilder
reference = QS2_CAP_WINSTART]

16bx1 Reg. Window, R/W – The range that the registration will be enabled [QuickBuilder
reference = QS2_CAP_WINEND_REL]

16bx2 Reg. Position, R only – The position at which the registration was detected, when Reg
status is 1 [QuickBuilder reference = capposc]

16bx3 Reg. Offset, R/W – The distance to be moved after the registration input [QuickBuilder
reference = QS2_CAP_WINOFFSET]

16bx4 Reg. Status, R/W – 0 = Armed (write 0 to arm), 1 = Detected, can only set to 0
[QuickBuilder reference = QS2_REG_STATUS]

16bx5 Numerator, R/W – For following the master axis [QuickBuilder reference =
QS2_VAR_MTN]

16bx6 Denominator, R/W – For following the master axis [QuickBuilder reference =
QS2_VAR_MTD]

16bx7 Leader Position, R only – Only valid when following a master axis (not supported)

16bx8 Leader Velocity, R only – Only valid when following a master axis (not supported)

16bx9 Reserved

17bx0 Firmware Revision, R only

17bx1 Filter & Mode, R/W:

QuickMotion Reference Guide 283

Doc. No. 951-530020-010

In Direct mode the Feedforward Velocity gain specifies the output value (0 to
32767) with a value of 32767 = 10V (sign depends on the Filter type).
[QuickBuilder reference = QS2_FILTER_MODE]

Description Value

Lower 3 bits
(0x07) Fil ter type

0 or 3 = PID
1 = + Direct (CW) 2 = - Direct
(CCW)
4 = PAVff 5 = PAV
6 = Stepper 7 = Initialize
Encoder Resolution

Bits 4 & 5
Accel/Decel Type

0 = Linear 1 = S Curve
2 = Parabolic 3 = Inverse

 Parabolic

Bit 7 (0x80) 0=Trajectory Following
1 (value 128) = Encoder Following

Note: Initialize Encoder Resolution, filter type 7 is only a temporary mode that can be
applied anytime there is no motion. It is recommended this be done prior to initial
motion. This can be used to override the default ppr, mppr, and sppr. Upon writing this
value the following registers will be initialized as follows, thus set accordingly prior to
execution:

ppr = QS2_VAR_NEW_VEL_FEEDFORWARD
mppr = QS2_VAR_NEW_ACC_FEEDFORWARD
sppr = QS2_NEW_DECELERATION

After changing the above variables set them back to their previous values and set the Filter
Mode to the proper mode for motion desired.

17bx2 Input Polarity, R/W:

This is a bit map that controls the active level of the input signals,. When the bit is
0 then the input is active when it is On; if the bit is 0 then the input is active Off.

Bit Number Description Bit Number Description

0 (lsb) Reg. (not
supported)

4 Rev EOT

1 Home 5 Fwd EOT

2 Start 6 Z/Index (not
supported)

3 Kill 7 Not Used

17bx3 Home Direction, R/W [QuickBuilder reference = QS2_HOME]

Direction Description

CCW 0 or –1 = Home & Index
-2 = Home Only
-3 = Index Only (not supported)

284

QuickBuilder™ Reference Guide

Control Technology Corp.

CW 1 = Home & Index
2 = Home Only
3 = Index Only (not supported)

17bx4 Options, R only (not supported)

17bx5 Reserved

17bx6 Maximum Following Error, R/W default = 30000 [QuickBuilder reference = perrlimit * ppr]]

17bx7 Speed Limit, R/W – overrides maximum velocity, default = 4194303 steps/sec (not
supported)

17bx8 Maximum Position, R/W – Used as a Software EOT when it is larger than the Minimum
Position (not supported)

17bx9 Minimum Position, R/W – Used as a Software EOT when it is smaller than the Maximum
Position (not supported)

QuickMotion Reference Guide 285

Doc. No. 951-530020-010

7.2 Quickstep Variables

Quickstep Variables Description Type

QS2_Status Axis status as defined by register 143xx. read-write

QS2_Cmd Command to be processed by the MSB,
emulates 2700 2219 module.

read-write

QS2_Overrides Override commands that can be processed by
the MSB during motion without a fault.

read-write

QS2_Holding Holding command to be processed by the MSB. read-write

QS2_Params Parameter command to be processed by the
MSB. Written once any 'VAR_NEW' variables
are updated.

read-write

QS2_VAR_NEW_ACCELERATION X value for selected debugTableRow. read-write

QS2_VAR_NEW_MAX_SPEED Y value for selected debugTableRow. read-write

QS2_VAR_NEW_PROPORTIONAL Requested new kd, processed by MSB as
required. This is also written to by the QS2
profile statement.

read-write

QS2_VAR_NEW_INTEGRAL Requested new ki, processed by MSB as
required. This is also written to by the QS2
profile statement.

read-write

QS2_VAR_NEW_DIFFERENTIAL Requested new kd, processed by MSB as
required. This is also written to by the QS2
profile statement.

read-write

QS2_VAR_NEW_VEL_FEEDFORWARD Processed by MSB application. read-write

QS2_VAR_NEW_HOLDING_MODE Processed by MSB application. read-write

QS2_VAR_NEW_DECELERATION Processed by MSB application. read-write

QS2_VAR_NEW_FORCE_POSITION Processed by MSB application. read-write

QS2_VAR_NEW_FORCE_CUMULATIVE Processed by MSB application. Not currently
used.

read-write

QS2_CAP_WINSTART Processed by MSB application. read-write

QS2_CAP_WINEND_REL Processed by MSB application. read-write

286

QuickBuilder™ Reference Guide

Control Technology Corp.

Quickstep Variables Description Type

QS2_CAP_WINOFFSET Processed by MSB application. read-write

QS2_VAR_NEW_ACC_FEEDFORWARD Processed by MSB application. read-write

QS2_HOME Processed by MSB application. read-write

QS2_VAR_MTN Processed by MSB application. read-write

QS2_VAR_MTD Processed by MSB application. read-write

QS2_LAST_CMD Last QS2_Cmd processed. read-write

QS2_CMD_CNT Number of QS2_Cmd's processed. read-write

QS2_OVERRIDE_CNT Number of override commands processed. read-write

QS2_HOLDING_CNT Number of holding commands processed. read-write

QS2_PARAM_CNT Number of parameter commands processed. read-write

QS2_MSB_STATE General scratch storage used by the MSB to
write program execution state information.

read-write

QS2_FILTER_MODE Reference register 17bx1 for mode settings. read-write

QS2_TMP1 General scratch storage used by the MSB as
needed (integer).

read-write

QS2_TMP2 General scratch storage used by the MSB as
needed (integer).

read-write

QS2_TMP3 General scratch storage used by the MSB as
needed (integer).

read-write

QS2_TMP4 General scratch storage used by the MSB as
needed (integer)

read-write

QS2_REG_STATUS Registration status, write a 0 to arm, else read a
1 if detected.

read-write

QuickMotion Reference Guide 287

Doc. No. 951-530020-010

288

QuickBuilder™ Reference Guide

Control Technology Corp.

7.3 Input Mapping (M3-40 Only)

M3-40A inputs are monitored by the QS2MSB MSB program and when executing the DIN inputs are
monitored similar to a 2219. The inputs are mapped as:

DIN1 - START
DIN2 - REGISTRATION INPUT
DIN3 - FWD LIMIT
DIN4 - REV LIMIT
DIN5 - HOME

QuickMotion Reference Guide 289

Doc. No. 951-530020-010

8 Chapter 8: Fault Codes & MSB Debugging

Should an error occur several registers contain information which can be helpful in detecting what caused
the problem. These registers exist for each axis:

Fault Variables Description Type

fault1
fault2 (not used)
fault3 (not used)
fault4 (not used)

Fault status words, reference Chapter 8. read-only

faulted 0 = no fault, 1 = faulted. read-only

faultFunction Code 0 to N which represents internal function where fault occurred.
Thus far defines as:
FGTick - 1
runMSB - 2
processMSB - 3
process_motion_command - 4
DP_MGRTask_Axis1 - 5
DP_MGRTask_Axis2 - 6
processVFC - 7

read-only

faultMSB The MSB number from 0 to 31 which has faulted. read-only

faultMSBLine The line number as referenced to source code MSB where the fault
occurred. Note that the source must be in sync with what is executing
for this to be correct.

read-only

faultMSBOffset Absolute byte offset into MSB binary opcode where was executing
when fault occurred. Internal use.

read-only

faultOpcode MSB opcode that was being executed when fault occurred. Internal use. read-only

290

QuickBuilder™ Reference Guide

Control Technology Corp.

8.1 Fault Codes

 Note that firmware prior to V1.40 (M3-40A) use outdated fault codes. Changes were made to enhance
diagnostic abilities.

Fault Codes Description Code Value

MF_NO_ERROR No error. 0

MF_GENERICFAULT Generic Motion Fault. 1

MF_INVALIDTIME Negative or Zero 'time' specified in MOVE. 2

MF_INVALIDVEL Negative or Zero 'velocity' specified in MOVE. 3

MF_INVALIDACC Negative or Zero 'acc' specified in MOVE. 4

MF_INVALIDDEC Negative or Zero 'dec' specified in MOVE. 5

MF_INVALIDRATE Negative or Zero 'rate' specified in MOVE. 6

MF_ONLYINBG QM command only allowed in BG MSB. 7

MF_MOTIONACTIVE MOVE attempted while MOVE in progress. 8

MF_UNIMPLEMENTED MOVE attempted while MOVE in progress. 9

MF_WRONGMODE In wrong mode (positioning/tracking/slewing. 10

MF_FGMSBLIMIT FG MSB limit reached. 11

MF_NOTINSLEW Not in SLEW mode. 12

MF_FOLLOWERR Following error limit reached. 13

MF_BADINPUTNO Invalid input number specified. 14

MF_NOTENABLED Not enabled. 15

MF_BADARGUMENT1 Bad argument1/parameter. 16

MF_INVALID_TBL_OP Invalid 'table' operation. 17

QuickMotion Reference Guide 291

Doc. No. 951-530020-010

Fault Codes Description Code Value

MF_NOTINTRACK Not in 'tracking' mode. 18

MF_CANTCONSUME Illegal state for 'consume'. 19

MF_SESGMOVE_ERROR 'Segmented Move' error. 20

MF_SESGMOVE_SIZE 'Segment size' error, too many. 21

MF_NOCAMFILE Requested CAM file not found. 22

MF_REMOTE_READ Read of controller register failed. 23

MF_REMOTE_WRITE Write of controller register failed. 24

MF_NOMSBFILE MSB file does not exist on flash disk. 25

MF_BADARGUMENT2 Bad argument2/parameter. 26

MF_BADARGUMENT3 Bad argument3/parameter. 27

MF_BADARGUMENT4 Bad argument4/parameter. 28

Additional EtherCAT Only Fault
Codes Description Code Value

MF_SDO_READ EtherCAT SDO read failed. Either network error
or object not supported by device.

29

MF_SDO_WRITE EtherCAT SDO write Failed. Either network error
or object not supported by device.

30

MF_DRIVE_ERR_MSG Generic drive error message. 31

MF_ECAT_OFFLINE EtherCAT is offline 32

MF_DCSYNC Execution of DCSync instruction failed. Drive
may be offline or not support objects.

33

MF_INVALID_ECAT_MODE Attempted to set a mode (cmode) the drive does
not support. Typically CSP mode is used
generically.

34

292

QuickBuilder™ Reference Guide

Control Technology Corp.

Additional EtherCAT Only Fault
Codes Description Code Value

MF_STACK_ERROR MSB instruction execution error, attempted to pop
a variable off the stack and it was not there?

35

MF_READONLY Trying to write to a read only variable. 36

MF_INVALID_TBL_OP_Y Attempted to address more tables than available on
Y axis.

37

MF_INVALID_TBL_OP_Z Attempted to address more tables than available on
Z axis.

38

MF_INVALID_TRACKING Attempted an invalid instruction while in tracking
mode. Typically beginning slew.

39

MF_TIMEOUT IncentiveECAT API:

Error occurring while waiting for in-position and
have a timeout occur.

40

MF_ERROR_NO_SERVO IncentiveECAT API:

Error occurring while attempting to read or write to
an axis that does not exist.

41

MF_ABORT_REQUESTED IncentiveECAT API:

Error occurring while executing an API command
and the user application requested an ABORT
occur, restarting the network.

42

MF_ERROR_OO_RANGE Incentive ECAT API:

Error occurring while attempting to online/offline
an invalid axis #.

43

MF_ERROR_INIT_CONFIG Incentive ECAT API:

Attempting to online an offline axis and it failed
while initializing the configuration.

44

MF_ERROR_NO_INIT Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT INIT
state.

45

MF_ERROR_NO_PREOP Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT PRE-OP
state.

46

MF_ERROR_NO_SAFEOP Incentive ECAT API: 47

QuickMotion Reference Guide 293

Doc. No. 951-530020-010

Additional EtherCAT Only Fault
Codes Description Code Value

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT SAFEOP
state.

MF_ERROR_NO_OPERATIONAL Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT
OPERATIONAL state.

48

MF_ERROR_INIT_PDO Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to initialize the PDO mapping.

49

MF_ERROR_REMAP_CONFIG Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to remap the configuration.

50

MF_ERROR_DC_RESTORE Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to restore propagation delay.

51

MF_ERROR_DC_SYNC01 Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to setup DC Sync (some drives
require DC Sync operational before the drive is
fully in the OPERATIONAL state.

52

MF_ERROR_ILLEGAL_VAL Incentive ECAT API:

Attempting to online an offline axis and it is no
longer available in the drive table.

53

MF_ERROR_NOT_ONLINE Incentive ECAT API:

Attempting to online an offline axis and it is no
longer available. Probably still offline.

54

294

QuickBuilder™ Reference Guide

Control Technology Corp.

8.2 MSB Status/Control Monitor Fault Processing

There are a number of features within QuickBuilder to enable the debugging of QuickMotion MSB's. This can be
either during normal operation or should a fault occur. A fault is indicate by a flashing FLT LED on the controller
CPU. To observe a QuickMotion fault the Status/Control monitor can be viewed:

Once the Status/Control window appears observe and click the AFS text. Note that each character represents an
axis, with the first on the far left. In the example below a 0 means the axis is OK, F that there is a fault. Below
shows a fault on axis 1 since it is 'F'.

QuickMotion Reference Guide 295

Doc. No. 951-530020-010

Once clicked detailed information about the fault will be shown, if available:

Note that the error occurred at line 6 of the source code of the FrontXCamControl MSB. In referencing that MSB
we can see the line listed, 'table 1 loadseries ram foo' as being the problem. In this case there was no camtable209
file present within the controller flash disk.:

296

QuickBuilder™ Reference Guide

Control Technology Corp.

8.3 MSB Monitor

QuickBuilder offers a MSB Monitor when online in the Editor mode.

This monitor periodically (about every second) refreshes axis information for display. Current fpos, mpos,
vel, tpos and perr are available as well as the instruction and state of MSB's that are executing. A pull
down combo box lists all available axis, that selected is what will be automatically refreshed.

QuickMotion Reference Guide 297

Doc. No. 951-530020-010

If the axis is faulted, using the example from the 'MSB Status/Control Monitor Fault Processing' section,
the following will appear:

 Note that the 'Enable MSB Monitoring' check box must be checked for monitoring to be active. Also the
Editor tab should be green to indicate online debug mode.

 Double clicking on the MSB line appearing in the list box will automatically make that code and line current in
the Editor.

298

QuickBuilder™ Reference Guide

Control Technology Corp.

In situations where a fault had not occurred multiple MSB's would appear executing, as well as their line number
and axis motion status:

QuickMotion Reference Guide 299

Doc. No. 951-530020-010

9 Appendix: Sample Code

WARNING: The following examples are offered for training purposes only and are not intended
to perform any actual real-world application or function.

// --------------- Pause Motion MSB --------------------------

/* This MSB will pause motion by moving the timebase to 0
and then back to 1 based on switch 3 position.
Note: that changes to the timebase variable only impact
the actual motion commands other MSB commands such as
delay are not altered. */

[top]

wait for rise of 3; // wait for rising edge of input3

timebase=0; // set the motion timebase to zero

wait for fall of 3; // wait for falling edge of input3

timebase=1; // put timebase back to 100%
goto top; // repeat

end;
// --------------- Jog MSB --------------------------

/* This MSB performs a simple jogging routine
The variable JogSpeed is passed to this MSB to set
the jog velocity. If switch 1 is on a positive Jog
is activated, if switch 5 is on a negative Jog is activated;
if neither 1 or 5 are on zero speed is commanded, and the
motor stops. */

JogSpeed=1; // set a default jog speed

slew begin; // witch to slewing mode

[loop]

// check the switches

if !din1 && !din5 then speed=0;

if din1 then speed = JogSpeed;

if din5 then speed = -JogSpeed;

slew at speed in 0.5; // slew to speed in .5 sec

delay 510; // wait 510 ms until at speed

if !din2 goto loop; // as long as input 2 is off loop

slew end; // return to position mode

end;

300

QuickBuilder™ Reference Guide

Control Technology Corp.

// --------------- Home via Z MSB --------------------------

// add a move to switch code here if needed

foundz = 0;
// set zdir to 1 to search in the positive dir
// set zdir to -1 to search in the negative dir
zdir = -1;

// check if we know where the Z-pulse is
if zpulse goto knownz;

// dont know where z is, so...
// move positive for +/- 2 revs looking for it
zero feedback position;
move in 0.25 for zdir*2;

[searchloop]
// a z while moving?
// check the zpulse variable (1 if a z pulse has been seen)
if zpulse goto foundmid;
// done?
if !inpos goto searchloop;
// no z, stop and quit
stop;
end;

// found a z mid move, so stop
[foundmid]
new endposition relative 0 using 10000;
wait for in position;

// move to z
[knownz]

// find the Z that is closest
if zdir > 0 goto posz;

[negz]
move in 0.125 to ZPULSE_NEG;
goto exit;

[posz]
move in 0.125 to ZPULSE_POS;
goto exit;

[exit]
wait for in position;
zero feedback position;

QuickMotion Reference Guide 301

Doc. No. 951-530020-010

foundz = 1;
end;

// --------------- Error Handler Example --------------------------

The following MSBs illustrate how an error handler can be used on a motion axis. The code for each is given
below with a brief explanation.

startMT MSB: This MSB starts the asynchronous event handler. In this case
Error_Hdlr will automatically be called whenever there is a
hardfault.

on hardfault start Error_Hdlr; //start an asynchronous event to
monitor for a hardfault error

start movetime FG; //now go do some motion

Error_Hdlr: This MSB contains the error handler code. The comment at the
end gives a listing of valid error codes

// Error handler example MSB

// Check for a fault
if fault1 == 0 goto genfault; //Generic Motion Fault
if fault1 == 1 goto invtime; //Negative or Zero 'time' specified in MOVE
if fault1 == 2 goto invvel; //Negative or Zero 'velocity' specified in
MOVE

//(etc)continue on to trap
all errors if you want

goto unknown; // If you get here there's no
known fault code

[genfault] //routine for general fault goes
here
//(put code here)

302

QuickBuilder™ Reference Guide

Control Technology Corp.

[invtime]
// Invalid Time Fault: Trigger this error by setting move time to 0 in the
movetime MSB

setout 5; //turn on output to signal error

delay 5000; // wait 5 sec

clrout 5; // turn off output 5

delay 1000; // wait 1 sec

reset; // reset all faults

delay 1000; // wait 1 sec
start movetime FG; //re-start the MSB. Hint if you don't change

the movetime
//you'll end up right back here in six seconds.

[invvel]

//(code)

[unknown]

//(code)

end;

movetime MSB: This MSB contains a simple motion routine used to trigger a

hardfault

zero feedback position;

xm=1; //default mode setting

// Do a repeating forward and back move
[top]

time=0; //reset timer

move in time2 for dist mode xm; //move forward

wait for in position;

move in time2 for -dist mode xm; //move back

wait for in position;

movetime=time; //update movetime

goto top;

QuickMotion Reference Guide 303

Doc. No. 951-530020-010

10 Appendix: Command Hyperlinks

Statements:

Utility
Set
Program Flow
Common bits and variables
I/O
Simple Motion
Gearing
Position and Capture
Loading Tables
Spline/CAM
Virtual Master
Segmented Moves
Host Register

Utility Statements:

stop { slewed using rate }

drive enable

drive disable

delay time ms

variable = expression

zero feedback position

zero target position

zero following error

reset

if condition then variable = expression

wait until condition

Set Statements:

set common bit number state

set common var number value

set loopperiod value

set mode positioning

set mode tracking

set timeout ticks

set target position value

set feedback position value

set target position counts vcounts

set feedback position counts vcounts

set simulated feedback on/off

offset position value

offset position counts vcounts

set master mode { using global }

304

QuickBuilder™ Reference Guide

Control Technology Corp.

Program Flow Statements:

[label]

start MSB mode

end { and start MSB mode }

abort MSB

goto label

if condition goto label

on asynchevent asynchhandler

Common bits and variables Statements:

set common bit number state

wait common bit number state

set common var number value

wait common var number range

I/O Statements:

setout outputlist

clrout outputlist

pulse output for n

pls output using reference definitions

pls output state

wait for transition of input { or condition }

generate output output rate freq

generate n steps on pair

variable = ctr[n]

ctr[n] = expression

ctr[n] = offset

generate alternate mode

Simple Motion Statements:

move to position { using acc, dec }

move at maxvelocity to position { using acc, dec }

move trap to position using rate

move in time to position {mode n }

move for displacement { using acc, dec }

move at maxvelocity for displacement { using acc, dec }

move trap for displacement using rate

move in time for displacement {mode n }

wait for in position

new endposition position using rate

new endposition relative displacement using rate

slew begin

slew at velocity in time

QuickMotion Reference Guide 305

Doc. No. 951-530020-010

slew for displacement

slew end

Gearing Statements:

gear at numerator : denominator

gear at numerator : denominator in counts

gear at numerator : denominator in counts after acounts

gear for slavecounts in mastercounts

gear for slavecounts in mastercounts after acounts

offset slave by slavecounts in time

wait master counts

wait slave counts

wait source within start , end

wait source outside start , end

zero masslv counters

Position and Capture Statements:

set capture transition of input input { gate input gateinput gatestate }

set capwin range start, end using reference { arm }

wait capture { if limit of limit goto limitlabel }

Loading Tables Statements:

table n clear

table n addpair xexpression , yexpression

table n addseries pairs

table n copy from rowOffset1 to table m rowOffset2 numRows

table n loadoffset rowOffsetFile, numPairs,rowOffsetTable

table n loadseries source fileNumber

Spline/CAM Statements:

table n continue

table n precompute

table n start imethod tscale , rpscale , repeatcount

table n start imethod cam mpscale , spscale , repeatcount

stop table

Virtual Master Statements:

move master at rate for limit { using ramp }

Segmented Move Statements:

segmove table clear

306

QuickBuilder™ Reference Guide

Control Technology Corp.

segmove table accdec to vel using rate

segmove table accdec to vel for displacement

segmove table slew until position

segmove table stop at position using rate

segmove table start relative

Host Register Statements:

host read variable, register {, row, column}

 host write variable, register {, row, column}

QuickBuilder PID Reference Guide 307

Doc. No. 951-530020-010

QuickBuilder PID Reference Guide

Copyright © 2004 - 2007 Control Technology Corp. All Rights Reserved.

Control Technology Corp.
25 South Street
Hopkinton, MA 01748
Phone: 508.435.9595 • Fax 508.435.2373

Document No. 951-530031-006

 WARNING: Use of CTC Controllers and software is to be done only by experienced and
qualified personnel who are responsible for the application and use of control equipment like the
CTC controllers. These individuals must satisfy themselves that all necessary steps have been
taken to assure that each application and use meets all performance and safety requirements,
including any applicable laws, regulations, codes and/or standards. The information in this
document is given as a general guide and all examples are for illustrative purposes only and are
not intended for use in the actual application of CTC product. CTC products are not designed,
sold, or marketed for use in any particular application or installation; this responsibility resides
solely with the user. CTC does not assume any responsibility or liability, intellectual or otherwise
for the use of CTC products.

The information in this document is subject to change without notice. The software described in this
document is provided under license agreement and may be used and copied only in accordance with
the terms of the license agreement. The information, drawings, and illustrations contained herein are
the property of Control Technology Corporation. No part of this manual may be reproduced or
distributed by any means, electronic or mechanical, for any purpose other than the purchaser’s
personal use, without the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware revision
levels. Some features may not be supported in earlier revisions.

See www.ctc-control.com for the availability of firmware updates or contact CTC Technical
Support.

Model Number QuickBuilder Revision Firmware Revision

5300 >=1.2.2596 >= 5.00.90

http://www.ctc-control.com

308

QuickBuilder™ Reference Guide

Control Technology Corp.

1 Chapter 1: Overview

This document details the operation of QuickBuilder’s PID object. The main purpose of this guide is to document
the PID loop object used by QuickBuilder on Blue Fusion 5300 series controllers so that experienced users can
best apply it in their applications. PID objects are set up using the QuickBuilder Automation Suite and then
downloaded to a Blue Fusion Model 5300 controller. The PID object allows the Model 5300 automation controller
to precisely control temperature, pressure, flow or even simple motion applications. (Note: for most motion
control applications, CTC recommends using a dedicated motion module such as the M3-40 series).

What is a PID loop?

The term PID stands for Proportional plus Integral and Derivative control. The PID control loop is ideal for
applications where a desired setpoint value needs to be accurately maintained by the output (known as a
“Process Variable”) of a control system even when the control system experiences load disturbances and / or
measurement noise. And, most importantly for industrial applications, a PID loop when properly tuned will
reduce the error between the setpoint and the process variable in the minimum possible time.

The PID loop does this by measuring the output of the process via some type of feedback sensor and then
calculating the difference (error) between the output and the setpoint. If an error exists, the controller tries to
minimize this error by adjusting the output to bring the process closer to the desired setpoint.

PID loops are calculated repetitively at precise intervals and are able to use the history of error information
measured during previous cycles to determine how best to adjust the output in the current cycle. The way in
which the PID loop parameters are set up will determine how the loop responds to a measured error. If the loop
parameters are set too aggressively (under damped), it may cause the process to become unstable and oscillate. If
the loop parameters are not aggressive enough (over damped), the system may require too much time to return to
the setpoint.

The following diagram shows how a basic PID loop is calculated.

QuickBuilder PID Reference Guide 309

Doc. No. 951-530020-010

As can be seen from this diagram, the aggressiveness of the output response is directly controlled by the P, I,
and D factors.

The Proportional factor gives an immediate response that is directly proportional to the error. The larger
in magnitude kp is, the greater the response to an error.

The Integral factor is the term that allows the PID loop to eliminate steady-state errors. Increasing the
value for ki will allow the error to be eliminated more quickly, but may also result in overshoot of the
desired setpoint value.

The Derivative factor gives the PID loop a “forward looking” input since it is based on the slope of the
error. A larger value for kd will reduce overshoot and settling time, but will also make the system less
responsive to short term disturbances.

Setting and adjusting the PID parameters is called tuning. While systems can be successfully tuned by trial and
error, better results are obtained by personnel experienced with both the process to be controlled and PID loop
tuning methods. For more information on tuning, see Appendix A.

310

QuickBuilder™ Reference Guide

Control Technology Corp.

2 Chapter 2: The QB PID Object

2.1 Features

The PID Object in QuickBuilder allows users to set up very sophisticated high performance PID loops on the
Model 5300 automation controller. The QB PID Object has many advantages over more simplistic PID loop
implementations. Some of the key features are outlined below:

Feature Benefit

Up to 256 PID loops / CPU The Model 5300 can tackle even the most demanding applications

Advanced PID loop equation CTC uses a state-of-the-art loop equation with more than 20 settable
parameters and multiple alarms and status outputs. This allows the QB
PID Object to solve a wide variety of applications automatically
without adding auxiliary control logic to the project.

Floating point calculations Using 64-bit floating point calculations ensures the most precise
results, yielding improved loop response.

Timing accuracy < 200
nanoseconds

Ensures quick response and fast returns to steady state conditions.

Fast loop update User settable down to 1ms, it allows the QB PID loop to be used for a
wider variety of applications.

Feature Benefit

Individually settable loop update
rates

Ability to optimize each loop independently. Also allows more control
over CPU utilization.

Loops implemented as QB objects Loops do not consume user memory, QuickStep steps, or user
variables. Loops run automatically as background tasks and do not
decrease the user task limit.

Table-driven setup Simplifies setup process. No need to code PID initialization steps.

Multiple properties Easily set up and customize PID loops for a wide variety of
applications.

Properties changeable on-the-fly Allows the QuickBuilder program to adjust loop behavior based on
external events.

Multiple status and alarm
parameters

Eliminates the need to code these items separately, saving time and
resources. Also provides faster notification.

Programmable deadband Eliminates excessive dithering around a setpoint.

Multiple modes Easily set up manual, automatic, or cascaded control loops.

QuickBuilder PID Reference Guide 311

Doc. No. 951-530020-010

2.2 PID Loop Algorithm

The actual loop algorithm used by the PID object is shown in the diagrams below. In the next section we will
explain the process of adding a PID loop to a controller. Following the setup section we will define all of the
parameters and variables shown in the PID diagram.

312

QuickBuilder™ Reference Guide

Control Technology Corp.

2.3 PID Object Setup

Adding a PID object to your QuickBuilder project is easy. PID objects are associated and linked to Model 5300
CPU processors. To add a PID loop, simply click on the controller icon in the Resources window to select the
destination controller for the PID loop.

Then go to the New menu item and add a PID Object.

At this point a new PID loop object will be added to the selected controller. The PID object should now be given
a meaningful name and then you will be ready to set up its parameters.

QuickBuilder PID Reference Guide 313

Doc. No. 951-530020-010

For this example, we will name the PID object “New_PID.” Just like the other resources in the Resource window,
when you highlight a PID Object, its properties are automatically brought up in the Properties window. The
screen capture on the following page shows the Properties window for our New_PID.

You will notice that all of the Object Properties are preloaded with default values except for resource_feedback
and resource_output. These properties must be associated with actual controller resources, and a pop-up
selection window is provided for this purpose.

314

QuickBuilder™ Reference Guide

Control Technology Corp.

The Properties window for New_PID

QuickBuilder PID Reference Guide 315

Doc. No. 951-530020-010

2.4 PID Object Properties

The following properties can be set in the Properties window of QuickBuilder. Most can also be altered in QS4
code as well through dot property notation:

pidname.property

Only items marked [REQUIRED] need be filled in. All other parameters are optional and need only be applied
where they improve or are required for the process.

· derivative_form: When this parameter is set to a non-zero value, the PID algorithm is followed by an
additional derivative. This is used when the process being controlled is self-integrating.

· error_deadband: This value controls when the loop ignores small values of error. The absolute-value
of the error is compared to the value specified. If the absolute error value is less than or equal to this
value, the error for this update is set to be zero.

· enabled: Controls whether or not the PID loop is active. When set to a zero value, the loop is effectively
disabled, since only the offset is routed to the output limiter.

· error_hilimit: Limits the maximum value of the error fed into the PID equation.

· error_lolimit: Limits the minimum value of the error fed into the PID equation.

· feedback_hilimit: Limits the maximum value of the feedback signal fed into the error calculation.

· feedback_lolimit: Limits the minimum value of the feedback signal fed into the error calculation.

· integrator_unwind_constant: A factor that determines how fast the integrator should self-discharge
when either the output is in limit or the value for ki is set to 0.

A value of 1.00 (the maximum) means that the integrator should hold its last value and not discharge in
those two cases. A value >0 but <1 discharges the integrator by multiplying the integrator by that value
each update.

· kd: Constant that determines the derivative gain.

· kff: Constant that determines the feed-forward gain. Provides improved response when the setpoint
value is changed.

· ki: Constant that determines the integral gain.

· kp: Constant that determines the proportional gain.

· manual_feedback: The value that is used in place of resource_feedback when the
use_manual_feedback parameter is set equal to a non-zero value.

· mode: Reserved for future use.

· offset: Offsets the generated output value. Can be used in conjunction with enabled to force the output
of the PID to a specific value (by setting enabled to 0 and the value to force the PID output to into the
property offset).

· output_hilimit: Limits the maximum value of the PID loop output (before output scaling).

· output_lolimit: Limits the minimum value of the PID loop output (before output scaling).

· output_scale: The PID output is multiplied by this value to get the resource_output value. Setting this
equal to -1 effectively negates the output value when required.

· resource_feedback: This is the controller resource used for feedback to the PID loop. [REQUIRED]

316

QuickBuilder™ Reference Guide

Control Technology Corp.

· resource_output: This is the controller resource connected to the scaled output of the PID loop.
[REQUIRED]

· setpoint: The desired initial value for the setpoint.

· setpoint_hilimit: Limits the maximum allowable value for the setpoint.

· setpoint_lolimit: Limits the minimum allowable value for the setpoint.

· setpoint_rate: Limits the rate at which a change in setpoint is presented to the system (/sec).

· tick_multiplier: All Model 5300 CPU modules have a settable tick rate (default tick = 50ms) that is used
to limit how fast it performs certain operations such as filtering analog I/O points. The PID update rate =
(controller tick) * (tick_multiplier).

· use_manual_feedback: If set = 0, then resource_feedback is used. If set = 1, then manual_feedback is
used.

2.5 Accessing Properties in QS4 code

The screen shot below shows dot properties for a PID object named “pid1” being accessed in the Code window
of QuickBuilder. This is a very powerful feature of the PID object that lets the application designer manipulate
most aspects of the PID loop under program control. The selection box shown below pops up automatically as
soon as the period key is pressed after typing a PID object name. Dot properties enable object properties to be
accessed directly in code. For example, pidOne.rate refers to the loop rate of the PID object named pidOne.

Note that the bubble help also tells what type of variable is used for the property: in this case setpoint is a
read/write floating point value.

The properties listed below can only be accessed in QuickBuilder code via the dot properties. They cannot be set
in the Property Window, as they are read-only values, or they are computed on-the-fly by the PID loop.

· error: Current (nth value) calculated error value after limiting and deadband.

· error0: Previously (n-1) calculated error value after limiting and deadband.

· error1: Previously (n-2) calculated error value after limiting and deadband.

· feedback: Current value of feedback (manual or resource) after limiting.

· in_error_limit: True when the error value is currently being limited.

· in_feedback_limit: True when the feedback value is currently being limited.

· in_output_limit: True when the output value is currently being limited.

· in_setpoint_limit: True when the setpoint value is currently being limited.

· integrator: The current value of the integrator (derivate-form=0 only).

· iperiod: An internal PID value used to determine the PID period.

· output: Value of the PID output after scaling and limiting.

· pcount: PID processed counter – holds the number of times the PID loop has run.

· period: the actual PID period (sec) – a computed read-only value.

· rate: the actual PID rate (Hz) – a computed read-only value.

· setpoint_rate_adjusted: The rate-adjusted setpoint value.

· subtick: PID sub tick – counts up to tick_multiplier.

QuickBuilder PID Reference Guide 317

Doc. No. 951-530020-010

Here is an example of dot properties in QS4 code:

318

QuickBuilder™ Reference Guide

Control Technology Corp.

3 Appendix A: PID Loop Tuning

The following table gives general guidelines as to the effect of changing the PID tuning gains.

This is only a general guideline, because there are interdependencies between these variables and changing one
will impact the other two.

PID Factor Rise Time Overshoot
Settling
Time

Steady State
Error

larger kp Decreases Increases Small Effect Decreases

larger ki Decreases Increases Increases Eliminates

larger kd Small Effect Decreases Decreases Small Effect

larger kff Decreases May Increase Generally
Decreases

No Effect

Tuning Response Curves

The plot above shows the system response based on three different tuning setups based on a setpoint change
from 0 to 1.

a) Critically Damped: The optimally tuned system is shown in curve (a). This system is said to be critically
damped. It does not overshoot the setpoint value and settles quickly (6 seconds) at the new setpoint value.

b) Over Damped: Curve (b) shows a system that is over damped. It does not overshoot the setpoint; however,
it takes too long to reach the desired setpoint.

QuickBuilder PID Reference Guide 319

Doc. No. 951-530020-010

c) Under Damped: Curve (c) shows a system that is under damped. It overshoots the setpoint and then
oscillates around the setpoint.

320

QuickBuilder™ Reference Guide

Control Technology Corp.

QuickScope Reference Guide

Copyright © 2004 - 2010 Control Technology Corp. All Rights Reserved.

Control Technology Corp.
25 South Street
Hopkinton, MA 01748
Phone: 508.435.9595 • Fax 508.435.2373

Document No. 951-530032-005

 WARNING: Use of CTC Controllers and software is to be done only by experienced and qualified
personnel who are responsible for the application and use of control equipment like the CTC controllers.
These individuals must satisfy themselves that all necessary steps have been taken to assure that each
application and use meets all performance and safety requirements, including any applicable laws, regulations,
codes and/or standards. The information in this document is given as a general guide and all examples are for
illustrative purposes only and are not intended for use in the actual application of CTC product. CTC
products are not designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or liability, intellectual or
otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software described in this document is
provided under license agreement and may be used and copied only in accordance with the terms of the license
agreement. The information, drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means, electronic or mechanical, for
any purpose other than the purchaser’s personal use, without the express written consent of Control Technology
Corporation. Products that are referred to in this document may be either trademarks and/or registered trademarks
of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume
no responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been
caused directly or indirectly by this document.

The information in this document is current as of the following Hardware and Firmware revision
levels. Some features may not be supported in earlier revisions.

See www.ctc-control.com for the availability of firmware updates or contact CTC Technical
Support.

http://www.ctc-control.com

QuickScope Reference Guide 321

Doc. No. 951-530020-010

1 Chapter 1: Overview

This document will introduce you to the powerful QuickScope tool available for CTC’s 5300 series controller.
QuickScope is a graphical “digital scope” and extremely useful debug tool.

322

QuickBuilder™ Reference Guide

Control Technology Corp.

2 Chapter 2: QuickScope and QuickView Features

There are two components to QuickScope.

· QuickScope (QS) captures data and displays it in a graphic format.

· QuickView (QV) displays and allows editing of data in a tabular format. This is similar to but better than
CTCMon since it doesn’t deal with registers, but with named resources.

QS & QV interrogate a running program to find out the named resources within the controller.

QS & QV will always interrogate the controller for these symbols when connecting to the controller. This means
that these named resources are “always” right – there can be no “out of sync” issues as in the old QS2 way of
using symbols.

QS & QV can be started as stand-alone applications to monitor the operation of the controller or from within
QuickBuilder.

QS Captures can be initiated manually from QuickScope or triggered from within a QuickBuilder (QS4) program

using a $TRIGGER = 1; command. Refer to the QuickBuilder QuickStart Guide for additional information.

2.1 Invoking QuickScope

QuickScope is invoked by clicking on the QuickScope icon shown below.

The rate between data captures is determined in QuickBuilder by the tick property for the controller. Any
adjustment to this rate must be translated, published, and run before the new rate will be implemented in future
captures.

QuickScope Reference Guide 323

Doc. No. 951-530020-010

The tick rate is set by selecting a controller in the resource window, and then adjusting its tick parameter. The
tick rate can be set as low as 10 ms, with a default of 50 ms.

 Note: Capturing too much data at a very fast rate may impact the performance of the application project.

The following screen appears once you invoke QuickScope:

324

QuickBuilder™ Reference Guide

Control Technology Corp.

2.2 Toolbar Summary

There is a toolbar at the top of the QS window:

1. The first drop-down button selects the controller to connect to. Controllers are auto-discovered just like they
are in WebMon 2.0. There is a menu item to add a controller for controllers that cannot be auto-discovered
(for example, remote controllers not on the same subnet).

2. The second button re-synchronizes the symbol table. At the present moment, the symbol table is only read
once when QS connects to the controller. If you change the program, you will be alerted to re-synchronize
the symbol table.

 Note: Some time in the future, this manual re-sync will no longer be necessary as QS (and QV) will

“know” that the symbol table has been modified and inform the user that it will now resync on its own.

3. The third button imports saved trace data for re-display.

4. The fourth button will produce a PDF report of the trace data in graphical form.

5. The fifth button writes the captured data as an XLS (Excel) file – not a CSV file. This allows the user to further
analyze the captured data. All named logical resources (as well as the “main” user-specified resources) are
written to the file – not the selected logical-traces.

6. The last button brings up a QuickView window for the selected controller.

2.3 Status Bar Summary

There is a status bar at the bottom of the QS window:

The Status bar allows you to:

1. Choose how many points to capture.

2. Choose how and when to capture. Immediate Capture means to capture when the capture button is

clicked. Triggered means to capture when a signal is generated by the QS4 program using this statement :

$TRIGGER = 1;

QuickScope Reference Guide 325

Doc. No. 951-530020-010

If already in a capture, re-triggers are ignored.

3. Stop the capture (when in capture mode). By clicking the Stop button, the capture is aborted and no
capture data (even partial) is returned.

4. Next to the Stop button in the lower Status bar, there is a readout that indicates the current status. Initially
when a connection is made to the controller, the tick period is displayed. This is the capture period per point
for the data capture. When capturing, there are several messages displayed here:

§ Waiting — This means that another capture is in progress (perhaps by another QS program)
and that it is waiting until that one completes.

§ Initing — This means that trace set-up data is being sent down to the controller in preparation
for a capture.

§ Capturing… — This means that the controller is recording data. A percent complete is
displayed, as it can take a while for some tick values and “# of points” to process.

§ Wait4Trig — This means that Triggered mode was selected, and the controller is waiting for
a QS4-based signal (see item 2 in this list).

§ Loading — This means that the capture is complete and QS is retrieving the captured data
points.

5. In the middle of the Status bar you will find readouts for the A and B cursor as well as the difference between
them. The A and B cursors can be moved by dragging them from their initial full-right and full-left positions.
They can be moved in either the upper or lower plot areas – they are vertically synched between the two
plots. This is a fast and accurate way to measure between two items.

6. At the far right in the Status bar there are X, Y1, and Y2 values displayed. These are used with the red
crosshairs in the lower Main trace window. These allow you to measure the value (both X & Y) for each of
the two axes of captured data.

2.4 Connecting to a controller

QuickScope should interrogate your network and find the available controllers. You can click on the Connect to
Controller icon and select the controller you want to connect to.

If you do not see the controller you want to connect to, simply select <add new> and type in the address of the
controller manually.

326

QuickBuilder™ Reference Guide

Control Technology Corp.

2.5 Setting up traces

The QS window consists of top and bottom trace areas. The top (shown below) consists of 8 “logical” trace
charts that allow you to select any of the first 64 inputs or outputs.

You can select any of the first 64 I/O to be displayed in these 8 trace windows even after a capture since the first
64 digital inputs as well as the first 64 digital outputs are always captured.

When an IO point is named (from the running QS4 program), its name will appear in the dropdown trace selector
combo box to the left of the trace as shown below.

You can also select unnamed I/O in the logical trace window by selecting its input or output channel from the
dropdown menu.

QuickScope Reference Guide 327

Doc. No. 951-530020-010

 Note: If you need to capture an IO point beyond the first 64 ins/outs, the lower Main trace combo box
selectors need to be used prior to capturing the data.

The lower Main trace (shown below) allows you to capture 8 additional resources of your choice.

 Note: Traces in the lower Main trace must be set up prior to a capture by using the 8 combo boxes to the left

of the main trace window.

You will be able to choose from all variables and named analog and digital I/O in this lower Main trace area.

The lower Main trace window allows these 8 items to be grouped in two scalings: left and right.

· If you need to capture some analog inputs (e.g., -10 to +10V), you may want to put those on the left axis
so they all have the same scale factor. Then you can use the right axis for something else, perhaps
something that is not close in value to +/-10.

· The left and right axes in the Main trace scale independently and automatically.

328

QuickBuilder™ Reference Guide

Control Technology Corp.

2.6 Capturing Data

The Controller’s tick property allows you to set the capture rate within QuickBuilder.

 Note: Data points will be captured each tick for the 128 digital I/O as well as up to 8 variables for the lower
Main trace window. Capturing this amount of data does consume processor resource and users should be careful
not to set the tick rate too low, as this could impact the step execution time of the QuickBuilder program. In
general, these effects are minimal for tick rates greater than 20 ms.

QuickScope’s Status Bar allows you to set the number of points to collect during a capture.

As mentioned in the Status bar Summary section, there are two ways to capture data:

Selecting Immediate Capture means data will be captured when the Capture button is clicked.

QuickScope Reference Guide 329

Doc. No. 951-530020-010

Selecting Triggered means data will be captured by the QS4 program when the following statement is generated:
 $TRIGGER = 1;

Once you select trigger mode, you must click on Capture in QuickScope. You will then see the following in the
Status screen:

Once your Quickbuilder code initiates the trigger ($TRIGGER = 1;), you will see the following and
QuickScope will display the captured data when it is completed:

2.7 Evaluating Data

X, Y1, and Y2 values are displayed at the far right in the Status bar. These are used with the red crosshairs in the
lower Main trace window. These allow you to measure the value (both X & Y) for each of the two axes of
captured data. Y1 will represent your left trace Y values, and Y2 will represent your right trace Y values. When X
represents time, the units will be in seconds.

330

QuickBuilder™ Reference Guide

Control Technology Corp.

2.7.1 Zoom

You can also zoom in to get a more precise X, Y reading to an area by clicking and dragging the two desired
corners of the window you would like to zoom into.

You can zoom back out by double clicking anywhere outside the lower Main trace area.

QuickScope Reference Guide 331

Doc. No. 951-530020-010

2.7.2 A and B Cursors

The A and B cursors are great for obtaining more precise information. In the example below, the trace has been
zoomed in on and the A and B cursors have been dragged and dropped to measure the time that log2 was on.
The bottom of the Status bar shows the deltaAB result as being 0.251 seconds.

 Note: When you zoom in on a chart, the yellow A and B cursor handles may not be visible. To re-align
them with edges of the current view, simply click on the A and B read out area in the Status bar.

332

QuickBuilder™ Reference Guide

Control Technology Corp.

2.8 Creating a PDF file

You can create a PDF file using the generate a PDF of the captured data icon shown below:

This will create a PDF showing traces of all named digital I/O in the upper trace area(s) and the selected traces in
the lower trace area. If you have more then 8 named digital I/O among the first 64 inputs and outputs, your PDF
will have multiple pages.

QuickScope Reference Guide 333

Doc. No. 951-530020-010

2.9 Creating an Excel Spreadsheet

You can create an Excel spreadsheet file using the save captured data as an Excel spreadsheet icon
shown below:

The format of the Excel spreadsheet created appears as follows (time is in units of seconds):

2.10 QuickView

To open QuickView, click on the open a quick view for this controller icon from QuickScope:

Notice the left side of the screen displays a list of all named resources.

334

QuickBuilder™ Reference Guide

Control Technology Corp.

Click on the resources you would like to monitor and they will be added to the right side of the screen along with
their values as shown below.

To write a value to the controller, click on the resource you want to change and then enter the new value as
shown below. Then click on the green check icon.

QuickScope Reference Guide 335

Doc. No. 951-530020-010

2.11 Multiple Windows

You can open multiple instances of QS and QV as shown below. This will allow you to track more resources and
monitor more than one controller at a time.

Control Technology Corp.336

QuickBuilder™ Reference Guide

Index
- A -
addr function 77

AnalogInput 65

AnalogOutput 65

arc sine 73

arc tangent 73

arrays 66, 69

axis module 163, 164

axis object: 65, 163, 165

statements 98

axis properties:

acc/dec 172

cmode 172, 247

driveenable 172

imposw 172

neglim/poslim 172

overnegin/overposin 172

perrlimit 172

ppr 172

tmax 172, 247

uun/uud 172

vmax 172, 247

axis setup: 171

operating modes 177

positioning 177

slewing 177

tracking 177

- B -
begin statement 59, 97

begin step 59

bit function 77

boolean operators 72

break statement 94

- C -
calculations, in expressions 72

call statement 56, 89

camming and data table commands:

loading tables 224

manipulating master position 235

manipulating tables 228

reading and writing data to/from tables 232

using data from Excel spreadsheets 234

camming and data tables: 221

cancel statement 97

clrbit statement 88

coding, in QS4 52

command outputs 148

comments, in QS4 86

common bits 191

common variables 191

constants 11, 67

continue statement 94

controller resources 65

cosine 73

- D -
decision step 59

delay statement 95

DigitalOutput 65

do statement 96

do step 57

document:

general info (QuickBuilder Reference) 7

general info (QuickMotion Reference) 145

general info (QuickScope Reference) 320

version number (QuickBuilder Reference) 7

version number (QuickMotion Reference) 145

version number (QuickScope Reference) 320

done statement 60, 98

done step 60

- E -
enable, disable (event) statements 96

encoders 148

events:

asynchronous 54

definition of, in QS4 54

parallel 54

expressions:

- 72

! 72

!= 72

% 72

Index 337

Doc. No. 951-530020-010

expressions:

& 72

&& 72

* 72

/ 72

 ̂ 72

| 72

|| 72

~ 72

+ 72

< 72

<< 72

<= 72

== 72

> 72

>= 72

>> 72

addition 72

binary - 72

binary + 72

boolean constant 72

division 72

logical-and 72

logical-or 72

modulus 72

multiplication 72

pi 72

remainder 72

subtraction 72

unary - 72

unary + 72

- F -
Fault Codes:

Codes, EtherCAT 291, 292, 293

Codes, General 290, 291

MF_ABORT_REQUESTED 292

MF_BADARGUMENT1 290

MF_BADARGUMENT2 291

MF_BADARGUMENT3 291

MF_BADARGUMENT4 291

MF_BADINPUTNO 290

MF_CANTCONSUME 291

MF_DCSYNC 291

MF_DRIVE_ERR_MSG 291

MF_ECAT_OFFLINE 291

MF_ERROR_DC_RESTORE 293

MF_ERROR_DC_SYNC01 293

MF_ERROR_ILLEGAL_VAL 293

MF_ERROR_INIT_CONFIG 292

MF_ERROR_INIT_PDO 293

MF_ERROR_NO_INIT 292

MF_ERROR_NO_OPERATIONAL 293

MF_ERROR_NO_PREOP 292

MF_ERROR_NO_SAFEOP 292

MF_ERROR_NO_SERVO 292

MF_ERROR_NOT_ONLINE 293

MF_ERROR_OO_RANGE 292

MF_ERROR_REMAP_CONFIG 293

MF_FGMSBLIMIT 290

MF_FOLLOWERR 290

MF_GENERICFAULT 290

MF_INVALID_ECAT_MODE 291

MF_INVALID_TBL_OP 290

MF_INVALID_TBL_OP_Y 292

MF_INVALID_TBL_OP_Z 292

MF_INVALID_TRACKING 292

MF_INVALIDACC 290

MF_INVALIDDEC 290

MF_INVALIDRATE 290

MF_INVALIDTIME 290

MF_INVALIDVEL 290

MF_MOTIONACTIVE 290

MF_NO_ERROR 290

MF_NOCAMFILE 291

MF_NOMSBFILE 291

MF_NOTENABLED 290

MF_NOTINSLEW 290

MF_NOTINTRACK 291

MF_ONLYINBG 290

MF_READONLY 292

MF_REMOTE_READ 291

MF_REMOTE_WRITE 291

MF_SDO_READ 291

MF_SDO_WRITE 291

MF_SESGMOVE_ERROR 291

MF_SESGMOVE_SIZE 291

MF_STACK_ERROR 292

MF_TIMEOUT 292

MF_UNIMPLEMENTED 290

MF_WRONGMODE 290

flags, in QS2 88

flowcharting, in QS4 52, 56

for statement 93

function 56

Control Technology Corp.338

QuickBuilder™ Reference Guide

function definition 56

- G -
global definitions 11

goto next statement 89, 90

goto statement 57, 89, 90

- H -
hyperbolic 73

- I -
icons used in this manual 147

icons, in QuickBuilder toolbar 53

if/then/else statement 90

indirect variables 69

indirection 69, 77

interpolation, for splines and CAM tables:

cubic 221

linear 221

quadratic 221

isdone function 77

- K -
knots 221

- L -
local definitions 11

local variables 54

- M -
M3-40A servo module: 147, 150, 152, 164

LED mapping 155

pinouts 155

M3-40B stepper module:

LED mapping 156

pinouts 156

M3-40C stepper module:

LED mapping 157

pinouts 157

M3-40D servo module 147

mathematical operations 72

MF_ERROR_DC_RESTORE 290

Model 5300 controller 150, 159, 168

monitor statement (QS2) 95

motion control programming: 179, 184, 194, 202,
212, 216

and QuickStep 177

operators 178

motion control:

getting started 171

statements 98, 167

tuning 173, 174, 175

tuning wizard 173, 174, 175

motion sequence blocks (MSBs): 61, 150, 162,
163, 177

and QuickStep 245

background MSBs 166, 167

foreground MSBs 166, 167

sample code 299

variables 245, 247

- N -
non-scalar variables (arrays) 69

numeric assignment statement 86

numerical functions 73

NVariable 65, 66

- P -
PID:

definition 308

diagram 308

loop 308

theory 308

variables 308

positioning mode 177

programmable limit switch (PLS) 152

programming:

branching 90, 95

jump (goto) 89

looping 92, 93

structure 52

- Q -
QS2 (QuickStep2): 8

Index 339

Doc. No. 951-530020-010

QS2 (QuickStep2): 8

differences from QS4 52, 88, 90

QS4 (QuickStep4): 8, 52, 159, 161, 245

begin step 59

color codes, for text 86

decision step 59

do step 57

done step 60

flow 56

function definition 56

hardware compatibility 147

max tasks 71

motion control statements 167

shortcut keys 141

start statement 167

steps 56

stop statement 167

task definition 54

transitions 56, 95

QS4 system variables:

$CBITS 79, 82

$CVARS 79, 82

$DINPUTS 79, 80

$DOUTPUTS 79, 80

$REGISTERS 79, 81

$TASKTIMER 79

$TRIGGER 79, 81

QuickBuilder 8, 159, 160

QuickBuilder PID:

features 310

PID loop algorithm 311

PID object 312

PID object, properties 315, 316

PID tuning 318

QuickMotion 159

QuickMotion commands:

abort 185

asynchronous event handling 186

clrout 194

counter = expression, offset 199

counter read, write, offset 199

delay 180

drive disable 180

drive enable 180

end 185

gear at (ratio) 212

gear at (ratio, counts) 212

gear for (slavecounts, mastercounts) 213

generate alternate mode (alternate/standard pins)
 200

generate output rate (pulse) 197

generate steps on (step/direction) 198

goto 185

host read 277

host write 278

if/goto 186

if/then 182

move at (maxvelocity) for (displacement;
trapezoidal) 205

move at (maxvelocity) to (position; trapezoidal)
203

move for (displacement; triangular) 205

move in (time) for (displacement; trapezoidal)
206

move in (time) to (position; trapezoidal) 204

move master at 235

move to (position; triangular) 202

move trap for (displacement; trapezoidal) 206

move trap to (position; trapezoidal) 203

new endposition (position or displacement) 207

offset position 189

offset slave (position) 213

on 186

pls (output) on/off 196

pls (output) using 195

pulse (output) for 195

reset 182

segmove <n> accdec...rate 238

segmove <table> accdec...disp 239

segmove <table> clear 238

segmove <table> slew 239

segmove <table> start relative 240

segmove <table> stop 239

set capture (registration input) 216

set capwin range (start, end) 216

set common bit 192

set common var 193

set feedback position 189

set loopperiod 188

set master source 190

set mode positioning 188

set mode tracking 189

set simulated feedback 189

set target position 189

set timeout 180

setout 194

slew begin 209

Control Technology Corp.340

QuickBuilder™ Reference Guide

QuickMotion commands:

slew end 210

slew for (displacement) 210

start 184

statement 184

stop 179

stop table 231

table <n> addpair 224

table <n> addseries 225

table <n> clear 224

table <n> continue 228

table <n> copy 225

table <n> loadoffset 226

table <n> loadseries 226

table <n> precompute 228

table <n> start <imethod> <tscale>... 229

table <n> start <imethod> cam... 230

variable assignment (to expression) 181

wait capture (registration input) 217

wait common bit 193

wait for (transition) of (input) 197

wait for common var 193

wait for in position 207

wait master (counts) 213

wait outside (position range) 214

wait slave (counts) 213

wait until 183

wait within (position range) 214

zero (master/slave) counters 214

zero feedback position 181

zero following error 181

zero target position 181

QuickMotion programming:

gearing statements 212

I/O statements 194

operators 178

position capture and queue statements 216

program flow statements 184

simple motion statements 202

utility statements 179

QuickMotion variables:

_highBW 254

_inertia 254

_wn 254

_zeta 254

acc 251

accVector 274

accX 274

accY 274

accZ 274

activeBG_MSBs 269

activeCAM_row 248

activeFG_MSBs 269

aff 254

angle 274

angleStart 274

angleSweep 275

antibackup 261

axisnum 248

axisptr 270

axisY 275

axisZ 275

camming_invertend 256

camRequest 248

capArmed 267

capEdge 267

capGate 267

capGateState 268

capInput 268

capLimit 268

capLimitflag 268

capMod 268

capOffset 268

cappos 268

capposc 268

capStatus 268

capTriggered 268

capWait 268

capwaitBranch 268

capwinEnd 268

capwinStart 268

capwinType 268

cmode 251

ctr# 259

debugTable 233, 269, 289

debugTableRow 233, 269, 289

debugTableRows 233, 269, 289

debugTableX 233, 269, 289

debugTableY 233, 269, 289

dec 251

decVector 275

decX 275

decY 275

decZ 275

dim_factor_denom 270

dim_factor_num 270

Index 341

Doc. No. 951-530020-010

QuickMotion variables:

din# 259

dins 260

dout# 259

douts 260

driveenable 260

dwSlaveID 270

eCAT_driveType 270

eCAT_manufID 271

eCAT_productCode 271

enabled 248

encoder_mode 251

encoderZ 256

encoderZ3 256

fault# 248, 289

faulted 248, 289

fpos 256

fposc 256

global_flag# 260

global_inputs 260

global_outputs 260

global_reg# 260

gratio 256

gtimebase 251

homing_speed1 252

homing_speed2 252

inpos 248

inpos_t 252

inpos_w 252

inposw 256

invel_t 252

invel_w 252

invertcmd 256

invertfeed 256

invertmaster 256

jerk_a 252

jerk_a_req 252

jerk_d 253

jerk_d_req 252

kd 255

kfilt 255

kgain 255

ki 255

kv 255

kvf 255

last_ALStatusCode 269

last_errorCode 269

last_errorRegister 269

last_errorType 269

lastOverall 269

loopperiod 269

looprate 269

magnitude 275

master_feedback 261

maxLoopTime 270

maxOverall 270

mcinv 262

mdelta# 262

minLoopTime 270

minOverall 270

mmc 263

move_master_counts 264

move_master_ramp 264

move_master_rate 265

move_master_rate_target 264

mpgai 265

mpgfi 265

mposc 263

mposc# 263

mppr 257

msource 268

neglim 257

newvel 253

nonvolatile 255

overflowFlag 270

overneg 248

overnegin 260

overpos 248

overposin 260

overtrq 248

pdead 255

perr 257

perrlimit 257

pff 255

poslim 257

ppg 255

ppr 257

pstate 248

qs_decel_time 271

QS2_CAP_WINEND_REL 285

QS2_CAP_WINOFFSET 286

QS2_CAP_WINSTART 285

QS2_Cmd 285

QS2_CMD_CNT 286

QS2_FILTER_MODE 286

QS2_Holding 285

Control Technology Corp.342

QuickBuilder™ Reference Guide

QuickMotion variables:

QS2_HOLDING_CNT 286

QS2_HOME 286

QS2_LAST_CMD 286

QS2_MSB_STATE 286

QS2_OVERRIDE_CNT 286

QS2_Overrides 285

QS2_PARAM_CNT 286

QS2_Params 285

QS2_REG_STATUS 286

QS2_Status 285

QS2_TMP1 286

QS2_TMP2 286

QS2_TMP3 286

QS2_TMP4 286

QS2_VAR_MTD 286

QS2_VAR_MTN 286

QS2_VAR_NEW_ACC_FEEDFORWARD 286

QS2_VAR_NEW_ACCELERATION 285

QS2_VAR_NEW_DECELERATION 285

QS2_VAR_NEW_DIFFERENTIAL 285

QS2_VAR_NEW_FORCE_CUMULATIVE 285

QS2_VAR_NEW_FORCE_POSITION 285

QS2_VAR_NEW_HOLDING_MODE 285

QS2_VAR_NEW_INTEGRAL 285

QS2_VAR_NEW_MAX_SPEED 285

QS2_VAR_NEW_PROPORTIONAL 285

QS2_VAR_NEW_VEL_FEEDFORWARD 285

radius 275

RFID_address 272

RFID_bytesTotal 273

RFID_bytesTransferred 274

RFID_channel 271

RFID_control 273

RFID_controlActive 273

RFID_count 273

RFID_data_readh 272

RFID_data_readl 272

RFID_data_writeh 273

RFID_data_writel 272

RFID_error 272

RFID_index 272

RFID_lasttagIDh 274

RFID_lasttagIDl 274

RFID_state 271

RFID_status 273

RFID_tagIDh 274

RFID_tagIDl 274

RFID_totalChannels 271

running 261

runv 257

scanning 270

sdc 265

settling 257

sfmod 257

sfpos 257

sfposc 257

sign 257

smark 265

smarkfall 266

smarkrise 265

smod 265

smodc 265

spgai 265

spgfi 265

sphase 266

sppr 253

stepsout 257

stoprate 253

substep 257

theta 253

time 250, 253

timebase 253

tlim 253

tmax 253

tmc1 266

tmc2 266

tmodc 266

touchProbeStatus 250

tpos 258

tposc 258

tr 258

tracking_pstate 250

tracking_sign 267

tracking_status 267

tracking_tpos 267

tracking_tposc 267

trqc 258

tsc1 266

tsc1fall 266

tsc1rise 266

tsc2 266

tsc2fall 267

tsc2rise 266

units_ratio 258

uud 258

Index 343

Doc. No. 951-530020-010

QuickMotion variables:

uun 258

vcmd 258

vectorY 275

vectorZ 275

vel 258

vel_accel_time 271

vel_decel_time 271

velVector 276

velX 276

velY 276

velZ 276

verr 259

vff 255

vmax 254

vmdelta 267

vmin 271

wControlWord 270

wStatus 270

zfpos 259

zpulse 250

ZPULSE_NEG 259

ZPULSE_POS 259

ztheta 254

ztpos 259

QuickScope traces:

set-up 326

windows 326

QuickScope:

A and B cursors 331

controller, connecting to 325

data collection rate 322, 328

features 322

immediate capture 324

invoking 322

multiple windows 335

overview 321

pdf creation 332

performance 322

reading data 329

status bar 324

tick rate 322, 328

toolbar 324

triggered capture 324

xls (Excel) creation 333

zoom feature 330

QuickStep 8

QuickView: 322, 333

multiple windows 335

- R -
registration inputs 155

repeat/until statement 92

Resource Manager (RM): 8, 39, 66, 150

specifications and max limits 11

resource types 65

resources 65

return statement 89

- S -
scalars 66

servo drives 148

servo motors 148

servo operating modes:

positioning 177

slewing 177

tracking 177

set statement 88

setbit statement 88

SFC (sequential function chart) 8, 53

sine 73

slew at (velocity, time) 209

slewing mode 177

splines 221

square root 73

stack overflow, cause 89

start task 54

statements: 86

assignment (numeric) 86

assignment (string) 87

begin 97

break 94

call, return 89

cancel 97

continue 94

delay 95

do 96

done 98

enable, disable (event) 96

for 93

goto 89, 90

goto next 90

if/then/else 90

Control Technology Corp.344

QuickBuilder™ Reference Guide

statements: 86

monitor (QS2) 95

repeat/until 92

set 88

setbit, clrbit 88

start 98

stop 98

store 88

when 95

while 92

stepper drives 149

stepper motors 149

steps 56, 71, 86

store statement 88

string assignment statement 87

string function 76

strings 76, 87

symbolic names 65

symbols used in this manual 147

syntax 86

- T -
tables 66

tangent 73

tasks:

construct 54

definition 54

limit 71

parameters 54

text 76

toolbar 53

tracking mode 177

transitions 56, 95

trig functions 73

- V -
Variables, Pre-defined:

Capture Variables 267

Control Variables 251, 252, 253, 254

Diagnostic Variables 233, 269

Fault Variables 289

Feedback Variables 256, 257, 258, 259

IO and Register Variables 259, 260, 261

Quickstep Variables 285, 286

RFID Variables 271, 272, 273, 274

Setup Variables 270, 271

Status Variables 248, 249, 250

Tracking Variables 261, 262, 263, 264, 265,
266, 267

Tuning Variables 254, 255, 256

Vector Variables 274, 275, 276

variables: 66

non-volatile 65

resources 65

volatile 65

vector 66

- W -
when statement 95

while statement 92

	QuickBuilder Reference Guide
	Chapter 1: QuickBuilder Overview
	Target Systems
	QuickBuilder projects
	Resource Manager (RM)
	SFC Window
	Step Editor & Assistant
	Task Editor
	Translation
	Modes
	Target Platforms
	Program Download
	Reserved Words

	Debugger Mode
	Watch Windows
	Online Variable Monitoring
	Online Status & Control Monitor/Debugger
	Breakpoints
	MSB Status/Control Monitor Fault Processing
	MSB Monitor

	Project Manager
	FTP Explorer
	Global and Local Resources
	Intelligent Prompting
	Tech Tips

	Chapter 2: Library Manager
	Creating a Library

	Chapter 3: QuickStep 4 (QS4)
	QS4 SFC Graphical Constructs
	SFC Diagram
	QS4 Task Definition
	QS4 Event Definition
	QS4 Function Definition
	QS4 Step
	QS4 Goto
	QS4 Do Step
	QS4 Begin Step
	QS4 Decision Step
	QS4 Done Step
	QS4 'C' Step
	Motion Overview & Sequence Blocks

	QS4 Resources
	Symbolic Names and Resources
	Resource Declarations
	Vector and Table Declarations (Arrays)
	Constants & Literals
	Indirect Variables
	Tasks and Steps

	QS4 Functions and Expressions
	Expressions
	Numerical Functions
	String Functions
	Bit Functions
	Special Functions

	QS4 System Variables
	$TASKTIMER
	$DINPUTS[]
	$DOUTPUTS[]
	$REGISTERS[]
	$TRIGGER
	$CBITS[]
	$CVARS[]
	$TASKPRIORITY
	$CURRENT_TASKPRIORITYLEVEL
	$TASKHANDLE

	MSB System Variables
	QS4 Statements
	QS4 Statement syntax
	QS4 Editor Color Codes
	Assignment (numeric)
	Assignment (string)
	Store
	Set
	Setbit, Clrbit
	Goto
	Call, Return
	If/Then/Else
	While
	Repeat/Until
	For
	Break
	Continue
	Delay
	Timeout
	When
	Enable, Disable (Event)
	Do
	Begin
	Cancel
	Done
	Start
	Stop
	Soft Counters
	Rotate, Shift Flags

	Chapter 4: Importing QuickStep 2/3 Projects
	Datatables
	Motion Control
	Variables
	Soft Counters
	Reserved Words Error Search
	Importing

	Chapter 5: BACnet/IP
	BACnet Volatile Tables
	BACnet System Variables
	BACnet Explorer

	Chapter 6: EtherCAT Explorer
	Status Window
	Properties
	Log Buffer Timings
	User Options

	Chapter 7: Windows 7 and 10 Support
	Appendix A: Shortcut Keys
	Appendix B: Known Anomolies & Warnings
	Appendix C: Training

	QuickMotion Reference Guide
	Chapter 1: Introduction and Overview
	Guide to Symbols
	Brief Overview of Motion Control
	Servo Motor Applications
	Stepper Motor Applications

	Brief Overview of M3-40/41 Motion Module Features
	M3-40 & M3-41/IncentiveECAT Motion Module Features
	Special M3-40 I/O Functions
	Drives & M3-41 IO
	QuickBuilder Motion Control Features
	IO Assignments
	IO Assignments - M3-40A
	IO Assignments - M3-40B
	IO Assignments - M3-40C
	IO Assignments - M3-41A

	Chapter 2: Motion Architecture
	QuickBuilder
	QuickStep
	QuickMotion
	Adding Motion to the 5300/Incentive Application
	The Axis Module
	The Axis Object
	The Motion Sequence Block

	Controlling Motion from QuickStep
	QS4 start Statement
	QS4 stop Statement
	Motion Architecture Summary Diagram

	Chapter 3: QuickMotion Axis Setup
	Axis Properties
	Basic Tuning
	Fine Tuning

	Tuning an axis (5300 M3-40 Only)

	Chapter 4: QuickMotion Programming
	Operating Modes
	Expressions
	Utility Statements
	Program Flow Statements
	Set Statements
	Common bits and variables
	I/O Statements
	Simple Motion
	Gearing
	Position Capture & Registration
	S-Curve
	Linear and Circular Interpolation (Vectors)

	Chapter 5: Camming and Data Tables
	Loading Tables
	Using Tables for Spline/CAM
	Accessing Table Data
	Diagnosing Table Issues

	Microsoft Excel as Table Data
	Virtual Master
	Broadcasting (M3-40 only)

	Segmented Moves and Examples
	Concept
	Commands
	Examples

	Chapter 6: Motion Variables
	QuickMotion User-defined Variables
	QuickMotion Pre-defined Variables
	Host Register Access

	Chapter 7: Quickstep Support
	Registers
	Quickstep Variables
	Input Mapping (M3-40 Only)

	Chapter 8: Fault Codes & MSB Debugging
	Fault Codes
	MSB Status/Control Monitor Fault Processing
	MSB Monitor

	Appendix: Sample Code
	Appendix: Command Hyperlinks

	QuickBuilder PID Reference Guide
	Chapter 1: Overview
	Chapter 2: The QB PID Object
	Features
	PID Loop Algorithm
	PID Object Setup
	PID Object Properties
	Accessing Properties in QS4 code

	Appendix A: PID Loop Tuning

	QuickScope Reference Guide
	Chapter 1: Overview
	Chapter 2: QuickScope and QuickView Features
	Invoking QuickScope
	Toolbar Summary
	Status Bar Summary
	Connecting to a controller
	Setting up traces
	Capturing Data
	Evaluating Data
	Zoom
	A and B Cursors

	Creating a PDF file
	Creating an Excel Spreadsheet
	QuickView
	Multiple Windows

