@tc

Control Technology Corp.

CONTROL TECHNOLOGY CORPORATION

Model 5300 Communications & Logging Guide

Model 5300
Communications &
Logging Guide

Model 5300 Communications & Logging Guide

((: Control Technology Corporation
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

A WARNING: Use of CTC Controllers and software is to be done only by
experienced and qualified personnel who are responsible for the application and use
of control equipment like the CTC controllers. These individuals must satisfy
themselves that all necessary steps have been taken to assure that each application
and use meets all performance and safety requirements, including any applicable
laws, regulations, codes and/or standards. The information in this document is given
as a general guide and all examples are for illustrative purposes only and are not
intended for use in the actual application of CTC product. CTC products are not
designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or
liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software
described in this document is provided under license agreement and may be used and
copied only in accordance with the terms of the license agreement. The information,
drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means,
electronic or mechanical, for any purpose other than the purchaser’s personal use, without
the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware
revision levels. Some features may not be supported in earlier revisions. See www.ctc-
control.com for the availability of firmware updates or contact CTC Technical Support.

Model Number Hardware Revision | Firmware Revision
5300 All Revisions >=5.00.90R69.44
((: Control Technology Corporation 3

Document 951-530002-0013 01/15

http://www.ctc-control.com/
http://www.ctc-control.com/

Model 5300 Communications & Logging Guide

TABLE OF CONTENTS

[1] COMMUNICALIONS SUMIMEIYeiuiiiiieiieriesie sttt 9
[2] Serial CoOMMUNICALIONSccveiveiieiieie e es 11
Port Settings Via REGISTEISoiiiiiiiie e 11
Port Settings Via WEDIMONcoiiiiiice e 13
[3] Networking COMMUNICALIONSooueiiiiiiriiiiieieiee e 17
(O I N SRS P PR PRPRR 17
6] S SRPR 17
LI OSSOSO 17
Configuring a CTNet Node uSiNg REGISTEISccveiviiieiiriiiiieiieiee e 18
Configuring IP Addresses USING REJISLENSccveiuviieiieiecie e 18
Configuring the IP address automatically with DHCPcccccooiiiiiiiiiiiine 19
Setting the Controller’s DNS Name via Telnetcccccvviiiiiiniiiiiiciec 20
Communicating to the Controller USINg CTNEt ... 20
Network Configuration via WebMONccccoiiiiiiiiiicc e 21
EthErNet SEEHINGS .. .oveiiiieiee e 21
[4] ASCII Computer/Terminal ProtoColcccoviiiiiieii i 25
ASCI ComMPULET ProtOCOL........couiiiiiiiiiieiere e 25
ASCIH Terminal ProtOCOL........cooviiiiiiee et 26
ASCI ProtoCol COMMANGScoouveiiiieieeie e sree e 27
Initiate COMPULET MOUE:cvviieieieee e 27
Initiate terminal MOUE:vi i e 27
Read @ COUNTEI/TEQISIEN:iiieeiecie e nas 27
WIIte & COUNTEIITEQISTEI: ..ottt 28
RetUrNed EFrOr MESSAQESveeviirieitieieeiesteete ettt teete e steesre e ste e sneennas 28
[5] TCP/IP RAW SOCKELS ...ttt 29
QLI O 1 11T 1| OSSPSR 29
LGS RS- AV TSP 31
Lantronix CoBox/Xpress interface EXample ... 31
[6] UDP Peer to Peer ProtoCOl OVEIVIEWcveieieiiiiieiie et 33
Peer-to-Peer ProtoCol REGISIENSccuviiiiciie ettt 33
Registers 21000-21299cooiiiiiieie ettt res 34
Initiating @ Peer t0 PEEI SESSION.......cccviiiii et 36
[7] MOTDUS ...t bbb 39
Modbus Slave RTU TCP & RTU/ASCII Serialcccccooiiiiiiiiieeeeeeee e 39
Modbus Slave Serial RTU/ASCI.......cooiiieieececeee e 50
Modbus Master TCP RTU & Serial RTU/ASCII ..o 51
Registers 21000-21299cooiiieiiie ettt eres 52
Example: Modbus TCP & RTU Serial Master Initialization...............ccccccoveviveinnne 55
Modbus TCP Master Sample Program ... 55
Modbus RTU Serial Master Sample Programccccocceveeieninnieneniieseenie e 56
Modbus RTU Serial Master Multidrop QuickBuilder Initialization..................... 58
Testing with Win-Tech’s ModSim32cccooiiiiiiiiiiin e 60

((: Control Technology Corporation 4

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

[8] SNTP Simple Network Time ProtoCol..........ccoveieiiiiiiiiiiieceeeee e 67
SNTP Register Configurationcccocoeiieiiiiie e 67
SNTP WebMON CONFIQUIALIONcuoiiiiiiiiiieiieieeeie e 68

[O] SMITP e bbbt b bttt et et bbb r e nes 71
REGISTET ACCESS ...ttt bbbt bbbttt b ettt b e b 71
Creating Emails using WEBIMONc.ccooeiiiiiiieie e 72

Tree View, LOCAl/CONIIOIIEEocveiieiciee e 72
Creating/Editing New Email Template.........ccccovveveiieiieie e 73
Deleting EmMail TEMPIALEc.oooviiiiiiiieiiieeee e 75
Creating Emails using ASCIH Text EdItOrccccceiviiiiieiecc e 75
SMTP EMail DIagNOSTICS.c.eeviiiiiiiinieiiisie sttt 78

[LOT POP3... ettt bbbt b bt e st et bbb enneenes 80
Mail Inbox Server CoONFIQUIALION...........cc.oiiriiiiieieee e 80
EMail FOrMATINGocvviiieeie sttt 82

LT (0] I (=T To =] OSSR 82
ASCH TEXE EMAIIS....cuiiiiiiiiiiesieee et sbe e 83
Microsoft Outlook Plain Text, Individual BasSiS.........cccceeveviieiiiciiee e, 84
Microsoft Outlook Plain Text, Default for All ... 87
Sample Email and RESPONSE.........coiiiiiiiiieiciee e 88
Microsoft Exchange 2000 SETUD........ccveiuiiieiieie et 91

[L1] DINS SUPPOIT ...ttt ettt bbbttt bbb 94
DNS and the Model 5300coveieiiiiiiiiesee e e 95

[12] Quickstep & QuickBuilder SYmbOIS.cooviiiiiiiiee 96
Quickstep SYmbol Table.......cc.ooviiieccec e 96
Quickstep HMI COMMUNICALIONSocuiiiiiieiiieiiiieieie st 97
QuickBuilder Symbol Tableccoooiiiieeee e 98
QuickBuilder HMI COMMUNICALIONS........coiieieaieiieieeiesieese e seee e enee e neas 100

[13] Fault Task HaNAIENcoiiieiieie et 102
FAUIT COUBS ...ttt ettt et e st e s re e aeeneesneesteeneeeneenneennens 104
Fault Task Handler EXamMPIec.oooviiiiiiic e 105

[14] FOrmatted MESSAGINGeeueeieierieriesiesiesieeieei ettt bbb nb e 108
Message.ini Extended FOrMALSccoiieiiiiiiece e 109

[15] Network Performance AdJUSTMENTScoiiiiiriienieieriese e 111

[16] DAta LOGUING ...ccvieiuieiiieiie et siee ettt e e et e e e b e e sbeesbeeenreenree e 114
L0gging CoNtroller SEIUPcveveiiiieiesieeese et 114

Virtual DIreCtory Creationc..civeiiie it 114
Logging Record Format and OPerationccccoveieienenineninieieeee e 115
LOGANT FOIMAL ... e e aneas 117
LOog FOrmat EXAMPIEc.ooiiiiie s 118
SNAPSHOT ...ttt sttt s s et e et e stesbeareereene e 119
LOG FIlE DEIBTION ...t 119
LOQ DiSK MaINtENANCEveevieiieeciie ettt ae et e re e e beeaneas 119

[L7] FTP CHIENE .ottt benreeneeneenes 123
S ettt e R et E e e R e e bt e be e et e e nae e e beearneereeas 123
COIMMEANTS ...ttt b bbbt et et b bbb e ene e 135
TeINEt EITOr COUBSottt nb e 137

((: Control Technology Corporation 5

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

[18] AQVANCEA SCIIPLINGeveeieeiieieie ittt 139
DAt TADIE ... bbb 140
load datatable [Variant regnum] [filename]........c.ccoiiiiiiniiiii 140
save datatable [Variant regnum] [filename]cccooveviiiiiiie i 140
DIAGNOSTICS. ... ettt bbbttt bbb 141
disktest 1 [file size] [block size] [/path/file]ccooveeiieiiiiee e, 141
disktest 2 [file size] [block size] [/path/file] ... 141

(O T od) (-] ISR 141
ENADIE QUICKSTEPZ ... 141
diSADIE QUICKSTEPZecviceiecieeie ettt snaenas 141
FIIE SYSTBM. ..t ne s 142
set close nvariant [Variant #]"coov i 142
Set 10gPath [PAtN].........ooiiiiiiee s 142
set scriptspath [Path]ccooveiie 143
set nvariantpath [Path].........ccoooii s 143
set emailspath [Path]ccooveiiii e 143
set Webpath [Path] ... 143
set firmwarepath [Path]cccoovoiiiiiee e 143
set programspath [Path].........ccooiiiii s 143
set datatablespath [path]..........cccoeiiiiiei e 143
copy [source path/file] [destination path/file]..........cccooiiiiiiiis 144
1] T o SO ROSPUTPRPRPR 144
MON TS INIT ..t e e e sreeeeeneesreenee s 144
MON TS TN Lttt et reene s 144
0] 1 SN LSRR 144
MON TEDOOT ...ttt ettt ettt sbennenneas 144
MISCEITANEOUS ...ttt e e steeneeeneenneenne s 144
get vproperties [Variant #]cocooveieeieiecce e 144
printf [format StrING. .. .cooooeeiieee 144
Clear Startup PrOJECE........cviiieie ettt e nas 145
0= o] (0] [T o P U TR P TP PRUTPURPRPRORON 145
get project info [Project file]c.ooveireiieeee e 145
GEL STAMTUD PIOJECT. ... viieieiieiieieee ettt bbbttt bbb 145
run project [opt. Project file]coveiiiiiiii 145
set startup project [opt. Project file] ... 145
AdVANCEA COMMANGSoveiiiiie ettt eeene e 145
INC SREGISIEIS ...ttt r e e areens 145
=IO B =T] (=] USSP 145

If <Resource> <Logic> <Resource> goto <Label>ccccoonvviiiiinniiin 146
TKLADEIS ... e 146
Onerror <optional error mask> goto <Label>ccccooiiiiiiiiiis 146
GOtO SLADEIS ... s 146
3o SRS 146
Delay <Register or constant — millisSeconds>ccooeiiiiiiiniinin e 146
Alarm <TIME=HH:MM:SS> <optional day of week, DOW=Mon...>................. 147
ERRORCODE ..ottt sttt ettt nne e 147

((: Control Technology Corporation 6

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

SCIIPE EXAMPIE ..o 149
[19] CTNet Binary Protocol (Server INterface)cccvvveiviieiieiieie e 151
BINArY PrOtOCOLeiiiieieiee et 152
ProtoCOl FramiNgccveiiiiiciece e a e re e e 152
Binary Protocol Error RESPONSES...........ciiiiiieiiieieniesie s 154
Binary Protocol COMMANUS...........cccueiieiiiieiieeeie e 154
VaAITANT PACKELS ...ttt bbbt st 157
Register and Flag Access Command/Response definitions.............cccocvevviieeieennne 158
VAITANT STFUCTUIES ..ttt ettt sre e ene e 160
Variant ACCESS COMMANTSouviiiieriiiie st 164
Get Properties - Command 9L..........cocviiiiiiiieieie s 164
Read a Variant - Command 93...........ccciiiiiiiiiiee e 164
Change a Variant - Command 95..........cccoiiiiiiiieeeee s 166
Read a Variant Array Block - Command 109...........cccccceeieviieie e v 167
Write a Variant Array Block - Command 111..........ccocvvviiiiiiiieniiencsene 169
Read a Block of Variants Randomly - Command 113ccccccevveviiicinennen, 171
Register and Flag Access COMMANGS..........ccueieieierininese s 173
Reading a Numeric Register - Command 9..........ccccccveviiieiieie e 173
Reading a Bank of 16 Registers - Command 77ccocuvvrieienenenenesenenieas 174
Reading a Bank of 50 Registers - Command 75..........ccccooevveieiiieinese e 174
Request Random Registers from List - Command 87ccocceevvviveveiiennennns 175
Changing a Register Value - Command 11cccccoevieiiiiieve e 176
Reading a Flag’s State - COommand 17ccccoviiiiiiiniiiieeeese e 176
Changing a Flag’s State - Command 19ccccooiiiiiiiniiieec e 177
Digital Input/Output AcCeSS COMMANGSccvrieiiriiiieiierieseeeeee e 177
Reading a Bank of 8 Inputs - Command 15...........ccccceviiieiiieie e 178
Reading a Bank of 128 Inputs - Command 79...........ccoceviririnieieneie s 178
Reading a Bank of 8 Outputs - Command 21cccccceevveiieieiie v 179
Reading a Bank of 128 Outputs - Command 81cccocvviriiieneicieiinenns 179
Selectively Changing the First 128 Outputs - Command 25ccccceevevveineenee. 180
Analog Input and Output AcCess COMMANTS..........coervereririririeee e 181
Reading an Analog Input - Command 29cc.cceiieiiiieieece e 181
Reading an Analog Output - Command 31.........ccccceveriiinieniniee e 182
Changing an Analog Output - Command 33cccevieiiiiiie e 182
Change Multiple Analog Outputs - Command 85..........cccccvvvevveresieeneere s 183
SErvo ACCESS COMMEANTS.cuiiieriieiieiesiee ettt b e e 183
Reading a Servo’s Position - COMMaNd 23cccooiiiiinieninieie e 184
Reading a Servo’s Error - COMmMand 47 ..ot 184
Reading a Servo’s Dedicated Inputs - Command 27ccccevevvieneneneniennenns 185
Data Table AcCeSS COMMANGSeoiieriiiieiieieeie e 186
Reading a Data Table’s Dimensions - Command 49...........cccccevvvevviieieesieennnn 186
Changing a Data Table’s Dimensions - Command 51...........cccocevviineniennnne. 187
Reading a Data Table Value - Command 53 ... 187
Changing a Data Table Value - Command 55...........ccccovvviiiinniniiieneee e 188
Reading a Data Table Row - Command 57ccccooveviiienieeie e 188
Changing a Data Table Row - Command 59..........cccccceviiiiiniiineneneeee e 189
((: Control Technology Corporation 7

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

System and Controller Status Access COMMANSccceeviveeiiiiiiierie e 190
Reading a Controller’s Current Status - Command 61cccccccevvevviiieinennns 190
Changing a Controller’s Status - Command 63ccoovririeienencieneeee 190
Reading a Controller’s System Configuration - Command 65................cc...... 191
Changing a Controller’s System Configuration - Command 67...............c......... 191
Listing Counts of Inputs, Outputs, Motion - Command 13............ccccceevevivenene. 192
Listing Counts of Miscellaneous 1/0 - Command 69...........ccccceverineninennnnnn. 193
Reading Controller Step Status - Command 35...........ccccceevieeveiiie e 193

[P ENCAPSUIALION ... 195
[A] BUHELPTOOT FTP SEIVENc.oiieieieeeie ettt 198

INSEAHTALION.etieieee ettt nre e e 198

(@] o =T =1 [0 o TSSO 204
[B] NEtWOIK POIT USAQE.....cueiieeiieiieieieesie sttt 210

POIT INUIMDETS ..ttt bbb b e e 210
((: Control Technology Corporation 8

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[1] Communications Summary

With the release of the Model 5300 firmware revision 5.00.90R69.20
and above, numerous features are available. Many of these features are
in the area of communications, while a number of significant ones allow
for greater programming flexibility. This manual’s focus is on those
features relevant to the area of communications, some of which are

listed below:

o (4) Serial ports that support the CTNet Binary protocol, CTC ASCII Protocol,
User Defined, Modbus RTU/ASCII Master and Slave protocols

o COML1 to COM4 are independently configurable; including baud rates to 115Kb,
stop bits, data bits, parity, and communication protocols

o Serial communications settings saved and restored at power up

o Telnet Server for remote administration interface

o FTP Client and Server, reference Document No. 951-530001: Remote
Administration Guide.

o HTTP 1.0 Web server for WebMON (Document No. 951-530012: WebMON 2.0
User’s Guide) diagnostics.

o Modbus/TCP RTU Master and Slave

o UDP Peer to Peer

o TCP client/server raw socket interface, bidirectional (up to 20)

o CTNet Binary protocol

o SMTP support for sending emails

o POP3 inbox support for receiving emails and processing embedded script
messages

o Upto 9 serial ports, including 4 local and 5 virtual TCP to terminal servers or host
applications

o Configurable connection throttling to enhance overall system performance

o String formatted output messages with embedded register values from within
Quickstep (printf format).

o SNTP Time Server synchronization for real time clock.

o DHCP support

o DNS name registration via DHCP

o ‘C’ Programming for custom protocols along with support for UDP Datagrams.

((: Control Technology Corporation 9

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

o Configuration of most parameters via the Java WebMON Administration
Interface applet.

((: Control Technology Corporation 10
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[2] Serial Communications

The controller contains four RS-232 serial ports. Optionally, COM3 can
be ordered with RS-485 in which case COM4 is not available. RS-485
operation is transparent to software, with automatic line turnaround and
timing controlled by hardware. These ports support numerous
communications protocols, many of which are detailed elsewhere within
this document. This section is meant as a general overview.

Port Settings via Registers

Serial port parameters may be modified directly via registers, such as when programming
via Quickstep. The factory default communication settings for the two serial ports are:

Baud Rate - 19200
Data Bits - 8
Parity - None
Stop Bits - 1

All parameters may be changed using available registers. Use register 12000 to select
either port by storing a 1 or 2. Set the following registers based on the configuration
desired:

Set register 12301 to select the baud rate as follows:
2-1,200
3-2,400
4 - 4,800
5-9,600
6 - 19,200 (default)
7 - 38,400
8 - 57,600
9 - 115,400

Set register 12308 to select the parity as follows:
0 - None (default)

((: Control Technology Corporation 11
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

1-0Odd
2 - Even

Set register 12309 to select the stop bits as follows:
1 - Stop bit on transmit (default)
2 - Stop bits on transmit

Set register 12310 to select the data bits as follows (not including parity):
7 - Data bits
8 - Data bits (default)

For example, the following Quickstep instructions will change the baud rate on port 1 to
9600 Baud:

store 1 to Reg 12000
store 5 to Reg 12301

Serial port settings are non-volatile and may be saved to serial EZ memory. Saving these
and other parameters is done by writing a 1 to register 20096.

In summary the following are relevant serial port control registers:

Serial Communications Registers

12000 Select Controller Communications Port: W access, 1 = COM1, 2 = COM2, 3 = COM3, 4 = COM4, 6 - 25
= TCP raw virtual socket connections (see 22XX0 register descriptions).

12000 Message Transmission Status for Controllers: R access, O = not busy, 1 = busy.

12001 Transmit Message from Data Table: W only, Store row number to transmit.

12001-12255 Controller Receive Buffer Access, Read only, 1 character per location.

12300 Protocol Variation: R/W, Controls RS-232 terminal protocol modes. O = computer, 1 = terminal
(default)

12301 Serial Baud Rate Selection: R/W, 2 = 1200, 3=2400, 4 = 4800, 5 = 9600, 6 = 19.2K (default), 7 =
38.4K, 8 = 57.6K, 9 = 115.2K.

12302 Serial Input Buffer Counter: (R) number of characters available. (W) any value to clear buffer and zero
count.

12303 Disable Automatic Parsing: R/W, O = inhibits response, 1 = resumes normal response to incoming

messages. Use O for custom, raw data processing.

12304 Extract Number from RS-232 Receive Buffer: R only, Automatically assembles ASCII strings into a
numeric value. The result is a signed 32-bit number. Automatically assembles strings of ASCII
characters containing numeric information into a numeric value. Number multiplied by 10,000, allowing
decimal points to 4 places.

12305 Communications Priority: R/W, when running multiple tasks. 0 = normal, 1 = priority. Not used on
Model 5300, communications runs as background thread.

12308 Serial Parity: R/W, 0=None (default), 1=0dd, 2= Even

12309 Serial Stop Bits: R/W, 1 (default) or 2

12310 Serial Data Bits: R/W, 7 or 8 (default)

12316 Message String Transfer Register: R/W, write records number of message. ini file to send out

serial port selected in 12000 register, read returns status with O = success. See the Model 5200 Script
Configuration Guide.

((: Control Technology Corporation 12
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

12320

12321

12322

12323

12337

12338

12339

Serial Active Protocol Selection: R/W; by default the protocol is set to CTC (0). Write to this port last
after setting up any relevant parameters in other register, since this register enables the selected
protocol immediately.

CTC Binary & ASCIl -0

Modbus Master RTU - 1 (max of 120 16 bit Modbus Registers/block read; do not set manually, as it
will be set when configuring the Modbus Master Register Control Block. Up to 256 may be read using
automatic de-blocking feature of the Control Block)

Modbus Master ASCII - 2 (max of 56 16 bit Modbus Registers/block read; do not set manually, as it will
be set when configuring the Modbus Master Register Control Block. Up to 256 may be read using
automatic de-blocking feature of the Control Block)

Modbus Slave RTU - 3 (max of 120 16 bit Modbus Registers or 60 32 bit registers)

Modbus Slave ASCIl - 4 (max of 56 16 bit Modbus Registers or 28 32 bit registers)

Diagnostic Terminal - 7 (telnet admin screen active, “A ESC ESC to activate)

Serial Active Address: R/W, address to be used by the controller, based upon the enabled protocol. By
default the Global Serial Address is used unless overridden by writing a different one for the enabled
port (12000 register) to this register. Currently on Modbus Slave protocols use this address. Modbus
Master uses the Modbus Master Register Control Block, 21000 - 21299.

Global Serial Address: R/W, Address to be used as the power up default for Modbus Slave Serial
Protocols unless overridden by a write to register 12321. To save this value permanently a 1 must be
written to register 20096.

Modbus Endian Swap - R/W, if set to 1 (0, default) any time a 32 bit even boundary register is read via
Modbus the 16 bits is swapped (H/L). 40001/3/5..., is even boundary in Modbus.

Modbus Bank1 Select — R/W, used to read variant registers since Modbus does not allow reading great
than 32K register and variants start at 36001. Value of 0, disables, else view window 9XXX has this
value added to it to reference the actual register. Example if write 27000 here then when read/write
9101 will really be 36101.

Modbus Bank2 Select - R/W, used to read variant registers since Modbus does not allow reading great
than 32K register and variants start at 36001. Value of 0, disables, else view window 10XXX has this
value added to it to reference the actual register. Example if write 26000 here then when read/write
10101 will really be 36101.

Modbus Bank3 Select - R/W, used to read variant registers since Modbus does not allow reading great
than 32K register and variants start at 36001. Value of 0, disables, else view window 11XXX has this
value added to it to reference the actual register. Example if write 25000 here then when read/write
11101 will really be 36101.

Only baud rate, stop bits, data bits, parity, protocol, and port specific address are
saved to non-volatile memory.

Port Settings via WebMON

Alternatively to directly modifying registers, serial port parameters may be modified
using the WebMON utility. Refer to Document No. 951-520012: WebMON User's
Guide, as a review, and note that the Serial tab allows immediate configuration of the
local COMML1 and COMM2 serial ports, within the controller. All changes take effect
immediately and are placed in permanent storage, thereby surviving power cycling. Once
parameters are updated an immediate read is done of all parameters, providing visual
verification of your changes.

The COMM configuration provides a table of two rows, one for each serial port. It
consists of a number of data entry fields, each with their own special functionality:

((: Control Technology Corporation 13
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Fun Prograims RTC Setun Frrail Metificstion Authertication Security Threads
Ethernet =erial LAY Dizks

Serial Part Settings:

CORM Baud Rate Data Bits Parity Stop Bits Praotocal Address
1 19200 ta] Moare 1 CTC Binary 4
2 19200 b= Moare 1 CTC Binary b=
= COMM
= Baud Rate
= Data Bits
= Parity
= Stop Bits
= Protocol
= Address
COMM

This is not an editable field. It is used to reference either COMML1 (row 1) or
COMM2 (row 2).

Baud Rate

A pull down list box is available to select the desired baud rate. Baud rates from
1200 to 115,200 are available. Note that using baud rates above 19,200 can cause
system degradation, depending upon the protocol and data flow of the system.

Data Bits

A pull down list box is available to select either “7” or “8” data bits.
Parity

A pull down list box is available to select “None”, “Odd”, or “Even” parity.
Stop Bits

A pull down list box is available to select either “1” or “2” stop bits.
Protocol

A pull down list box is available to select the individual protocols to be active on each
port. Details for each are provided in Chapter [3] Networking Communications and
Chapter [7] Modbus. Available selections are:

. CTC Binary (Default, compatible with CTCMON and ctccom32.dll)

. Modbus Master RTU — controller polls the device.
" Modbus Master ASCII — controller polls the device.
" Modbus Slave RTU — controller polled by external device
" Modbus Slave ASCII — controller polled by external device
((: Control Technology Corporation 14

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Address

This is the address to be used when Modbus protocols are selected. When in Master
mode only a single device may be polled. To poll multiple devices the Address

register must be changed by the Quickstep program, dynamically. An address from 1
to 255 is valid.

((: Control Technology Corporation 15
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

((: Control Technology Corporation
Document 951-530002-0013 01/15

16

Model 5300 Communications & Logging Guide

CHAPTER

[3] Networking
Communications

The 5300 series controllers can be configured to communicate over
Ethernet using one of several transport protocols: CTNet, UDP, and
TCP. This section discusses the how to set up and configure the
controller for network communications.

CTNet
CTNet is a proprietary, non-routable protocol typically used for legacy communications

to the Model 2700 controller products. It tends to be faster than UDP or TCP/IP due to
the lack of processing overhead, but like UDP, it lacks acknowledgement of each packet.

Note that the Binary Message subset of the CTNet protocol can optionally be sent using
UDP and TCP via IP Encapsulation. Refer to the IP_Encapsulation section for further
details. TCP encapsulation is limited to 32 simultaneous connections.

UDP

User Datagram Protocol is used to send packets across an IP Network in an unreliable
manner, with no packet acknowledgement. The protocol is fully routable across the
network, unlike CTNet. It is the preferred interface for many products when performance
is required and the application itself can perform error recovery. The Model 5300
supports UDP packet transport for peer to peer communications, CTCMon, and CTServer
products.

TCP

Transmission Control Protocol is used to establish connection-oriented, sequenced, and
error free sessions over an IP Network. The protocol is fully routable across the network,
unlike CTNet, and each data packet is acknowledged when received correctly by the
receiver. Retransmission of lost packets is built into the protocol. Typical retry timers of
250 milliseconds limit the uses of TCP in a real-time controller. The Model 5300

((: Control Technology Corporation 17
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

supports TCP packet transport for FTP, Telnet, Modbus TCP Master/Slave, RAW
client/server connections, CTCMon, and CTServer products.

When using any of these protocols it is important to note that whenever the Model
5300 is placed on a network, it should be connected to a switch, not a hub. A switch will
isolate traffic to broadcasts that are specific to the controller, whereas a hub will cause the
Model 5300 to receive all traffic on its link. The 5300 is limited to 128 socket
connections. Of those 128 a maximum of 32 simultaneous TCP Binary protocol and 32
Modbus TCP Slave.

Configuring a CTNet Node using Registers

Details of the CTNet protocol can be found within the Guide to CTC Serial Data
Communications and Document No. MAN-1030-A: CTC Monitor User Guide, both of
which are posted on Control Technology's website (http://www.ctc-control.com/). To use
CTNet, a valid CTNet node number between 1 and 32767 must be set. To use UDP
protocol, the controller must be set up with a TCP/IP address, subnet mask, and optional
gateway.

The CTNet node number of the controller is stored in register 20000. Simply write the
node number to register 20000, write a 1 to register 20096, and then cycle power on the
controller for the change to be accepted.

Store 21 to Reg 20000
Store 1 to Reg 20096

Configuring IP Addresses using Registers

If you are not using DHCP to automatically obtain your IP address, then the TCP/IP
address is configured statically as follows:

Sample IP Address - 168.254.132.34 (random example)
Sample Subnet Mask - 255.255.255.0 (typical)
Sample Gateway - 168.254.132.88 (random example)

The actual values to use will depend on the network that the controller is connected to.
Contact your IT department to determine acceptable addresses for your network.

Registers 20048 to 20051 are the 4 parts of the IP address:

store 168 to Reg 20048
store 254 to Reg 20049
store 132 to Reg 20050
store 34 to Reg 20051

Registers 20064 to 20067 are the 4 parts of the Subnet Mask:

store 255 to Reg 20064
store 255 to Reg 20065

((: Control Technology Corporation 18
Document 951-530002-0013 01/15

http://www.ctc-control.com/

Model 5300 Communications & Logging Guide

store 255 to Reg 20066
store 0 to Reg 20067

Registers 20080 to 20083 are the 4 parts of the Gateway Address (optional):

store 168 to Reg 20080
store 254 to Reg 20081
store 132 to Reg 20082
store 88 to Reg 20083

A gateway is only required if the controller needs to communicate over a Wide-Area
Network (WAN). If not using a gateway, then set these registers to 0 (default). The
controller can talk to devices on a Local Area Network without using a gateway, but not
over the Internet or outside its subnet. The following command saves the IP address and
all other modified IP address parameters to non-volatile memory:

store 1 to Reg 20096
Finally, cycle power to the controller to activate the new IP information.

The IP address can be set up through a Quickstep program or with CTC Monitor. Note
that if you set the IP address registers to 0, then write 1 to Reg_20096 and cycle power,
the controller will use DHCP to obtain its network information automatically. You will
be aware that the controller is attempting to connect to a DHCP server when the S3 LED
flashes repeatedly, at a high rate (100ms/second). The S3 LED will stop flashing once
the Model 5300 has obtained an IP address from a DHCP server. While searching for a
valid DHCP address, serial port CTC Monitor access will be available to a limited
number of registers, typically 20000 and above, but Quickstep and Ethernet
communications will be disabled. Once an IP address is available the 5300 will continue
to boot, initializing the network and starting Quickstep application software.

Configuring the IP address automatically with DHCP

The controller is capable of retrieving its IP information automatically, from a DHCP
server, RFC 2131. The Dynamic Host Configuration Protocol (DHCP) is a
communication protocol that lets network administrators automate assigning of IP
addresses within a network.

Every device (computers, controllers, etc.) that resides on a TCP/IP network must have
an IP address assigned. Without DHCP, the IP address must be entered manually at each
device, as detailed in the previous section. If devices move to another location in another
part of the network, a new IP address must be entered. DHCP allows a network
administrator to supervise and distribute IP addresses from a central point and
automatically assigns a new IP address when a computer is plugged into a different
location on the network. DHCP also provides other services beyond assigning IP
addresses. It provides features including Domain Name Service (DNS) server addresses,
gateway information, and Simple Network Time Protocol (SNTP, section 6.0) servers,
thus allowing for fully automatic configuration of the controller IP parameters.

((: Control Technology Corporation 19
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

DHCP uses the concept of a "lease” or amount of time that a given IP address will be
valid for a computer. The lease time can vary depending upon how long a user is likely to
require the network connection at a particular location. DHCP also supports static
addresses for devices that need a permanent IP address.

DHCP is enabled by default in the controller. At power up, the controller will request to
use whatever IP address is set in the 20048 block (except 0.0.0.0, which enables DHCP),
and the DHCP server will either allow it or supply a new IP address. This final address
will be temporarily written to the 20048 block, but not permanently. Although not stored
permanently, it is still the active IP address for the system. Only the user or Quickstep
can make this IP address permanent, by storing a 1 to register 20096. If you do not want
to use DHCP, it can only be disabled by setting an actual IP address and subnet mask.

Setting the Controller’s DNS Name via Telnet

When the controller communicates with a DHCP server, it also requires a unique system
name that is typically used for DNS resolution (assuming the server is using dynamic
DNS). Presently this name is derived from the controller’s serial number, placing
"CTC_BF_" before the number. For example, if the serial number is 100-52801, then the
DNS name entry for the controller is CTC_BF_10052801. User-definable names are also
possible and may be set using the “set systemname <name>” command within the Telnet
administration screen, followed by writing a 1 to register 20096 (to save the change), and
rebooting the controller.

Note that many software packages and other devices with CTC communications drivers
can identify controllers only by IP address and not by name.. Depending on how your
network is configured, DHCP may change the IP address of the controller without
warning, causing devices and software to lose connection or connect to the wrong
controller. In this case, it is better to manually assign a static IP address to the controller.
The network administrator should be contacted prior to assigning any IP address, to avoid
conflicts.

Communicating to the Controller Using CTNet

CTNet is a lightweight non-routable Ethernet protocol used by legacy CTC controllers. It
is recommended that UDP be used, instead, whenever possible, since it is routable.

In order to communicate with the controller from a PC using CTNet protocol, the
WinPCap driver must be installed on the PC and an updated ctccom32v2.d11 file

must be installed in the Windows system32 directory.

The latest version of the WinPCap driver may be downloaded from the customer care
section of CTC’s website www.ctc-control.com. Compatibility information will be
included with the download. Currently Windows 95, 98, ME, NT4, 2000, and XP are
supported.

((: Control Technology Corporation 20
Document 951-530002-0013 01/15

http://www.ctc-control.com/

Model 5300 Communications & Logging Guide

To install the driver:

1. First, uninstall any previously installed CTNet drivers, including CTC Transport

and CTC Packet Driver. If you have not previously installed these drivers, this

step can be skipped. DO NOT INSTALL WinPCap OVER AN EXISTING

CTNet DRIVER.

Double click the WinPCap.exe file and run through the installation program.

3. In your Windows system32 directory (typically Windows\system for Windows
95, 98, and ME and WINNT\system32 for Windows NT/2000/XP) replace the
existing ctccom32v2.d11 file with the file included with the WinPCap

download.
4. Restart the PC.

N

Once the driver is installed, CTC Monitor 2.8 or later can be used to communicate to the
controller. Every controller on the network must have a unique node number, and each
PC based connection must use a unique Host node number.

Note that WinPCap only needs to be installed when using the non-routable binary
protocol version of CTNet, that used in legacy Model 2700 products using the 2217
Ethernet Controller. Operating CTNet over UDP and TCP can be done using IP
Encapsulation and does not required WinPCap. The Model 2700 does require the 2717
controller for backward compatibility.

Network Configuration via WebMON

Instead of directly modifying registers, network parameters may be modified using the
WebMON utility. The Ethernet tab in WebMON is used to set various network
parameters. Refer to Document No. 951-520012: WebMON 2.0 User's Guide for details.
Settable parameters include general network IP information, SNTP Time server interface
and POP3 email. SNTP, SMTP, and POP3 network configuration can be found in their
respective sections.

Ethernet Settings

The Ethernet Settings consists of a number of data entry fields, each with their own
special functionality:

Current Ethernet Settings: (Current Mode - 1 00FLLL)Y
DS Rame IP Address Subnet Mask | Gatewsay P Modbus | CTCHode Mode DHCP Enak...
CTC_BF_Wiesv. 124053140 2552552550 [12. 4053204 | 2 olauto |

| Updste Metwork |

= DNS Name
= |P Address
= Subnet Mask
= Gateway IP
((: Control Technology Corporation 21

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Modbus

CTCNode

Mode

DHCP Enabled

DHCP Enabled (check box to enable)

The controller is capable of retrieving its IP information automatically (IP Address,
Subnet Mask, and Gateway IP), from a DHCP server, RFC 2131. The Dynamic Host
Configuration Protocol (DHCP) is a communication protocol that lets network
administrators automate assigning of IP addresses within a network.

All devices (computers, controllers, etc.) that reside on a TCP/IP network must have
an IP address assigned. Without DHCP, the IP address must be entered manually at
each device. If devices move to another location in another part of the network, a new
IP address must be entered. DHCP allows a network administrator to supervise and
distribute IP addresses from a central point and automatically assigns a new IP
address when a computer is plugged into a different location on the network. DHCP
also provides other services beyond that of just an IP address. It provides Domain
Name Service (DNS) server addresses, gateway information, Simple Network Time
Protocol servers, etc., thus allowing for fully automatic configuration of the controller
IP parameters.

DHCP uses the concept of a "lease” or amount of time that a given IP address will be
valid for a computer. The lease time can vary depending upon how long a user is
likely to require the network connection at a particular location. DHCP also supports
static addresses for devices that need a permanent IP address.

Checking the check box on the Setup Screen enables DHCP. At power up, the
controller will request to use whatever IP address is currently set (except 0.0.0.0,
which enables DHCP), and the DHCP server will either allow it or supply a new IP
address. This final address will temporarily be written to the 20048 register block of
the controller, but not permanently, and will appear in the IP Address data entry
field. Once complete with all changes, simply press the Update Network button to
notify the controller of changes. Values are immediately read back from the
controller, allowing for visual confirmation.

DNS Name

When the controller communicates with a DHCP server it also requires a unique
system name that is typically used for DNS resolution (assuming the server is using
dynamic DNS). Presently this name is derived from the controller’s serial number,
placing “CTC_BF_*, before the number. For example, if the serial number was 100-
52801, then the DNS name entry for the controller would become
CTC_BF_10052801. User-settable names are also possible by simply double-
clicking the data entry field and entering a unique name. Up to 20 characters are
allowed in the Controllers DNS Name. When the Update Network button is

((: Control Technology Corporation 22
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

selected the controller will immediately notify the DHCP server of a name change, if
DHCP is enabled. If dynamic DNS is enabled, on your host, the name change will
become available immediately on your network.

Many software packages, and other devices with CTC communications
drivers, do not have the capability to identify controllers by name, only by IP
Address. Depending on how your network is configured, DHCP may change the IP
address of the controller without warning, causing devices and software to lose
connection or connect to the wrong controller. In this case, it is better to manually
assign a static IP address to the controller. The network administrator should be
contacted prior to assigning any IP address, to avoid conflicts.
IP Address

If you are not using DHCP to automatically obtain your IP Address information, then
the TCP/IP IP address is configured statically. It must be entered using a ‘dot’
notation as follows:

Example IP Address: 168.254.132.34 (example)

The actual values to use will depend on the network that the controller is connected
to. Contact your IT department to determine acceptable addresses for your network.

Subnet Mask

If you are not using DHCP to automatically obtain your IP Address information, then
the TCP/IP subnet mask address is configured statically. It must be entered using a
‘dot’ notation as follows:

Example Subnet Mask: 255.255.255.0 (typical)

The actual values to use will depend on the network that the controller is connected
to. Contact your IT department to determine acceptable addresses for your network.

Gateway IP

If you are not using DHCP to automatically obtain your IP Address then the TCP/IP
Gateway address is configured statically. It must be entered using a ‘dot’ notation as
follows:

Example Gateway 168.254.132.88 (example)

The actual values to use will depend on the network that the controller is connected
to. Contact your IT department to determine acceptable addresses for your network.
A value of 0.0.0.0 will disable the use of a gateway. A Gateway is the address to
which requests will be forwarded if they are outside the range of your IP domain, as
tested against the assigned subnet mask. Typically a gateway is used to forward
requests to another network and/or the Internet.

((: Control Technology Corporation 23
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Modbus

The Modbus address is used to set the address that will be used by the Modbus/TCP
communications protocol. It is typically referred to as the Device ID. It may be set
from 1 to 255.

CTCNode

The CTC Node number is used by the CTNet protocol. This is a lightweight non-
routable Ethernet protocol used by legacy CTC controllers. It is recommended that
UDP be used, instead, whenever possible, since it is routable. Setting this node
number to O disables its use in the controller. Be careful setting this node number
since no two controllers can have the same address. Valid numbers are from 1 to
32767. Some very old CTC controllers only communicate on nodes 1 to 254.

Mode

Mode is used to set the Ethernet connection method, speed and duplex, and typically
is not used. By default it is set to Auto. Auto means auto-negotiate, or let the
controller and external router/switch negotiate connection speed and duplex. The
fastest possible will generally be negotiated, 100 Megabits/Full Duplex. Sometimes,
where old wiring may exist or noisy environments, it is best to reduce the speed of the
Ethernet interface. Also if Ethernet speed is not important, the slower speed will
reduce the load on the controller and generally allow increased performance by other
aspects of the controller during peak Ethernet traffic.

A pull-down box is provided to override the default. Available are 100 full/half
duplex, 10 full/half duplex, and auto. Note that the current negotiated speed is shown
in the text area above the data entry fields. The screen capture below shows the
current speed is negotiated to 100 full duplex:

Fun Pronrams: RTC Setup Etmail Matification
Ethernet Setial

Current Ethernet Settings: (Currert Mode - 100FLLL)
DM Matne P &ddress Subnet Mazk | Gatewa
CTC_BF Weay.. [12.40.55.149 |255.255.255.EI |1 2.40.53.204

((: Control Technology Corporation 24
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[4] ASCII Computer/Terminal
Protocol

The Model 5300 supports a number of serial port communication

protocols. The default, along with the CTC Binary Protocol, is a simple

ASCII protocol. Both run at the same time and are automatically

detected based on the serial data stream. The ASCII Protocol is a simple

way to send commands to the controller. The commands are in the form

of simple ASCII messages. Most computer languages provide a method
for sending ASCII messages to a serial communications port.

ASCII Computer Protocol

Controllers are initialized to the CTC ASCII terminal protocol upon power-up. To
change the terminal protocol, you must send a command to the controller’s serial port
establishing a new protocol. In the following example, the P sets the protocol and C
establishes the CTC ASCII computer protocol. All commands are followed by a carriage
return <CR>, ASCII 13, which signals the controller that the command is complete. Most
versions of BASIC automatically add the required carriage return at the end of the
transmission.

To set the CTC ASCII computer protocol:

1. Enter the following command:

P C <CR>
2. To acknowledge the change to the computer protocol, the controller responds
with:

P C @ <CR>

Ending the response with a carriage return is consistent with the computer protocol.

Once you have opened the serial port and set the computer protocol, you can begin
sending commands to the controller. The following example forces the number 1200 into
register 10, the command is R10=1200. The command must end with the code for a

((: Control Technology Corporation 25
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

carriage return command, ASCII 13. The following statement, in BASIC, accomplishes
this transmission:

PRINT #1, "R10=1200"

E_—ll Computers and versions of BASIC vary. Refer to manufacturer’s published data.
By sending this command, we assume that the serial port 1 is already opened and defined
as port No. 1. Most versions of BASIC automatically add the required carriage return at
the end of the transmission. Check with your version of BASIC to see if it automatically
adds the carriage return command.

When operating in the CTC ASCII computer protocol, the controller responds with a
carriage return command, acknowledging message reception. Your BASIC program
should receive and test this message. If a transmission error occurs, the controller instead
responds with an error message. You can program the message test as follows:

LINE INPUT #1, RS
IF RS$S<>"" THEN GOTO 100

The statement LINE INPUT #1, RS tells the computer to receive the controller’s
response and to assign the response to character string RS. In most versions of BASIC, a

response consisting of only a carriage return is received as a null string or an empty
message. The statement ITF RS$<>"" THEN GOTO 100 has the computer test the

response. If the controller’s response is not equal to a null string, a transmission error
occurred. At this point, the program jumps to line 100.

E——“ The controller’s response must be taken in by the computer. If it is not, the
response remains in the computer’s communication buffer, and affects the computer’s
ability to receive future messages.

ASCII Terminal Protocol

At times you may want to use a dumb terminal or a computer running a terminal
emulation program to communicate with a controller. You can use a lap top computer
configured as a dumb terminal for diagnostic or debugging purposes, forcing outputs on
or off, reading register values, or forcing a value to be stored into a register. The CTC
ASCII computer protocol is not suited to this task, since it has been optimized for use in
communicating with a running computer program. It addition, you must terminate each
response with a carriage return, signaling the completion of the message.

When you use a dumb terminal to directly view the response of the controller, the
carriage return places the terminal’s cursor to the beginning of the same line, and the next
message overwrites the previous message and responses. The CTC ASCII terminal
protocol solves this problem by responding to commands from a terminal or computer

((: Control Technology Corporation 26
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

with an instantaneous line feed, <LF> ASCII 10, moving the terminal to the next line on
its screen. The controller transmits its response, if any, with a carriage return and a line
feed. Any messages sent to or from the controller are recorded on successive lines.
Except for the use of line feeds, the terminal protocol is identical to the computer
protocol.

Controllers are initialized to the CTC ASCII terminal protocol upon power-up. If you
have changed it, you must reset the protocol. In the following example, the P sets the
protocol and T establishes the CTC ASCII terminal protocol. All commands are followed
by a carriage return. To set the CTC ASCII terminal protocol:

1. Enter the following command:

P T <CR>
2. To acknowledge the change to the computer protocol, the controller responds
with:

<LF>

P T <CR>

<LF>

The controller immediately responded with a line feed and the response ended with both
a carriage return and a line feed. This creates a readable display on the terminal. This
response is also consistent with the terminal protocol.

ASCII Protocol Commands

Using either the computer or terminal protocols you can access any of the controller’s
registers. The example commands use <CR> to stand for a carriage return (ASCII 13)
and <LF> for a line feed (ASCII 10):

Initiate computer mode:
Send - PC<CR>
Response - PCO<CR>

Initiate terminal mode:
Send - PT<CR>
Response - <LF>PT<CR><LF>

Read a counter/register:
Send - R<counter/register number><CR>

Response:
Computer mode - < counter/register number ><CR>

Terminal mode - <LF>< counter/register number ><CR><LF>

((: Control Technology Corporation 27
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Note: Register read/write commands can be chained together using a “;” as a
separator. Each command will be responded to uniquely.
Example: R1000=5;R1005;R1006<CR>

Write a counter/register:
Send - R<counter/register number>=<new value><CR>
Response:
Computer mode - <CR>
Terminal mode - <LF>

Note: Register read/write commands can be chained together using a ‘;” as a
separator. Each command will be responded to uniquely.

Example: R1000=5;R1005;R1006<CR>

Returned Error Messages
Number too small — If a register is specified as zero, then the controller sends
the following error message:
Computer mode - <less than sign,< > <bell, 07H><CR>
Terminal mode - <LF><less than sign,< ><bell, 07H><CR><LFEF>

Number too large — If a register is specified that is greater than the number
supported, then the controller sends the following error message:
Computer mode - <greater than sign,> > <bell,
07H><CR>
Terminal mode - <LF><greater than sign,> >
<bell, O07H><CR><LF>

Protocol error — If a “P” command (protocol) is not in the correct format then
the controller will send the following error message:
Computer mode - P<bell, 07H><CR>

Terminal mode - <LF>P<bell, 07H><CR><LF>

Syntax error — If the controller cannot make any sense of the command, then
it sends the following message:
Computer mode - 2<bell, 07H><CR>

Terminal mode - <LF>?<bell, O07H><CR><LFEF>

((: Control Technology Corporation 28
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[5] TCPAP Raw Sockets

Up to 20 TCP Client/Server RAW Socket sessions are supported by the

Model 5300 controller. These socket sessions provide a virtual pipe,

with no formatting of data. To the controller they merely appear as

another serial port, even though the connected device can reside

virtually anywhere on a network connection. This interface is extremely

useful for connection to external programs, such as Visual Basic or
Ethernet based terminal servers such as the Newport or Lantronix devices. Lantronix is
described within this section, Newport is similar.

TCP Client

A TCP Client RAW Socket session is when the host computer runs a TCP Server and the
controller connects to it. Typically a well-known IP address and public TCP port number
is available for this connection. Once the connection is made, any data sent to the
actively selected serial port (12000 register) is sent to the host and anything sent by the
host to the controller is placed in its receive buffer, exactly like an actual serial port. To
initiate a connection, a number of registers must be configured.

The RAW Socket session register blocks begin at a base of 22000 and extend to 22049,
one repeating block pattern (10 registers locations per block) for each serial port
supported. The actual block used has nothing to do with the serial port itself when
referenced from Quickstep since the serial port assignment is a configurable parameter.
Blue Fusion Controllers have 4 physical serial ports (COM1=1, COM2=2, COM3=3,
COM4=4, 0 not used) within the controller. They can also access virtual serial ports 6 to
25, which may be assigned as desired. Remember that server connections will use the
next available port when allowing connections from a host client. Therefore, it is
important to reserve your port first prior to enabling a Server register block.

Registers are defined based on their offset from their base, repeating after each 10.
Therefore, beginning at register 22000:

((: Control Technology Corporation 29
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

22000-22199 TCP Raw Socket Session Parameters: R/W, starts at 22000 and repeated every 10 blocks (max of
20 RAW sockets) as follows:

22XX0 - Serial port ID register, offset O, range 6 - 25.

22XX1 - Client/Server register, offset 1, to initiate connection set to a 0, if controller is
aserversettoa 1.

22XX2 - Most significant octet of IP Address to connect to if client mode, IPA, offset 2.
If server mode this is the default protocol to run as a server, uses same codes as register
12320 (default 0, Modbus Master not supported).

22XX3 - IP Address octet, IPB if client mode, offset 3. If server mode this is the SET/CLR
parsing control (similar to register 12303), typically set to O for custom, else 1 for
normal.

22XX4 - |P Address octet, IPC if client mode, offset 4. If server mode this is the server
address to use, typically for Modbus applications, reference register 12321.

22XX5 - Least significant octet of IP Address to connect to, IPD if client mode, offset 5.
If server mode write a O to this location.

22XX6 - Port to connect to (client) or listen on (server), offset 6

22XX7 - Connection status register, offset 7, on read, -1 = not initialized, 0 = offline, 1
= online, write a 1 to initiate connection or start server thread.

22XX8 - Index register to offset to data, offset 8. Recommend using serial port buffer,
not this interface but available to mimic the peer to peer interface.

22XX9 - Data array, offset 9. Recommend using serial port buffer commands, not this
interface but available to mimic the peer to peer interface.

XX represents a multiplier of 10, which is the size of a block (00, 01, 02...).

An example for a script program to initialize a connection to a host at IP address
12.40.53.185 and TCP port 3001 is shown below. Note the controller Serial Port ID
Register, number 22000, must be set up first:

22000 = © # set up this client connection as controller port 6
22001 = 0 # set that we are the client, initiating connection
22002 = 12 # most significant octet of IP address 12.40.53.185
22003 = 40
22004 = 53
22005 = 185 # least significant octet of IP address 12.40.53.185
22006 = 3001 # TCP port to attempt connection to
22007 =1 # To initiate a connection write a 1 to the status
#register then read it until it is a 1
which means connected. 0 is offline, -1

#is not initialized.

Once register 22007 is read as a 1, then port 6 will appear as a standard serial port to a
Quickstep application. As with any serial port, the port must be selected first by writing
the port number to register 12000 prior to transferring data or initiating commands. The
port is available for reading and writing upon connection to the host, i.e. when register
22007 = 1. Should a connection ever be lost, 22007 will contain a 0 and a read of 12000
(Message status register) will return a 1, indicating transmitter busy, or in this case,
offline. With TCP the transmitter will never be busy unless offline. The controller will
periodically retry the client connection.

((: Control Technology Corporation 30
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

TCP Server

A TCP Server RAW Socket session is when the host computer is the client, connecting to
the controller on a public TCP port number. Once the connection is made, any data sent
to the actively selected serial port is sent to the host and anything sent by the host is
placed in the receive buffer, exactly like a controller serial port. In order to allow a
server to be active the same registers as detailed in Client must be configured; except a 1
is placed in register 22XX1 and our port number to listen on is stored in 22XX6.
Registers are defined based on their offset from their base, repeating after each 10.
Therefore beginning at register 22000:

22000-22199 TCP Raw Socket Session Parameters: R/W, starts at 22000 and repeated every 10 blocks (max of
20 RAW sockets) as follows:

22XX0 - Serial port ID register, offset O, range 6 - 15.

22XX1 - Client/Server register, offset 1, to initiate connection set to a 0, if controller is
aserversettoa 1.

22XX2 - Most significant octet of IP Address to connect to if client mode, IPA, offset
2. If server mode this is the default protocol to run as a server, uses same codes as
register 12320 (default 0, Modbus Master not supported).

22XX3 - IP Address octet, IPB if client mode, offset 3. If server mode this is the
SET/CLR parsing control (similar to register 12303), typically set to O for custom, else 1
for normal.

22XX4 - |P Address octet, IPC if client mode, offset 4. If server mode this is the server
address to use, typically for Modbus applications, reference register 12321.

22XX5 - Least significant octet of IP Address to connect to, IPD if client mode, offset
5. If server mode write a O to this location.

22XX6 - Port to connect to (client) or listen on (server), offset 6

22XX7 - Connection status register, offset 7, on read, -1 = not initialized, 0 = offline,
1 = online, write a 1 to initiate connection or start server thread.

22XX8 - Index register to offset to data, offset 8. Recommend using serial port buffer,
not this interface but available to mimic the peer to peer interface.

22XX9 - Data array, offset 9. Recommend using serial port buffer commands, not this
interface but available to mimic the peer to peer interface.

A server thread will be launched as soon as a 1 is written to the status register. Note that
only one connection is allowed at a time since all information is directed to and from a
controller virtual serial port. If more than one connection attempt is made to the same
port number defined in the configuration block, it will be initially accepted and then
rejected.

Lantronix CoBox/Xpress interface Example

The Lantronix CoBox-DR1-IAP or Xpress-DR-1AP Device Server (www.lantronix.com)
is one of several serial to Ethernet converter devices which will work with the controller
using the TCP RAW Client socket protocol. To the controller, this device is
communicated to over TCP port 3001 and becomes a simple virtual serial port to
Quickstep. It operates exactly as a resident local port, supporting the same
communication protocols. Communication is tunneled over the network to the device.
Even a serial port version of CTC Mon or a CTC 4010 User Interface can be connected
and run over this interface, allowing for easy port expansion. Modbus is also supported.

((: Control Technology Corporation 31
Document 951-530002-0013 01/15

http://www.lantronix.com/

Model 5300 Communications & Logging Guide

By encapsulating serial data and transporting it over Ethernet, devices such as these allow
virtual serial links to be established over Ethernet and distributed virtually anywhere
within a plant or global enterprise.

LANTROND‘

B Reset

F ®®F '
AGBL -
| o9
‘asm.

JOBASET SERAL
_——’""

Lantronix CoBox Serial to Ethernet Converters

@ Control Technology Corporation 32
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[6] UDP Peer to Peer Protocol
Overview

Peer to Peer communications allow a controller to monitor another

controller’s registers from across a network. In essence, the

designated registers become public and a copy of their contents is

periodically transmitted across the network, to the requesting

controller, thereby making them appear as though they are local. The

update scan time is configurable and the registers may be read from or
written to in a manner similar to normal registers.

Peer-to-Peer Protocol Registers

The controller can only perform peer-to-peer operations with other 5100/5200/5300
modules. Model 5300 controllers can also communicate with Model 2700 controllers via
the 2717 communications module, but not via the 2217 module. The 5300’s peer-to-peer
registers let it communicate directly with other Model 5300 modules without requiring a
dedicated server. It can also gather register information locally for different network
protocols.

Registers 21000-21299 are read/write registers that are reserved for peer-to-peer
networks. Each block of 10 sequential registers is assigned to a designated peer node and
defines the peer environment for that connection. You can retrieve data from and
automatically update up to 100 sequential registers with a single request. Also note that
this register block can be used for many other functions, besides peer to peer, such as
Modbus, interfacing in a similar manner. Reference that section for further details.

((: Control Technology Corporation 33
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Registers 21000-21299

21000-21299

TCP Peer to Peer and Modbus Master Parameters: R/W, starts at 21000 and repeated every 10
blocks as follows:

21XX0 - First Octet IP Address Register (Most Significant) - R/W

This is the first octet of the IP address (XXX.000.000.000) to connect to.
21XX1 - Second Octet IP Address Register - R/W

This is the second octet of the IP address (000.XXX.000.000) to connect to.
21XX2 - Third Octet IP Address Register - R/W

This is the third octet of the IP address (000.000.XXX.000) to connect to.
21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W
This is the fourth octet of the IP address (000.000.000.XXX) to connect to.
21XX4 - Start Register - R/W

This register stores the starting register address that is to be read from the remote device.
21XX5 - Sequential Number Register - R/W

This register stores the number of sequential registers (starting with Register 21XX4) you want to
read during a polling session. The value 1 represents a single register and the maximum number
of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure
this register before setting up any other registers. Do not change this value during a transaction
or all data will be lost and new values will have to be entered. If you modify this register, it lets
you reset the connection. All register reads from remote devices will be the same block size. For
Modbus Master this register is the default; see 21XXX8, 1011 to change when polling differing
devices. This register must be written first to define the required storage size; upon initialization
all other registers will become available.

21XX6 - Poll Timer Register - R/W

Set this register to O for a single read request else set the scan rate in milliseconds. The
minimum value allowed is 50 ms for Peer to Peer and 10 ms for Modbus. You can write to this
register at any time.

21XX7 - Status Flag Register - R

This register reflects the current status of the data registers. Its value is based on any requested
operations. Typically, you initiate an operation and then wait for a status of 1. Possible values
are:

0 - Offline; no connection is present.

1 - Last request is successful and completed. Data is available in the data registers if
requested. Read or Write may now be done.

-1 - Requested operation has failed; typically a Modbus Exception error
-2 - Busy; connecting to the desired host.

-3 - Busy; reading data.

-4 - Busy; writing data.

-5 - Timed out; poll timeout on a device by Modbus Master.

-10 - Aborted operation; out of local memory or resources.

((: Control Technology Corporation 34
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

21000-21299
Cont'd

21XX8 - Index Offset Register - R/W

This register lets you access each of the requested sequential data registers. It works in
conjunction with Register 21XX9 and acts as its array pointer. You can store the number of a
general or special purpose register in 21XX8 and 21XX9 can then access the resource contained
in the pointer. By default O, this register points to the very first data element read from the
remote device. This would be equivalent to what you set the Start Register to begin with
(21XX4). Incrementing this register allows you to access other data elements, like an array.
Register 21XX9 can then be read or written accordingly. The index register also has a few special
features when you set it to 1000 or above.

1000 - Peer Request Time-Out Register — (R/W) The timer starts when a peer node
request is initiated and stops (times out) if no response is received within the time
specified by this register. Retries only occur if automatic updates are active (Register
21XX6 is set to a value other than 0). Defaults are 500 ms for single register reads and
time-out value*2.5 for automatically updated register read transactions.

1001 - Peer Request Failed Index Register —(R) This register indicates when a peer
transaction fails and an error occurs. The Status Flag Register (21XX7) is set to a value
other than 1. Any data that was read or written when the error occurred has an offset
value that is stored in 1001. If you read the data register, it returns the offset failure
value. Data written before this offset value is valid. For example, if your process
continuously updates 50 registers and the register returns a value of 25, it means the
process failed while trying to write the 25" element of data. All data written before
this element was written correctly.

1002 - Peer Request Retry Counter Index Register - (R/W) This debugging register
points the data register to the retry counter. Quickstep can set this register to any
value. The register is incremented by 1 when a time-out occurs because of waiting for
data from a peer node.

1003 - Protocol Index Register - (R/W) This register tells the data register what
protocol to use for setting the peer block registers. You must set this register before
setting the Start Register (21XX4). Default mode is O for UDP Peer-to-Peer protocol. 2
is used for Modbus TCP Master mode, 3 for Modbus Master RTU Serial on COM1 (TBD),
8 is CTC Binary Master UDP (port 3000), 9 is CTC Binary Master TCP (port 6000). Note
the Binary Master protocol allows connection to 2700 series controllers.

1004 - TCP Client Port Index Register - (R/W) This register points the data register to
the destination TCP Port address for your connection. You must set this register before
setting the Start Register (21XX4). 1004 is currently used for Modbus TCP and serial
Master mode with a default port number of 502 for TCP and 1 for serial (COM1). Not
used for the CTC Binary Master protocol. For that protocol it is fixed to 3000 for UDP
and 6000 for TCP.

((: Control Technology Corporation 35
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

21000-21299
Cont’d

1005 - Modbus Master Unit ID Index Register — (R/W) This register points the data
register to the Device/Unit ID field value used in the Modbus Master request packet.
The default ID is 1" but you can set it to any desired value. This ID affects all
subsequent transmissions and allows multiplexed devices to be addressed in a Modbus
environment.

1006 - Modbus Master Exception Index Register - (R) This register allows you to
interrogate the last Modbus Exception error code received from the data register
(21XX9). Referencing this register

helps to interpret failure types. Typically you would reference this register if a *-1'
appears as the current status in register 21XX7.

1007 - Register Remapping Start Index Register - (R/W) This option allows remote
registers to be mapped into the 23000 to 24999 consecutive memory space. Previously
an index register at 21XX8 needed to be set then data read from 21XX9. This can
result in slow operation if a lot of data needs to be transferred. Setting 21XX8 to 1007
and then writing the register value from 23000 to 24999 will allow all data to be
remapped to that register block area, consecutively, based upon the block size (21XX5).
A write to the

remapped area will result in a remote write. By default re-mapping is not active.

1008 - Modbus Master MAX Retries Register - (R/W) This register allows you to
change the maximum number of retry attempts on a Unit ID before giving up. Default
is 2.

1009 - Modbus Master Retry Counter Register - (R/W) This register allows you to
observe and change the current number of message retries to the current Unit ID.

1010 - Modbus Master Timeout Register — (R/W) This register allows you to change
the default Unit ID timeout from 50 milliseconds to that desired, in milliseconds.

1011 - Modbus Master Block Size Register - (R/W) This register sets the number of
Holding Registers to be accessed. Must be the same or smaller than the Sequential
Number Register, defaults to the same. Used to access Unit ID's with varying block
sizes when manually changing the Unit ID under program control.

1012 - Random Index Register - (R/W) CTC Binary Master protocol only. -1 default,
with 1013 of -1 means normal peer to peer automatic sequential registers. If 1013 is
not -1 then this register may be used to offset to the 1014 register window. All values
appear in 21XX9. Writing a -1 to this register clears the registers set by writes to the
Random Register Window and restores sequential mode. Typically this register is not
accessed. After setting random registers (1014) it can be used to view what has been
set. In other words setting this to a 2 would cause the third (0 based) register to be
selected in the Random Register Window when that index is set.

1013 - Number of Random Registers Initialized - (R Only) CTC Binary Master
protocol only. Number of random registers initialized, up to 21XX5 max. -1 means
none, default (sequential mode). All values appear in 21XX9. Note that this is only if
random access mode is being used, else -1 means sequential, reference offset 1014 for
further information.

Initiating a Peer to Peer Session
In general, the initializing of the peer-to-peer mechanism works as follows:

O O O O O

Write the desired number of registers to 21XX5 register.

Write the slave’s IP address to 21XX0 - 21XX3 register

Write the register to begin reading from the slave device to 21XX4

Write a 1007 to register 21X X8 to select the re-mapping area.

Write where in the 23000-24999 register range you want it to appear to register
21XX09.

((: Control Technology Corporation 36
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

o Write a 0 to the index register 21XX8 to default it back to viewing the first data
item.

o Write the scan time, typically 100ms to register 21XX®6, to initiate the connection
and begin peer to peer.

Monitor status register 21XX7 for a 1 prior to reading/writing to either the 21XX9 data
area or the re-mapped area in the 23000-24999 block.

((: Control Technology Corporation 37
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

((: Control Technology Corporation
Document 951-530002-0013 01/15

38

Model 5300 Communications & Logging Guide

CHAPTER

[7] Modbus

The Modbus Protocol is a messaging structure developed by Modicon in

1979. It is used for master-slave/client-server communications between

intelligent devices and has become an industry standard. Details of the

protocol may be found at the web site www.modbus.org. This protocol

allows a master to periodically poll the controller to collect the desired

information. Modbus supports two major flavors of data representation:
RTU and ASCII. RTU is a more compact protocol, consisting of binary characters, while
ASCII represents each binary nibble as a separate character, hence doubling the length of
transmissions. RTU is also more secure in that it includes a CRC-16 at the end of the
message while ASCII only has a single LRC. The CTC Model 5300 controllers
support Modbus Master/Slave TCP RTU, Modbus Master Serial RTU/ASCII, and
Modbus Slave Serial RTU/ASCII.

Tools used to test the protocol are available from a number of sources. The Model 5300
controller was tested using those available from www.win-tech.com, namely their
ModScan32 for RTU/ASCII Slave testing and ModSim32 for Master.

Modbus Slave RTU TCP & RTU/ASCII Serial

A polling master can drive a slave controller using the Modbus protocol. The Model
5300 controller supports slave mode both over an Ethernet TCP connection and/or a
serial connection. Modbus allows for interfaces to such things as coils, analog, register,
etc. Since the Model 5300 controller is able to access all of its resources via its register
interface, typically only the Holding Register commands are used: Write Single Register
(function code 0x06), Write Multiple Registers (function code 0x10), and Read Holding
Registers (0x03). Alternatively, the “Read Input Discrete” (maps to digital in modules),
“Read coils”, and “Write Single Coil” (maps to digital output modules) are supported.

((: Control Technology Corporation 39
Document 951-530002-0013 01/15

http://www.modbus.org/
http://www.win-tech.com/

Model 5300 Communications & Logging Guide

Code Sub code (hex)

Read input discrete 02 02
Read coils 01 01
Write single coil 05 05
Write multiple coils 15 OF
Read input register 04 04
Read multiple 03 03
registers

Write Single register 06 06
Write multiple 16 10
registers

Read/write multiple 23 17
registers

Mask write register 22 16
Read file record 20 6 14
Write file record 21 6 15
Read device 43 14 2B
identification

Figure 7.1: Modbus Function codes from Modbus.org (highlighted blue are supported by Model 5300)

You should also note that Modbus Holding registers are 16 bits in width and those of the
Model 5300 controller are 32 bits, since Modbus is Big Endean. This means when
reading register 1 in the 5300 controller, the high 16 bits equates to Modbus register 1
and the low 16 bits to Modbus register 2. Modbus register 3 would be the high 16 bits of
register #2, and so on. The number of registers that can be read by a polling master at
one time is limited:

Modbus RTU TCP — 120 Modbus 16 bit registers (60 5300 registers).
Modbus RTU Serial - 120 Modbus 16 bit registers (60 5300 registers).
Modbus ASCII Serial - 56 Modbus 16 bit registers (28 5300 registers).

This maximum is a limitation imposed by the Modbus TCP specification (which limits
receive buffers to 255 bytes), not by the controller.

Modbus TCP Slave is always enabled and available for requests on TCP port 502
(standard). Either a Quickstep program or other means must manually enable Modbus
RTU/ASCII Serial. This is done simply by writing a 3 to the “Serial Active Protocol
Selection” Register, 12320, for RTU, or a 4 for ASCII. Prior to enabling it is
recommended that the Model 5300 controller Modbus Unit/Device address also be set,
using register 12321. Should a non-volatile controller wide default Modbus address be
desired, set register 12322 with the address followed by a write to register 20096.
Differences between TCP and serial implementations are detailed in the Modbus Slave
Serial RTU/ASCII section.

((: Control Technology Corporation 40
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

As a demonstration of the functionality of the Modbus RTU TCP/Slave interface, this
section details the interface of Win-Tech’s ModScan32 software and how it applies with
regards to the Model 5300 controller. As mentioned before, CTC only supports the
Holding Register interface. Upon installation of ModScan32, a screen such as Figure 7.3
will appear. Note that the Address field is set to 1, but the display screen starts at 40001.
This is Modbus nomenclature. Address of 1 is the same as the upper 16 bits of the
controller register 1. Note Length is set to 50 (120 max), and Device ID is ignored since
TCP is point to point (Device ID is ignored only when in TCP slave mode, not when the
controller operates as a Master or serial slave).

="ModScan32 - ModScal

File Connection Setup Yiew Window Help

D3| &l BE & 87|

EE O E BB B

Device Id: III
_ Mumber of Polls: 0
Address: MODBUS Point Type i

Valid Slave Responses: 0

Length: |50 |03: HOLDING REGISTER ~| Reset Ctrs |

#% Device NOT CONHECTED! ==
40001: <00000: 4001%: «<00000: 40033: <00000:> 40049: 000003

T iscon.vovousoatascawen B
40003: <0
i g g g E : j g e ModSean32 - [Version 4. BO0.05)

: N~ = o o
40006 <0 : [OLEAJET Dizabled, M| Dizabled)
40007 : <0 Copyright & 2002
40008: <0 .
A0009: <0 Feqistered To: TE CH
ESS%E zg k.evin Halloran 2
40017 <0 Contral Technalogy Corparation SEOFTW ARE
40013: <0
i g g % é » g Levisburg, W 24301
40016 <0 [304) 645-5966

Email: suppaortiaiwin-tech, com

Wwieh: ktkp: S, win-tech. com

Figure 7.3: ModScan32 Master Scanning Program (only Holding Register supported)

@ Control Technology Corporation 41
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Figure 7.4 shows the setup for an interface to a controller with a TCP address of
12.40.53.199 and the Modbus Slave running a server on the standard port of 502:

| =~MuodScan32 - ModScal

File Connection Setup Wisw Window Help

D= &4 &2F & 2 2|8

5= D= =)= ==

e > |
Address: Connect Uzing: —
IHethe TCPAP Server j |

Length:

IP Address: |1 24053199
Service Port: |502

= Eonfiguratiarn

Eaud Fate: I'I 3200 'I
I | st fior DSE from slave
“wiord Length: IB 'I [elay ID m& after B 1S befaore

trarsmitting first character

Farity INDNE 'I [T wiait for ETS from slave
_ [elay ID mg aftter last character _
l ®% Device Stop Bits: I-I jv befare releasing RS

40001: <0

Annna. .n

i Modbus Protocol Selections | x| |

Tranzmizzion kode J
STANDARD DAMIEL/ENROMN /ORI hcel |

& ASCH = RTU ©OASCI T RTU

— Hardware Flaw Contral

— Slave Responze Timeout

500 [mzecz)]

— Delay Bebween Poll:

259 [mzecs)]

[Force modbus command 15 and 16 for single-point wites.
[Tao be uzed in cazes where the zlave does naot support the
zingle-paint write functions 05 and 06.]

k. I Cancel |

Figure 7.4: ModScan32 Master Scanning Program TCP Connection Setup

In order to do a single register write to a Modbus 16-bit register, double click that
register. Figure 7.5 shows changing Modbus register 40002 (Address 2) to a value of 5,

@ Control Technology Corporation 42
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

which would translate to the lower 16 bits of Quickstep register 1. Remember Modbus
Address 1 is the upper 16 bits.

Dewvice Id: III
Address: MODBUS Point Type

03: HOLDING BEGISTER -
Lengih: | -

40001: <00000> 40026: <DDD0D> M wmmr——
40002: <00090> 40027- <00000>

40003: <000E0> 40028: <00000>

40004: <00000> 40029: <00000> Address: |2

40005- <00000> 40030- <00000>

40006- <00000> 40031: <00000> e [
40007: <00000> 40032: <00000> e

40008- <00000> 40033- <00000>

40009: <00000> 40034: <00000> Update | _ Cancel |
40010: <00000> 40035: <00000> Auto Simulation. |
40011: <00000> 40036: <00000>

A M. SO, AT Faalatalata bt

Figure 7.5: Single 'register write, value 5 to 40002

Changing a number of registers all at once is known as a Write Multiple Register access.
This can be done using the Extended Access option:

=~Modscan32 - [Modscal]

g File Conmection | Setup Wiew ‘Window Help
0O | Bﬂ-l El .li Daka Definition | 7 |¥p|

Display Options *
I | { Extended Force Coils
Address: (0001 Dbase Capture

ot oot IIHEHHE%E[Q
s eellre Mask Wirite
Capture OFF Ilser Msg
Length: 50 Run Script i |

Reset Ctrs T

'.'?-'Z‘

Figure 7.6: Write Multiple register (Preset Regs) selection

The Preset Multiple Registers pop-up will appear. Note that in TCP, the Model 5300
controller ignores any slave or node identifiers since it is a single device and not acting as
a gateway. Set the Modbus register you wish to start changes with and the number of
registers to change, up to a maximum of the number that you are viewing:

@ Control Technology Corporation 43
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

16: PRESET MULTIPLE REGISTERS

Slave Device: |1

Addrezz: |1

1]

MHurnber af Pantz: |50

]|

Figure 7.7: Preset Multiple register dialog

In this case we will change Addresses 1 to 10 to sequential numbers 1 to 10:

16: PRESET MULTIPLE REGISTERS

Slave Device: |1

Addrezss |1

11

Mumber of Pointz: |01

o |

Cancel |

=]

Figure 7.8: Select number of multiple writes to do

As shown below, the current register values are displayed in the dialog box.

@ Control Technology Corporation
Document 951-530002-0013 01/15

a4

Model 5300 Communications & Logging Guide

="Modscan32 - ModScal
File Connection Setup Wiew Window Help

D= =& & & S22

E O = BB &)

Device Id:

. Number of Polls: 113
Address: MODBUS Point Type

Valid Slave Hesponses: 105

Length: |50 |03: HOLDING REGISTER Hesetmrs|

]

16: PRESET MULTIPLE REGISTERS |

Address: 0007

Length: 0016
- Frarm File

oom: [00000 __FromFile_|

o0z [oooos _ ToFie |

o003 [ooooo
40001 <00000% 0004 [ooooo 0oos
40002 <00005> 00o»
40003: <000003 Q00%: |E"3'3EIEI
40004 <000003 _
40005 <00000% 0006 [00000
40006 <00000% - fooom
40007 <000003 000700000
40008 <00000% ooos: [ooooo
40009 <000003 .|

40010: <00000
40011 : <00000

40012: <000003 Update I Cancel |
40013 : 00000
40014: <00000

40015: <00000: 40031: «<00000:> 40047 <00000:
40016: «<00000: 40032: «<00000: 40048: «<00000:

Figure 7.9: Preset Multiple register dialog viewing existing values

Note below, Figure 7.10, that each register value has been changed. Also, we scrolled
down so we could get to register 10. Click Update and note the changed register values
from the previous display; 40002 is no longer 5 but now 2, Figure 7.11.

@ Control Technology Corporation 45
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

16: PRESET MULTIPLE REGISTERS

Address: 0007

Length: 0016
opoz: {00003 2l __ Fram File |
o004 |ooo04 TaFile |
0oos: |0000s |

000&: (00006
ooQF: |o00o7?
00og: (00002
000%: (00003
o010 oot

|lpdate [_: I Cancel |

Figure 7.10: Preset Multiple new values entered

SRR

Upon clicking the Update key, the new values are written to the controller registers and
new values read back using the Read Multiple Register command.

((: Control Technology Corporation 46
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Device Id: III
Address: - Number of Polls: 363
MODBUS Point Type Valid Slave Responses: 334
Length: 50 | [03: HOLDING REGISTER ~| Reset Ctrs |
40001 «<00001> 40017: <00000: 40033:; <00000: 40049; <00000 ;>
40002: <00002: 4001%8: <00000: 40034: <00000: 40050: <00000:
40003 : <00003: 40019: <00000: 40035: <00000:
40004 «<00004 > 40020: <00000: 40036: <00000:
40005: <00005: 40021: <00000: 40037: <00000:
40006 : <00006: 40022: <00000: 40038: <00000:
40007 00007 > 40023: <00000: 40039 <00000;:
4000%8: <00008: 40024: <00000: 40040: <00000:
40009 : <00009: 40025: <00000: 40041: <00000:
40010: <00010: 40026: <00000: 40042: <00000:
40011: <00000: 40027: <00000: 40043: <00000:
40012: <00000: 40028: <00000: 40044: <00000:
40013: <00000: 40029: <00000: 40045: <00000:
40014: <00000: 40030: <00000: 40046: <00000:
40015: <00000: 40031: <00000: 40047 : <00000:
40016: <00000: 40032: <00000: 40048: <00000:

Figure 7.11: New values written and read back, Quickstep registers 1 to 5, Modbus 1 to 10

If any errors occur, a Modbus exception will occur. One such common error is
attempting to read too many registers or illegal registers. Below is what is returned if >
120 Modbus registers are attempted:

((: Control Technology Corporation
Document 951-530002-0013 01/15

47

Model 5300 Communications & Logging Guide

== MuodScan32 - [ModScal]
g File Connection Setup View ‘Window Help

D= =6 =& 32

b EEE =E ==

Device Id: | 1
. Number of Polls: 400
Address: MODBUS Point Type

Yalid Slave Hesponses: 294

Length: [125 |03: HOLDING REGISTER = Reset Ctrs |

#*%* MODBEUS Exception Eesponse from Slave Device **

40001: <0001H: 40038: <0000H: 40075: <0000H: 40112: <0000H:
40002 <0002H: 40039: <0000H: 40076: <0000H: 40113: <0000H:
40003 : «<0003H: 40040: <00O00H: 40077: <0000H: 40114: <0000H:
40004 : <0OO004H> 40041: <0000H> 40078: <0000H: 40115: <0000H:
40005 <0OO00S5H: 40042: <0000H: 40079: <0000H: 40116: <0000H:
40006 : <0006H: 40043: <0000H: 40080: <0000H: 40117: <0000H:
40007 : «<0007H: 40044: <0000H: 40081: <0000H: 40118: <0000H:
40008 : «000B8H: 40045: <0000H: 40082: <0000H: 40119: <0000H:
40009 <0009H: 40046: <0000H: 40083: <0000H: 40120: <0000H:
40010: <0010H: 40047: <0000H: 40084: <0000H: 40121: <0000H:
40011: <0O000OH: 40048: <0000H: 40085: <0000H: 40122: <0000H:
40012: «<0000H: 40049: <00O00H: 40086: <0000H: 40123: <0000H:
40013: <0OO000OH: 40050: <QO0OO0OH: 40087: <0000H: 40124: <0000H:
40014 <0000OH> 40051: <00O00H: 40088: <0000H: 40125: <0000H:

Figure 7.12: Modbus Exception Example > 120 registers

Editing the 125 appropriately will update the error. Below is an example of displaying
registers in the 13002 block of the Model 5300 controller. 13002 is the system
millisecond tic counter. Real time clock/date values can also be seen incrementing in
other registers dynamically. Note that 26003 is the high 16 bits of 13002 and 26004
(13002 * 2) is the base lower 16 bits.

((: Control Technology Corporation 48
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Device Id:
Address: (26003 evice III Number of Polls: 532

MODBUS Point Type Valid Slave Responses:
Length: |50 |03: HOLDING REGISTER ~| Reset |

426003 : «<00091: 426019: «<00000> 426035: <00000: 426051: <00000:
426004: «<02022:> 426020: <00000> 426036: <00001: 426052: <00000¢3
426005: <00000: 426021: <00000> 42603%: <00000:
426006: «<40512: 426022: «<00000:> 426038: <00158:
426007 : «<00000: 426023: <00000: 426039: <00000:
426008: <00001:> 426024: <00000> 426040: <00002:
426009: «<00000:> 426025: <00000:> 426041: <00000:
426010 <00000> 426026: <00001:> 426042: <00000:
426011: «<00000: 426027: «<00000: 426043: <00000:
426012: «<00000:> 426028: «<00036:> 426044: <00000:
426013: <00153: 426029: <00000> 426045: <00000:
426014 : «<27378: 426030: «<00034: 426046: <00000:
426015: «<00000: 426031: <00000: 426047: <00000:
426016: <00015: 426032: «<00020:> 426048: <00000:
426017 : «<00000:> 426033: <00000: 426049: <00000:
426018 <00001> 426034: <00021: 426050: <00000:

Figure 7.13: Display of controller system tic, dynamically updating, 426003/4

A maximum of 32 simultaneous Modbus TCP Slave connections are allowed at
one time. Idle connections will timeout in about 1 minute.

((: Control Technology Corporation 49
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Modbus Slave Serial RTU/ASCII

The Modbus Slave Serial RTU and ASCII protocol functions exactly like that of Modbus
TCP Slave with regards to how to access information and ModScan32 operation (see
figure 7.14 for serial port setup versus TCP). There are some key differences since an
RS232 connection is used versus a network connection.

==ModScal
Device Id:
Address: - Number of Polls: 0
MODBUS Point Type Valid Slave Responses: 0

Length: |50 |03: HOLDING REGISTER ~| Reset Clrs

Connection Details
Connect Using:
|Direu:t Connection ko COM1 j

|F Adldress: |1 24053200
Semvice Port; |502

— Configuration

Baud Rate: I'I 3200 "I
[~ wait for DSR from slave
*ward Length: I8 "I Delay ||:| ms after RTS before

tranzmitting first character

Parity: INDNE "I [T wait for CTS from slave
_ Delay II:I mz after last character
Stop Bits: I'I "I before releazing RTS

— Hardware Flow Contral

Bl Modbus Protocol Selections E3 |
Protor Tranzmizsion Mode
STAMDARD DAMIEL/EMROMATRAM|
DE.
" ASCH & RTU ASCI ¢ RBTU

40016: <00000> 40032: <00000:

— Slave Fesponze Timeout
500 [mzecs]

— Delay Between Pollz
289 [mzecs)

[™ Force modbuz command 15 and 16 for zingle-point wites,
[To be uzed in cazes where the slave does not support the
zingle-point write functions 05 and 06.]

Ok I Cancel

Figure 7.14: ModScan32 Master Scanning Program Serial Connection Setup, select RTU or ASCI|I
Transmission Mode.

They are as follows:

@ Control Technology Corporation 50
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

1. The virtual TCP communication ports may also be used except for point to point
operations with a single address present. In other words, the communications
traffic of other Modbus nodes should not be present on the virtual port, although
they can be on COM1/2. This is necessary because Modbus specifies a 3.5
character quiet time between packets and a maximum of a 1.5 inter-character
delay during the continuous transmission of a packet data stream in RTU mode (1
second for ASCII mode). The virtual ports cannot guarantee these timing
constraints, although from a high level protocol viewpoint, the ports do comply.

2. By default, the Modbus protocol is disabled on the serial and virtual ports. To
enable the port, it must be the active port in the 12000 register and the proper
Modbus protocol must be written to register 12320. Note that by default the slave
port address is 2 and that any value written as the Modbus slave address will be
that used on all serial ports, system wide. Note that writing a value of 0 to
register 12320 will disable Modbus and return the port to normal CTC protocol
operation.

When Modbus is enabled on a serial port using CTC MON, no further
communications will be available on that port except with Modbus. In other words, you
will lose your CTC MON link if talking on the same port that is selected as active in
register 12000.

Modbus Master TCP RTU & Serial RTU/ASCII

The Modbus Master protocol allows the controller to poll a Modbus TCP or Serial slave
device, periodically requesting the registers for a particular device ID. The Model 5300
controller is capable of polling the Holding Registers (R/W, 4XXXX Modbus registers),
Input Registers (read only by Modbus definition, 3XXXX Modbus registers), Input
Status Registers (read only by Modbus definition, 1XXXX), and Coil Status Registers
(R/W, OXXXX Modbus registers) of a remote device. Write Single Holding Register
(function code 0x06), Write Multiple Holding Registers (function code 0x10), Read
Holding Registers (0x03), Read Coil Status (function code 0x01), Force Single Coil
(function code 0x05), Read Input Status Registers (function code 0x02), and Read Input
Registers (0x04) commands are supported. Multidrop mode is supported for serial ports
although the exact timings of the Modbus specification may not apply, confirmation with
the specific device is required. This typically is not a problem since the 5300 is less strict
with character timeouts than the actual specification.

With firmware prior to R44 the Serial Modbus Master did not support multidrop or
Coil/Input Registers, and the 5300 only polled a single device ID. The active device ID
register also had to be changed in order to begin polling a different device. Those who
required slow scanning of multiple devices changed the device ID within the Modbus
Master Register Control Block (21000-21299, shared with the UDP Peer to Peer register
block) by the use of a Quickstep/QuickBuilder program. This caused all subsequent polls
to use that device ID and hence allow the reading/writing of multiple devices. With
release R44 and later this is now automatic by simply defining multiple 21XXX blocks
referencing the same serial port as the COM port. The Device ID should not be changed,
after initially set. Each 21XXX block can now specify a unique device ID to be polled.

((: Control Technology Corporation 51
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

A maximum of 256 sequential Modbus registers (16 bit) can be polled, each optionally
mapped to a corresponding controller register (32 bit, 21XX8, index 1007). You may
also adjust the active start register by changing register 21XX4, described in 3.2.1,
dynamically. The controller will read a maximum of 120 RTU (56 ASCII) registers per
packet request. This means if the number of registers desired is 50, then 50 will be read
with each poll. If the number of registers is greater than 120, then multiple requests are
made. If 256 registers are requested in RTU mode, for example, the first 120 are read,
then the next 120, then the remaining 16, all transparently to the user/programmer. When
using the remapping register option, all registers will appear sequential within the 23000-
24999 register blocks. Simply read and write as desired.

Registers 21000-21299

The Model 5300 controller can run numerous Modbus TCP Master connections and a
RTU/ASCII Serial connections at the same time, to differing devices, limited only by the
performance desired. Each is configured using the Modbus Master Register Control
Block (MMRCB). This same block serves multiple purposes and is shared with the UDP
Peer to Peer Protocol register block detailed in the Registers 21000-21299 section.

21000- TCP Peer to Peer and Modbus Master Parameters: R/W, starts at 21000 and repeated every 10 blocks as
21299 follows:

21XX0 - First Octet IP Address Register (Most Significant) - R/W

This is the first octet of the IP address (XXX.000.000.000) to connect to.
21XX1 - Second Octet IP Address Register - R/W

This is the second octet of the IP address (000.XXX.000.000) to connect to.
21XX2 - Third Octet IP Address Register - R/W

This is the third octet of the IP address (000.000.XXX.000) to connect to.
21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W
This is the fourth octet of the IP address (000.000.000.XXX) to connect to.
21XX4 - Start Register - R/W

This register stores the starting register address that is to be read from the remote device.
21XX5 - Sequential Number Register - R/W

This register stores the number of sequential registers (starting with Register 21XX4) you want to read
during a polling session. The value 1 represents a single register and the maximum number of registers
allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before
setting up any other registers. Do not change this value during a transaction or all data will be lost and
new values will have to be entered. If you modify this register, it lets you reset the connection. All register
reads from remote devices will be the same block size. For Modbus Master this register is the default; see
21XXX8, 1011 to change when polling differing devices. This register must be written first to define the
required storage size; upon initialization all other registers will become available. To disable an active
connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters.

21XX6 - Poll Timer Register - R/W

Set this register to O for a single read request else set the scan rate in milliseconds. The minimum value
allowed is 50 ms for Peer to Peer and 10 ms for Modbus. You can write to this register at any time.

21XX7 - Status Flag Register — R

This register reflects the current status of the data registers. Its value is based on any requested
operations. Typically, you initiate an operation and then wait for a status of 1. Possible values are:

0 - Offline; no connection is present.

1 - Last request is successful and completed. Data is available in the data registers if requested.
Read or Write may now be done.

((: Control Technology Corporation 52
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

21000-
21299

Cont'd

21000-
21299
Cont’d

-1 - Requested operation has failed; typically a Modbus Exception error
-2 - Busy; connecting to the desired host.

-3 - Busy; reading data.

-4 - Busy; writing data.

-5 - Timed out; poll timeout on a device by Modbus Master.

-10 - Aborted operation; out of local memory or resources.

21XX8 - Index Offset Register - R/W

This register lets you access each of the requested sequential data registers. It works in conjunction with
Register 21XX9 and acts as its array pointer. You can store the number of a general or special purpose
register in 21XX8 and 21XX9 can then access the resource contained in the pointer. By default 0, this
register points to the very first data element read from the remote device. This would be equivalent to
what you set the Start Register to begin with (21XX4). Incrementing this register allows you to access
other data elements, like an array. Register 21XX9 can then be read or written accordingly. The index
register also has a few special features when you set it to 1000 or above.

1000 - Peer Request Time-Out Register — (R/W) The timer starts when a peer node request is
initiated and stops (times out) if no response is received within the time specified by this
register. Retries only occur if automatic updates are active (Register 21XX6 is set to a value
other than 0). Defaults are 500 ms for single register reads and time-out value*2.5 for
automatically updated register read transactions.

1001 - Peer Request Failed Index Register —(R) This register indicates when a peer transaction
fails and an error occurs. The Status Flag Register (21XX7) is set to a value other than 1. Any
data that was read or written when the error occurred has an offset value that is stored in 1001.
If you read the data register, it returns the offset failure value. Data written before this offset
value is valid. For example, if your process continuously updates 50 registers and the register
returns a value of 25, it means the process failed while trying to write the 25" element of data.
All data written before this element was written correctly.

1002 - Peer Request Retry Counter Index Register — (R/W) This debugging register points the
data register to the retry counter. Quickstep can set this register to any value. The register is
incremented by 1 when a time-out occurs because of waiting for data from a peer node.

1003 - Protocol Index Register - (R/W) This register tells the data register what protocol to use
for setting the peer block registers. You must set this register before setting the Start Register
(21XX4). Default mode is O for UDP Peer-to-Peer protocol. 2 is used for Modbus TCP Master
mode, 3 for Modbus Master RTU Serial on COM1 (TBD), 8 is CTC Binary Master UDP (port 3000),
9 is CTC Binary Master TCP (port 6000). Note the Binary Master protocol allows connection to
2700 series controllers.

1004 - TCP Client Port Index Register - (R/W) This register points the data register to the
destination TCP Port address for your connection. You must set this register before setting the
Start Register (21XX4). 1004 is currently used for Modbus TCP and serial Master mode with a
default port number of 502 for TCP and 1 for serial (COM1). Not used for the CTC Binary Master
protocol. For that protocol it is fixed to 3000 for UDP and 6000 for TCP.

1005 - Modbus Master Unit ID Index Register - (R/W) This register points the data register to
the Device/Unit ID field value used in the Modbus Master request packet. The default ID is ‘1’
but you can set it to any desired value. This ID affects all subsequent transmissions and allows
multiplexed devices to be addressed in a Modbus environment.

1006 - Modbus Master Exception Index Register - (R) This register allows you to interrogate
the last Modbus Exception error code received from the data register (21XX9). Referencing this
register

helps to interpret failure types. Typically you would reference this register if a '-1" appears as
the current status in register 21XX7.

1007 - Register Remapping Start Index Register - (R/W) This option allows remote registers to
be mapped into the 23000 to 24999 consecutive memory space. Previously an index register at
21XX8 needed to be set then data read from 21XX9. This can result in slow operation if a lot of
data needs to be transferred. Setting 21XX8 to 1007 and then writing the register value from

((: Control Technology Corporation 53
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

23000 to 24999 will allow all data to be remapped to that register block area, consecutively,
based upon the block size (21XX5). A write to the

remapped area will result in a remote write. By default re-mapping is not active.

1008 - Modbus Master MAX Retries Register — (R/W) This register allows you to change the
maximum number of retry attempts on a Unit ID before giving up. Default is 2.

1009 - Modbus Master Retry Counter Register - (R/W) This register allows you to observe and
change the current number of message retries to the current Unit ID.

1010 - Modbus Master Timeout Register - (R/W) This register allows you to change the
default Unit ID timeout from 50 milliseconds to that desired, in milliseconds.

1011 - Modbus Master Block Size Register — (R/W) This register sets the number of Holding
Registers to be accessed. Must be the same or smaller than the Sequential Number Register,
defaults to the same. Used to access Unit ID's with varying block sizes when manually changing
the Unit ID under program control.

1012 - Random Index Register - (R/W) CTC Binary Master protocol only. -1 default, with 1013
of -1 means normal peer to peer automatic sequential registers. If 1013 is not -1 then this
register may be used to offset to the 1014 register window. All values appear in 21XX9. Writing
a -1 to this register clears the registers set by writes to the Random Register Window and
restores sequential mode. Typically this register is not accessed. After setting random registers
(1014) it can be used to view what has been set. In other words setting this to a 2 would cause
the third (0 based) register to be selected in the Random Register Window when that index is
set.

1013 - Number of Random Registers Initialized - (R Only) CTC Binary Master protocol only.
Number of random registers initialized, up to 21XX5 max. -1 means none, default (sequential
mode). All values appear in 21XX9. Note that this is only if random access mode is being used,
else -1 means sequential, reference offset 1014 for further information.

1014 - Random Register Window - (R/W) CTC Binary Master protocol only. During
initialization write the desired sequence to 21XX9 with 21XX8 set to 1014 and that will be the
registers scanned, up to 256. If you do nothing sequential mode is use and accessed registers
begin with that specified in 21XX4.

Each write automatically increments the index. If a O is set, or not all the registers are set to a
value, the default will be sequential for the remaining registers. For example if 5 registers are to
be scanned and only write 4 times to this register, the first 4 accessed will be what was written,
since the last register was not set the sequential mode will be used for that and since this is
offset 4, the starting register 21XX4 is referenced, if 21XX4 was 1, 1 + 4 (0 based), register 5
would be accessed for that slot.

Once initialized offset 1012 may be modified to change a register, base 0 (first). Writing a -1 to
1012 will clear the stored registers and put it back to sequential mode. Do not do this while
connected.

1015 - Multidrop Indicator Register - (R Only) Used in Modbus Master Serial mode to indicate
that the serial port being used has more than one poll definition for it and is currently in
multidrop mode. O = normal single poll address, 1 = multidrop.

1016 — Modus Access Register — (R/W) By default Modbus Master polls the 4XXXX block of
Modbus registers known as Holding Registers. To access an alternate register block set register
as follows:

0 - (0XXXX) Coils, each coil represents a 32 bit value, 1 or O, r/w.

1 - (1XXXX) Input Status (read only), each input represents a 32 bit value, 1 or 0.
3 - (3XXXX) Input Registers (read only), 16 bit value stored in 32 bit register.

4 — (4XXXX) Holding Registers, r/w, default, 16 bit value stored in 32 bit register.

1017 - Multidrop Offline Loop Count Register - (R/W) Used in Modbus Master Serial mode to
define the number of online poll cycles to complete before attempting an offline node. By
default this is 10 polls of online nodes to every one of an offline node. After each cycle a
different offline node will be attempted.

Modbus Write Multiple

1996 - Block offset. By default 0, number of words to offset in data buffer array when
initiating a block write operation. This can be thought of as the index into the array that would

((: Control Technology Corporation 54
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

be placed in 21XX8 for 21XX9 to access the data.
1997 - Block Write length. Must be <= 21XX5. This is the number of 16 bit words to write
starting at the Block Offset in the data array (21XX9).

1998 — Block Write Control. Must set to 0 in order to load the data array. 1 will cause a
Modbus write multiple to occur with the set Block Write length. After processing this will be set
to 0 whereupon it can be reloaded and a 1 set again for the next transmission. Monitor 21XX7
for successful completion status. In order to begin receiving again and modify Start Register
21XX4 the Block Write Control must be unlocked by writing a 2 to it, whereupon a 1 will be read
back.

Example: Modbus TCP & RTU Serial Master Initialization

An example of Quickstep initialization code is shown below to set up a connection to the
following remote device:

Modbus TCP Master Sample Program

IP address - 12.40.53.168

Device ID - 1

Number of sequential registers to read - 160

Scan time - 100 ms. (set last to initiate)

Starting Register - 1

Re-map registers to consecutive block beginning at registers 23000.
This is the first setup so use 21000, next would be 21010... 21020, etc...

[1] Initialize ModbusMaster
;77 This program is used to initialize the TCP port
;7; for Modbus TCP Master operation. A single
;77 device is polled using device ID 1 and 160 registers
;;; are read and mapped into the 23000 block. Therefore
;;; registers 23000 - 23159 are used, with 23000 referencing
;;; Modbus Register #1. Make sure your Modbus device has
;77 at least 160 consecutive registers starting at '1l'
;;; otherwise Modbus Exceptions will occur.
;;; Begin by doing the following:
;77 21005 = Maximum number of registers to read (160)
;77 21000 - 21003 = Set this to be the IP address to

ii connect to. In this example we

Pii will use 12.40.53.168

;75 21004 = Modbus start register (1)

;77 21008 = 1003 = Set index to point to protocol register

;70 21009 = 2 = Set protocol to Modbus TCP Master

;55 21008 = 1004 = Set TCP port to connect to, default is 502

;77 21009 = 502 = For demo set port to 502 even though

i default

;75 21008 = 1007 = Set index to point to where to view data

;75 21009 = 23000 = Start remapped area at 23000 for 160 regs.

;50 21008 =0 = Always set the index back to 0 before

i begin

;75 21006 = 100 = Set scan poll time to 100 ms./block read,
((: Control Technology Corporation 55

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

P min is 50ms. This also initiates polling.

store 160 to reg 21005
store 12 to reg 21000
store 40 to reg 21001
store 53 to reg 21002
store 168 to reg 21003
store 1 to reg 21004
store 1003 to reg 21008
store 2 to reg 21009
store 1004 to reg 21008
store 502 to reg 21009
store 1007 to reg 21008
store 23000 to reg 21009
store 0 to reg 21008
store 100 to reg 21006
goto Next

[2] Wait For Online
;77 Once Modbus Master starts to poll we must wait until
;77 1t is online before proceeding.

if reg 21007=1 goto Modbus Online
delay 500 ms goto Wait For Online

[3] Modbus Online
;77 It is OK to read and process data now since Modbus
;77 1s online to the device. TIf you wish to monitor another
;77 device other than Unit ID 1, then change the index
;7 register 21008 to 1005 and write the desired Unit ID to
;75 register 21009, then set 21008 back to 0 and monitor 21007
;:; for a 1 for online state, once again. Results will appear
;75 1n the 23000 block.

delay 1000 ms goto Modbus Online

When Reg_21007 is equal to a 1, then the connection is active and you may interact with
the remote device. If a 3 had been written to 1003, then Modbus Master RTU Serial on
COM1 would be used.

Modbus RTU Serial Master Sample Program

IP address - 12.40.53.168 (can be set to any value other than —1)
Device ID - 1

Number of sequential registers to read - 160

Scan time - 100 ms. (set last to initiate)

Starting Register - 1

((: Control Technology Corporation 56
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Serial Port - COM1
Remap registers to consecutive block beginning at registers 23000.
This is the first setup so use 21000, next would be 21010... 21020, etc...

[1] Initialize ModbusMaster
;77 This program is used to initialize the COM1 port
;77 for Modbus RTU Serial Master operation. A single
;7 device is polled using device ID 1 and 160 registers
;;; are read and mapped into the 23000 block. Therefore
;77 registers 23000 - 23159 are used, with 23000 referencing
;7 Modbus Register #1. Make sure your Modbus device has
;;; at least 160 consecutive registers starting at '1l'
;;; otherwise Modbus Exceptions will occur.
;7 Begin by doing the following:
;77 21005 = Maximum number of registers to read (160)
;77 21000 - 21003 = Any value, required to unlock register
H group, on Modbus TCP this is the IP
Pii address for a connection.
;77 21004 = Modbus start register (1)
;77 21008 = 1003 = Set index to point to protocol register
;75 21009 = 3 = Set protocol to Modbus RTU Serial (4 for
i ASCII Serial)
;75 21008 = 1004 = Set serial port to use, default is 1
;75 21009 =1 = For demo set port to 1 even though default
HH if define more than one 21XXX block with
ii same serial port will become multidrop
;75 21008 = 1007 = Set index to point to where to view data
;75 21009 = 23000 = Start remapped area at 23000 for 160 regs.
;50 21008 =0 = Always set the index back to 0 before
i begin
;75 21006 = 100 = Set scan poll time to 100 ms./block read,
N min is 10ms. This also initiates polling.
<NO CHANGE IN DIGITAL OUTPUTS>
store 160 to reg 21005
store 10 to reg 21000
store 10 to reg 21001
store 10 to reg 21002
store 10 to reg 21003
store 1 to reg 21004
store 1003 to reg 21008
store 3 to reg 21009
store 1004 to reg 21008
store 1 to reg 21009
store 1007 to reg 21008
store 23000 to reg 21009
store 0 to reg 21008
store 100 to reg 21006
goto Next
[2] Wait For Online
;77 Once Modbus Master starts to poll we must wait until
;;; 1t is online before proceeding.
@ Control Technology Corporation 57

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

if reg 21007=1 goto Modbus Online
delay 500 ms goto Wait For Online

[3] Modbus Online
;77 It is OK to read and process data now since Modbus
;77 1s online to the device. If you wish to monitor another
;77 device other than Unit ID 1, then change the index
;7 register 21008 to 1005 and write the desired Unit ID to
;77 register 21009, then set 21008 back to 0 and monitor 21007
;;; for a 1 for online state, once again. Results will appear
;77 1in the 23000 block.

delay 1000 ms goto Modbus Online

Modbus RTU Serial Master Multidrop QuickBuilder Initialization

ipl
ip2

IP address — 172.16.2.26 (can be set to any value other than —1)

DeviceID-1, 2,3

Number of registers to read — 10 from each with Input Registers from node 3
instead of Holding Registers.

Scan time - 150 ms. (set last to initiate polling)

Starting Register - 3

Serial Port — COM3 (note that the 5300 can be supplied with RS485 COM3).
Remap registers to consecutive block beginning at registers 23001, 23011, 23021.

2;
26;

polltime = 150; // Time between polls, this is about the fastest for USB to serial

/*

// converters

CTC Binary Protocol UDP:

protocol - 8
commport - 3000

CTC Binary Protocol TCP:

protocol - 9
commport - 6000

Modbus RTU Serial:

protocol - 3
commport - 1 for COM1l, 2 for COM2, 3 for COM3, 4 for COM4

Modbus ASCII Serial:

protocol - 4
commport - 1 for COM1l, 2 for COM2, 3 for COM3, 4 for COM4

Modbus RTU TCP:

*/

commport
protocol

protocol - 2
commport - 502

3;
3; // RTU

timeout = 250; // Amount of milliseconds to wait till receive response.

((: Control Technology Corporation 58
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

// This must be TX packet + RX packet time since timer starts at
// beginning of transmission while awaiting full receive response.
// Thus more registers read the larger this value needs to be.

// Number of multidrop nodes on this commport
numNodes = 3;

// Number of poll loops until check an offline node, default is 10, if all offline
// then every poll.
offlineLoops = 5;

// Must reset the connection on each node and wait until it is shutdown in case
// this is a restart
baseReg = 21005; // Number of Ports definition register
for i = 0 to numNodes repeat {
// Clear connections for each node defined

if (SREGISTERS[baseReg + (i*10)] != -1) then
{
SREGISTERS [baseReg + (i*10)] = -1; // Set Number of registers to read
// to -1 to clear old connection
while ($REGISTERS[baseReg + (i*10)] !'= -1) repeat { };

}i

basereg = 21000;

SREGISTERS [basereg+5] = 10; //Number of registers to read

SREGISTERS [basereg] = 172; // IP Address, if serial set to anything

SREGISTERS [basereg+l] = 16; // IP Address

SREGISTERS [basereg+2] = ipl; // IP Address

SREGISTERS [basereg+3] = ip2; // IP Address

SREGISTERS [basereg+4] = 1; // Modbus start register 0000H

SREGISTERS [basereg+8] = 1003; // Set index to point to protocol register

SREGISTERS [basereg+9] = protocol; // Set protocol to that defined

SREGISTERS [basereg+8] = 1004; // Set index to port definition

SREGISTERS [basereg+9] = commport; // Port to that defined

SREGISTERS [basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter

SREGISTERS [basereg+9] = 1; // Set Slave ID to poll

SREGISTERS [basereg+8] = 1007; // Set index to Remap register definition

SREGISTERS [basereg+9] = 23001; // Set register to remap Modbus access to

SREGISTERS [basereg+8] = 1010; // Set index to packet timeout

SREGISTERS [basereg+9] = timeout; // Set packet timeout value in milliseconds.

SREGISTERS [basereg+8] = 1017; // Set index to offline loop counter

SREGISTERS [basereg+9] = offlineLoops;// Set number of poll cycles before attempt an
// offline node.

SREGISTERS [basereg+8] = 0; // Set index to 0 when done

SREGISTERS [basereg+6] = polltime; // Set Poll Rate in mS for this node (delay from
// last packet sent to any node) .
// This will start everything

basereg = 21010;

SREGISTERS [basereg+5] = 10; //Number of registers to read

SREGISTERS [basereg] = 172; // IP Address, if serial set to anything

SREGISTERS [basereg+l] = 16; // IP Address

SREGISTERS [basereg+2] = ipl; // IP Address

SREGISTERS [basereg+3] = ip2; // IP Address

SREGISTERS [basereg+4] = 11; // Modbus start register 0000H

SREGISTERS [basereg+8] = 1003; // Set index to point to protocol register

SREGISTERS [basereg+9] = protocol; // Set protocol to that defined

SREGISTERS [basereg+8] = 1004; // Set index to port definition

SREGISTERS [basereg+9] = commport; // Port to that defined

SREGISTERS [basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter

SREGISTERS [basereg+9] = 2; // Set Slave ID to poll

SREGISTERS [basereg+8] = 1007; // Set index to Remap regsiter definition

SREGISTERS [basereg+9] = 23011; // Set register to remap Modbus access to

SREGISTERS [basereg+8] = 1010; // Set index to packet timeout

SREGISTERS [basereg+9] = timeout; // Set packet timeout value in milliseconds.

SREGISTERS [basereg+8] = 1017; // Set index to offline loop counter

@ Control Technology Corporation 59

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

SREGISTERS [basereg+9]
offline node.

offlineLoops; // Set number of poll cycles before attempt an

SREGISTERS [basereg+8] = 0; // Set index to 0 when done
SREGISTERS [basereg+6] = polltime; // Set Poll Rate in mS for this node (delay from
// last packet sent to any node). This will start

// everything

basereg = 21020;

SREGISTERS [basereg+5] = 10; //Number of registers to read
SREGISTERS [basereg] = 172; // IP Address, 1f serial set to anything
SREGISTERS [basereg+l] = 16; // IP Address
SREGISTERS [basereg+2] = ipl; // IP Address
SREGISTERS [basereg+3] = ip2; // IP Address
SREGISTERS [basereg+4] = 21; // Modbus start register 0000H
SREGISTERS [basereg+8] = 1003; // Set index to point to protocol register
SREGISTERS [basereg+9] = protocol; // Set protocol to that defined
SREGISTERS [basereg+8] = 1004; // Set index to port definition
SREGISTERS [basereg+9] = commport; // Port to that defined
SREGISTERS [basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter
SREGISTERS [basereg+9] = 3; // Set Slave ID to poll
SREGISTERS [basereg+8] = 1007; // Set index to Remap regsiter definition
SREGISTERS [basereg+9] = 23021; // Set register to remap Modbus access to
SREGISTERS [basereg+8] = 1010; // Set index to packet timeout
SREGISTERS [basereg+9] = timeout; // Set packet timeout value in milliseconds.
SREGISTERS [basereg+8] = 1017; // Set index to offline loop counter

[1

SREGISTERS [basereg+9] = offlineLoops; // Set number of poll cycles before attempt an

// offline node.

SREGISTERS [basereg+8] = 1016; // Set index to Input Register Selection (3XXXX)

SREGISTERS [basereg+9] = 3; // Set to 3XXXX.

SREGISTERS [basereg+8] = 0; // Set index to 0 when done

SREGISTERS [basereg+6] = polltime; // Set Poll Rate in mS for this node (delay from
// last packet sent to any node). This will start

// everything

Testing with Win-Tech’s ModSim32

As a demonstration of the functionality of the controller Modbus Master interface, this
section details the interface of Win-Tech’s ModSim32 software and how it applies with
regard to our product. It is assumed that the controller Modbus TCP Master or Serial is
set up to point to the PC and is attempting a connection. As mentioned before, we only
support the Holding Register interface. Upon invoking ModSim32 the screen below will
appear.

B Modsim3?

| %
151

File Conmection Wiew Help

((: Control Technology Corporation 60
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

In order to activate the Modbus slave, you must select the Connection menu item and the
method of the connection, Modbus/TCP Svr for network or the appropriate Port # for a

serial port.

B ModSim32?

]

File | Connection Wiew Help

Connect

Disconneck

¥ Modsim32
File | Connection Miew Help

Potk 2 t!

Part 3
Part 4
Park 5
Park &
Part 7
Paork &
Park
Modbus! TCP Swr

Conneck

Disconnect *

If Serial, select RTU or ASCII and set the baud rate, stop bits, and parity appropriately.
Default for the Model 5300 is 19.2K baud, 8 data bits, 1 stop bit, no parity. However,
this is not the default for ModSim and must be changed as shown below:

Setup Comm Pork 1

— Pratacal

& RTU & ascl

[T Daniel/ENROMN protocal

Baud Fate:

Farity:

I'IEIEEIEI vI

D ata Bikg:

Jo

Stop Bitz:

HOME -

— Hardware Flovs Control

[“wlait for DTR from Master

Delay ||:| ms after RTS befaore

tranzmitting first character
[®fait for CTS From baster

Delay ||:| ms after last character

before releasing ATS

o]

Cancel

@ Control Technology Corporation
Document 951-530002-0013 01/15

61

Model 5300 Communications & Logging Guide

Next, devices must be created to listen to the requests. This is done using menu
selection: File-> New:

¥ Modsim32

File Connection Yiew Help

Dpern. .. % Chrl+ir

Restore Test Config

B9 Modsim32 - ModSim1

File Connection Display ‘Window Help

Device Id: | 1

Address: MODBUS Point Type
03: HOLDING REGISTER -
Lengih: | i
40100: {00000 401 25: £00000% 40150: {00000 40175: <00000
40101: <00000 401 26: 00000 40151: <00000 40176: <00000
40102: <00000 40127 <00000% 40152: <00000 40177 <00000
40103: <00000% 40128: <00000% 40153: <00000% 40178: <00000
40104: <00000> 40129: <00000> 40154: <00000> 40179: <00000>
401 0%: <000003 40130: <00000%> 40155: <000003 40180: <00000>
40106: <00000 40131: £00000% 40156: {00000 40181: <00000
A0107: {00000 40132: <00000% 40157: <00000 40182: <00000
40108: <00000 40133: <00000% 40158: <00000 40183: <00000
40109: <00000 401 34: <00000% 40159: <00000D 40184: <00000
40110: <00000 401 35: <00000% 40160: <0000D 40185: <00000
40111: <00000> 401 36: <00000> 40161: <00000> 40186: <00000>
40112: {00000 40137: <00000% 40162: {00000 A0187: <00000
40113: <00000 401 38: <00000% 40163: <00000 40188: <00000
40114: <00000 401 39: <00000% 40164: {00000 40189: <00000
40115: <00000 40140: <00000 401 65: <00000 40180: <00000
40116: <00000 40141: <00000 40166: <0000D 40191: <00000
40117: <00000> 401 42: <00000> 40167 <00000> 40192: <00000>
40114: <000003 401 43: <00000> 401 68: <000003 40193: <00000>
40119: <00000 401 44: {00000 40169: {00000 40194: {00000
40120: <00000 401 45: 00000 40170: {00000 40195: <00000
40121: <00000 40146: 00000 40171: <00000 40196: <00000
40122: <00000% 40147: <00000% 40172: <00000 40197: <00000
40123: <00000% 401 48: <00000% 40173: <00000% 40198: <00000
401 24: <00000> 401 49: <00000> 401 74: <00000> 40199: <00000>
KTl

In order to access this device, the controller must have its Device ID set to 1 (the default)
and the Starting Address set to 100. If not set correctly, an exception status will be

C Control Technology Corporation 62
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

returned upon connection and 21XX7 register will contain a -1. To set the Device ID to a
3, as in our example, modify as below:

File Connection Display Window Help
Device Id: | 3 L\\S
Address: MODBUS Point Type
03: HOLDING REGISTER ~
Longih | i

A0100: <00000% 40125: <00000%> 40150: <00000 401 75: <00000
A0101: <00000% 40126: <00000 40151: <00000 401 76: <00000
A0102: <00000% 40127: <00000% 40152: <00000 401 77: <00000
40103: <00000% 40128: <00000% 40153: <00000 40178: <00000
A0104: <00000 40129: <00000% 40154:; <00000 40179: <00000>
A0105: <00000% 40130: <00000% 40155: <00000 40180: <000003
A0106: <00000% 40131: <00000% 40156: <00000: 40181: <00000
A0107: <00000% 40132: <00000% 40157 <00000 40182: <00000
40108: <00000% 40133: <00000% 40158: <00000 40183: <00000
A0109: <00000 40134: <00000% 40159:; <00000 40184: <00000>
A0110; <00000 40135%: <00000% 40160; <00000 40185: <00000>
A0111: <00000% 40136: <00000% 40161 <00000: 40186: <00000
A0112: <00000% 40137: <00000% 40162: <00000: 401 87: <00000
40113: <00000% 40138: <00000% 40163: <00000 40188: <00000
40114: <00000% 40139: <00000% 40164: <00000 40189: <00000
A0115: <00000 40140; <00000% 4016%; <00000> 40190; <00000>
A0116: <00000% 401 41: <00000% 40166: <00000: 40191: <000003
A0117: <00000% 401 42: <00000%> A0167: <00000: 40192: <00000
A0118: <00000% 40143: <00000% 40168: <00000 40193: <00000
40119: <00000% 40144: <00000% 40169: <00000 40194: <00000
40120: <00000% 401 45: <000003 40170: <00000 40195: <00000
A0121: <00000 401 46; <00000% 40171: <00000 40196: <00000>
A0122: <00000% A0147: <00000% 40172: <00000 40197: <00000
A0123: <00000% 401 48: <00000% 4017 3: <00000: 40198: <00000
40124: <00000% 40149: <00000 40174: <00000 40199: <00000
|

Note that the Address field is set to 100, but the display screen starts at 40100. This is
Modbus nomenclature. To modify a device Holding Register contents, simply double
click on the address and enter the new value in the dialog that appears:

C Control Technology Corporation 63
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

B¥Modsim32 - Modsim1

File Connection Display Window Help

Device Id:

Address: MODBUS Point Type
03: HOLDING REGISTER ~
Longih: | i
40100: <0000A> 40125: <00000> 40150: <00000> 40175: <00000>
40101: <000 40126: <00000> 40151: <00000> 40176: <00000>
40102: <00000> 40127: <00000> 40152: <00000> 40177: <00000>
40103: <00000> 40128: <00000> 40153: <00000> 40178: <00000>
40104; <00000> 40129; <00000> 40154; <00000> 40179; <00000>
40105; <00000> 40130; <00000> 40155; <00000> 40180; <00000>
40106: <00000> 40131: <00000> 40156 <00000> 40181: <00000>
40107: <00000> 40132: <00000> A0157: <00000> 40182: <00000>
40108: <00000> AN132 cNNNNNS AN1EG: <00000> 40183: <00000>
40109: <00000> Write Register : <00000> 40184: <00000>
40110: <00000> : <00000> 40185: <00000>
40111: <00000> : <00000> 40186 <00000>
40112: <00000> Address: {100 : <00000> A0187: <00000>
40113: <00000> : <00000> 40188: <00000>
40114: <00000> Vaue: |1 : <00000> 40189: <00000>
40115: <00000> : <00000> 40190: <00000>
40116: <00000> Update | Cancel | - <00000> 40191: <00000>
40117: <00000> : <00000> 40192; <00000>
40118: <00000> Auta Simulation | : <00000> 40193; <00000>
40119: <00000> : <00000> 40194: <00000>
40120: <00000> 40145: <00000> 40170: <00000> 40195: <00000>
40121: <00000> 401 46: <00000> 40171: <00000> 40196: <00000>
40122: <00000> 40147: <00000> 40172: <00000> 40197: <00000>
40123: <00000> 401 48: <00000> 40173: <00000> 40198: <00000>
40124; <00000> 40149; <00000> 40174; <00000> 40199; <00000>
K1

The screen capture above shows the modification of address 100. Additional devices can
also be created by once again selecting File->New. This allows for the testing of
multiple Modbus Slave devices at the same time:

((: Control Technology Corporation 64

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

% Modsim32 - Modsim2

File Connection Display ‘Window Help

A Device Id: III
. [oioo | MODBUS Point Type
L| e |03: HOLDING HEGlST;L -
Length:

40

a0 [10100: <00000> 40125: <00000> 40150: <00000> 40175: <00000>
40 [10101: <00000> 40126: <00000> 40151: <00000> 40176: <00000>
40 [10102: <00000> 40127: <00000> 40152: <00000> 40177: <00000>
40 [10103: <00000> 40128: <00000> 40153: <00000> 40178: <00000>
40 [10104: <00000> 40129: <00000> 40154: <00000> 40179: <00000>
40 [10105: <00000> 40130: <00000> 40155: <00000> 40180: <00000>
40 [10106: <00000> 40131: <00000> 40156: <00000> 40181: <00000>
40 [10107: <00000> 40132: <00000> 40157: <00000> 40182: <00000>
40 [10108: <00000> 40133: <00000> 40158: <00000> 40183: <00000>
40 [10109: <00000> 40134: <00000> 40159: <00000> 40184: <00000>
40 [10110: <00000> 40135: <00000> 40160: <00000> 40185: <00000>
40 [10111: <00000> 40136: <00000> 40161: <00000> 40186: <00000>
40 [10112: <00000> 40137: <00000> 40162: <00000> 40187: <00000>
40 [10113: <00000> 40138: <00000> 40163: <00000> 40188: <00000>
40 [10114: <00000> 40139: <00000> 40164: <00000> 40189: <00000>
40 [10115: <00000> 40140: <00000> 40165: <00000> 40190: <00000>
40 [10116: <00000> 40141: <00000> 40166: <00000> 40191: <00000>
40 [10117: <00000> 40142: <00000> 40167: <00000> 40192: <00000>
40 [10118: <00000> 40143: <00000> 40168: <00000> 40193: <00000>
40 [10119: <00000> 40144: <00000> 40169: <00000> 40194: <00000>
40 [10120: <00000> 40145: <00000> 40170: <00000> 40195: <00000>
40 [10121: <00000> 40146: <00000> 40171: <00000> 40196: <00000>
40 [10122: <00000> 40147: <00000> 40172: <00000> 40197: <00000>

40123: <00000> 40148: <00000> 40173: <00000> 40198: <00000>
<] |a0124: <o0000> 40149: <00000> 40174: <00000> 40199: <00000>
[|KIm

Above shows multiple devices enabled. If there are further questions about the use of
ModSim32, simply select the Help menu item and a manual will appear.

((: Control Technology Corporation 65
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

((: Control Technology Corporation
Document 951-530002-0013 01/15

66

Model 5300 Communications & Logging Guide

CHAPTER

[8] SNTP Simple Network Time
Protocol

The Model 5300 controller supports the Simple Network Time Protocol

(SNTP) as a client connecting to a server. This protocol provides a

means to synchronize a computer system clock to that of the world

clock, via the Internet. Government agencies provide this service for

computers to query the current atomic clock time and adjust their clocks

appropriately. For more detailed information reference www.time.gov
and www.boulder.nist.gov/timefreg/service/its.htm.

The time returned is based on Coordinated Universal Time (UTC), which is Greenwich
Mean Time (GMT). As such, there is no adjustment for daylight savings time or time
zones, which must be done locally. To avoid daylight savings time problems it is
recommended that you base the controller time on GMT (default) and then use the
provisions in the RTC Setup tab to automatically set the clock based on the time zone
you are in, using an offset from GMT. Refer to Document No. 951-520012: WebMON
2.0 User's Guide for further details on the RTC Setup tab.

Use of SNTP is not a requirement but typically real time clocks can be expected to drift
up to 30 seconds per week. The controller may drift up to 12 seconds per week,
depending on the tolerance of crystals, components, etc. Synchronization allows its real
time clock to be automatically set with regards to date, year, day of week, and time.

SNTP Register Configuration

SNTP may be configured using either a direct register interface or by individual registers.
By default the controller will use the IP address of 192.43.244.18, port 123. The default
update frequency is once/day and the default time zone used for clock reset is GMT.
These may be changed by modifying the following registers:

20025-20028 SNTP Server IP Address: R/W, with 20025 being the first Octet, X.0.0.0, 20026 the second,
0.X.0.0, 20027 is the third, 0.0.X.0, and 20028 is the fourth, 0.0.0.X. Default is 192.43.244.18
(standard).

20041 SNTP Server Port: R/W, default is 123.

((: Control Technology Corporation 67
Document 951-530002-0013 01/15

http://www.time.gov/
http://www.boulder.nist.gov/timefreq/service/its.htm

Model 5300 Communications & Logging Guide

20042 SNTP Update Time: R/W; this register contains the number of seconds before the next
synchronization request with the SNTP server. For example 3600 would be an hour, 86400 would
be 24 hours. Default is 86400. When a change in time is made to this value it typically takes
about 1 minute before the new value will take effect. Power cycling of the controller is not
required.

20043 SNTP Offset from GMT: R/W, number of seconds to add or subtract from GMT, default is 0.

A 1 must be written to register 20096 whenever the above changes are made in
order to store those changes to non-volatile storage. Also, to disable SNTP, simply set
the IP address of the SNTP Host to 0.0.0.0.

SNTP WebMON Configuration

WebMON provides a more direct method of updating the SNTP configuration. As with
registers, the SNTP Time Server Settings consist of a number of data entry fields, each
with their own special functionality:

SMTP Titme Server Settings:
Setver P Port Refrezh Rate Offset GMT SMTP Enabled
19243244 18 | 123 SE400 -18000

Upiate SMTP

= Server IP

= Port

= Refresh Rate
= Offset GMT

= SNTP Enabled

By default the controller will use the IP address of 192.43.244.18, port 123. Updates will
be performed once/day and the clock is set to GMT.

Server IP

The Server IP address designates the host that will provide the time service for the
controller. By default the address is 192.43.244.18. Data is entered using the “dot”
notation. Entering an IP address of 0.0.0.0 will disable SNTP requests.

Port

The Port is the TCP/IP port that the Time Server will be listening on for time
requests. Typically this is port 123, which is the factory default.

Refresh Rate

The Refresh Rate is the number of seconds before the next synchronization request
with the SNTP server. For example 3600 would be an hour, 86400 would be 24
hours (default). When a change in time is made to this value it typically takes about 1

((: Control Technology Corporation 68
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

minute before the new value will take effect. Power cycling of the controller is not
required.

Offset GMT

Offset GMT contains the number of seconds to add or subtract from GMT once the
time is received from the server. The default is 0, which means to set the clock to
GMT. -18000 (-5 hours) would be the value used for Eastern Standard Time during
daylight savings time, -14400 (4 hours) when not. Note that the value is both positive
and negative.

SNTP Enabled

If the SNTP Enabled check box is checked, SNTP requests will be enabled and
done in the background based upon the above parameters. When deselected the IP
address will be forced to 0.0.0.0. If the time service is not being used it is best to
ensure this box is not checked, thereby conserving CPU resources.

((: Control Technology Corporation 69
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

((: Control Technology Corporation
Document 951-530002-0013 01/15

70

Model 5300 Communications & Logging Guide

CHAPTER

[9] SMTP

Simple Mail Transfer Protocol (SMTP), documented in RFC 821, is

the Internet's standard host-to-host mail transport protocol which

typically operates over TCP port 25. The controller is capable of

sending formatted email, using SMTP, under the control of a

Quickstep program or by remote communications accessing a data

register. Messages may be created either within an ASCII text editor
or using WebMON 2.0. Refer to Document 951-520012: WebMON 2.0 User’s Guide
for additional information on creating messages with WebMON.

E—_ﬂ For email to operate properly the controller must have an email account on the
email server. This will consist of a user account and password. The same account can be
shared by multiple controllers.

Register Access

Text files created in a specific format and naming convention are stored on the flash disk
/_system/Emails subdirectory. Files are stored with a name of “Email ###.email” where
‘###° references the value which would be written to the SMTP Send Register (12317),
to request transmission. For example, a file name of “Email 001.email” would be sent if
a ‘1’ was written to the SMTP Send Register. Register 12318 is the SMTP Status
Register. The status contents are defined as follows, after a write to the SMTP Send
Register:

STATUS DESCRIPTION

0 Processing

-1 Undefined

0x80000100 = General Error, out of memory
0x80000900 = Error, parameter error, aborted
0x80001400 Requested operation has failed.
0x80002100 = Error, cannot connect to host.

((: Control Technology Corporation 71
Document 951-530002-0013 01/15

http://www.freesoft.org/CIE/RFC/821/index.htm

Model 5300 Communications & Logging Guide

Creating Emails using WebMON

The Email Notification tab in WebMON can be used to automatically create, edit, and
delete email files.

[SiSetup - ONLINE (ctc_bf_weave1) =3
Swsbem
Ethernet Serial Summary Disk=
Run Prograrms RTC Setup | Ernail Motification | Authertication Security Systerm
Local
= @ Emails:
= Open
Save ey
A= Controller -
Drelet
= @ Ernail=
= = Open Dlol-Click
Email_001 email to edit
Email_002 email
L _BFnail 003 email
Save
Ernail (Enter Script Number)
SMTP IP Address Part Source Host (HELC
12405310 |25 ltoptional)
From [Originatar) To (Destination) CC[Copy to)
TestS200Emailigoctc-control .com |kevin.hallnran@ctc-u:nrﬂrul.cnm |riu:hards@u:1u:-u:u:untrnl.u:nm
Subject: | Thiz is & 5200 Contraller Alertill
Meszage
Thiz email iz being sent to wou from a CTC 5200 controller. ™
The current register walue iz $dR1300Z at this moment.
Thiz email can contain as many register references az you like
atid iz limited to 4K message size.
w

Tree View, Local/Controller

At the top of the Email Notification tab is a tree list. This list is used to access formatted
email files either locally or stored on a controller disk. Local->Emails references the
local disk drive of the computer running WebMON. Selecting Local->Emails->Open
will cause a dialog box to open and the selection of any email file for editing purposes.
Selecting Local->Emails->Save will cause a dialog box to open and an email that is
within the form at the bottom will be saved to the computer’s hard disk.

@ Control Technology Corporation 72
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Files that exist within the controller’s disk may be individually viewed and selected from
the Controller->Emails->Open tree node. Each file represents an individual node. To
save a file that is created using the email template (form below the tree view), simply
double click the Controller->Emails->Save node. The file will be saved and named
using the Script Number defined within the email template, Emai 1 ###.email.

Local
= @ Etmailz
= Open
Save
A= Cortraller

= @ Etnails:

= & Open
Email_001 email @ Update successful,

Email_002 email

Email_003 2mai

Creating/Editing New Email Template

To create a new email, simply select the New button to the right of the Email
Notification Tree view. This will cause all existing information to be removed from the
template form and defaults to be entered. Alternatively an existing email could be loaded
and modified as desired, then saved.

A number of data entry fields are available to define the email to be sent by the
controller. The top most field, immediately below the tree view, allows the entry of a
numeric from 1 to 999. This will become the file sequence number used within the email
file name, Email###. Leading 0’s will automatically be provided.

Etmail_| [Enter Script Mumber)

The next set of data entry fields is a table whose row defines the SMTP server that is to
be used for sending email. Each email may use the same and/or different SMTP servers.
Make sure you are authorized for using the server and you are not attempting to relay.
Relaying is restricted and occurs when you try to copy an email to someone that is not
authorized, outside your domain. For example if the domain was ctc-control.com, you
would not be able to send a copy of the email to hotmail.com, using POP3. Mail Servers
can be configured to allow for exceptions, if desired. A typical way around this would be
to use a distribution list within your mail server that in turn sends outside the domain.

Available data entry parameters for the first table are:

SWTP IP Address Part Source Host (HELO
12 40,5310 |25 Optional)
((: Control Technology Corporation 73

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

SMTP IP Address (SMTP Server)

This is the server IP address of the server handling your email account. It is typically
within the same domain as your ‘From:’ email address. The “dot” notation format is
used.

Port

The standard SMTP port used is 25; but it may be changed here if desired. This is the
port the SMTP server will be listening on for connection requests.

Source Host (HELO)

This is an optional field which can be used to report your domain within the email. It
is required by some hosts. For example the domain of www.ctc-control.com would
be ctc-control.com.

The second table is used to define who the email is from [FROM(Originator)], who it is
to be sent to [TO(Destination)], and who it is to be copied to [CC(Copy to)]. Only one
address is supported per entry. If larger distributions are required it is suggested that a
Distribution List be created on the Email server.

The required format of each email address is person@domain.com. Enter each as needed.
Note the CC (Copy to) field is optional:

Frarm [2riginastar) To (Destination) CC (Copy to)
TestS200Emailgdcte-control com |ke~.fin.hallnran@mc-cnmml.cum |riu:hards@u:tu:-u:u:untru:ul ar
Subject

The Subject line will appear as the summary in an email message. Enter any desired
text:

Subject; | Thiz is & 5200 Controller & leil

Message

The Message area can contain up to 4K bytes of data. Messages may be any mix of
normal text characters and references to Controller registers. Registers are references
using “C” style printf directives. For example, to reference the 13002 register and
have its contents placed in a message a %dR13002 would be used, optionally
%05dR 13002 would force at least 5 characters wide with leading 0’s as filler. In
printf notation %d is decimal, %x is lower case hex, and %X is upper case HEX.
These are the only acceptable printf syntaxes currently supported in email messages.
Below shows an example of a message which would include the current value of the
13002 register, when sent:

((: Control Technology Corporation 74
Document 951-530002-0013 01/15

http://www.ctc-control.com/
mailto:person@domain.com

Model 5300 Communications & Logging Guide

Meszage
Thiz email iz being sent to vou from a CTC 5200 controller. L
The current register walue is %dR13002 at this moment.
It iz now %dR13002 and incrementing ewery millisecond.

Thiz email canh contain as many register references as you like and iz limi

Fegards,
L >

b

Deleting Email Template

Deleting an email is only supported from a controller disk. To delete a file use the
Controller->Emails->Open tree view to list the available files. Highlight the one
desired and select the Delete button. The file will be deleted and the tree updated.

[qjSetup - ONLINE ctc_bf_weave1)

Svskem
Ethernet Serial Summary Dizsk=z
Fun Programs RTC Setup Etniail Motification Authentication Security System
Local
= @ Etnail=s
& Open
Save Mesy
A= Cortraller
Delet
= i Emate
= = Open —— . Lelete the selected SMTP Email Message Script,
L _BFrnail_001 email)
: : from the controller's disk
Email_002 email
Email_003 email
Save

Creating Emails using ASCII Text Editor

The text used to create emails, to be sent by a Model 5300 controller, requires a specific
format. That format includes various ‘section headers’, used to define the necessary
parameters. It is recommended that WebMON be used for the creation of all emails
although this section is included for those who desire a further understanding of the
format.

There are two section headers. The first, known as [SMTP], must appear in the
beginning of the file and is used to define all the specific details of the email message,
such as destination, mail server, etc. No spaces are allowed except within the email
message itself, designated by the [SMTP_MESSAGE] section header. It is best to use a
sample email as an example:

This is a comment
[SMTP]
IP=12.40.53.10

@ Control Technology Corporation 75
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

PORT=25

HELO=

TO=kevin@ctc-control.com

FROM=Test5300@ctc-control.com

CC=

BCC=

SUBJECT=Test email message

[SMTP_MESSAGE]

Enter Email Message to send, %05dR13002 references register...

- The Pound sign may appear as the first character in any line. All following text on
that line will be ignored. It is used to place comments within your email definition
document.

[SMTP] - Section header. Required to be on the first line of the file.

IP= This is the SMTP Server name, it may be a DNS resolvable name or an IP
address of the server handling your email account. It is typically within the same
domain as the From: email address. The “dot” notation format is used. No spaces

are allowed before or after the ‘=" sign.

PORT= The standard SMTP port used is 25; it may be changed here if desired. This
is the port the SMTP server will be listening on for connection requests.

HELO= Optional field that can be used to report your domain within the email. It is
required by some hosts. For example the domain of www.ctc-control.com would be
ctc-control.com.

TO= Required field, defining the destination. Only one addressee may be listed per
TO entry, although multiple TO fields are allowed.

FROM= Required field, the email address that represents the controller and that can
be replied to. This account should exist on the SMTP server. Otherwise, relaying
must be enabled.

CC= Optional field, defining the destination to copy the email to. Only one
addressee may be listed per cC although multiple cc fields are allowed.

BCC= Optional field, defining the destination to copy the email to. Only one
addressee may be listed per BCC although multiple BCC fields are allowed. Typically

BCC fields are hidden and will not be displayed when the email is received by other
addressees.

SUBJECT= Required field, specifies the email subject, generally a short summary.
Spaces are allowed within the text.

[SMTP_MESSAGE] — Section header. Required prior to the start of the email text
message. All following text is assumed to be part of the email. Refer to the Creating
Emails using WebMON section for details on the Message area.

((: Control Technology Corporation 76
Document 951-530002-0013 01/15

http://www.ctc-control.com/

Model 5300 Communications & Logging Guide

E__“ Ensure that the <Enter> key is entered on the last item in the message, returning
the cursor to the far left-hand side of the message.

E_—“ [SMTP] - New to the 5300 firmware release R69.20 is the support of the AUTH
LOGIN sequence used by a number of public email sites. One in particular is
www.gmx.com. This web site can be used for both POP3 and SMTP email. Unlike sites
like gmail and hotmail it does not require SSL/TLS encryption. To enable the AUTH
LOGIN feature simply specify a USER and PASSWORD definition within the [SMTP]
section:

USER= User account name, limited to 80 characters. For GMX mail server this is
your email address.

PASSWORD= Email account password, limited to 80 characters.
GMX email account sample reference:

[SMTP]

IP=smtp.gmx.com

PORT=25

HELO=
TO=somename@gmail.com
FROM-=bluefusion@gmx.com
CC=

SUBJECT=test GMX Email
USER=Dbluefusion@gmx.com
PASSWORD=BlueFusion
[SMTP_MESSAGE]

Testing GMX email, %dR13002 references register...

Below is an Email message sent and received when the sample email file was stored to
Email_001.email within the /_system/Emails sub-directory, and a 1 was written to the
SMTP Send Register 12317:

B Test email message - Message (Plain Text)

! Fle Edt Wiew Insert Format Tools Actions Help

: % Reply | =@ Reply to Al | i3 Forward | =3 [LA | W [(23 X | 4 - & - A | @ !
Frarm: J.}l. TeskS200 Sent: Mone
Tao: kevin Halloran
Ce:

Subject: Test email message

Enter Ewail Message to send, 10940 references register...

@ Control Technology Corporation 77
Document 951-530002-0013 01/15

http://www.gmx.com/

Model 5300 Communications & Logging Guide

After communications the SMTP Send Register displays the email message number sent
along with the results in the SMTP Status Register, 12318. 12318 changed to 0 after the
initial write of a 1 to 12317, ending with a 1 after successful transmission:

[~] Registers

Display

req 12317 Jf 12217 [N
req 12318 Jif 12318

req 12319 ICHEE— 10319

Monitored with CTCMON

Notice that the %05dR13002 was replaced by the actual register value in the controller
(10940) at the time the email was composed for transmission.

SMTP Email Diagnostics

Trying to resolve SMTP problems can be difficult without network tracing capability. To
help in this matter the ‘test esmtp’ and ‘test smtp’ commands can be executed via the
telnet administrator interface. These commands allow you to send a sample email and
monitor what is being sent and received, typically yielding better diagnostic information:

test smtp <host> <from> <to> (no login is used, internal email server)
test esmtp <host> <from> <to> <username> <password> (uses the AUTH LOGIN sequence)

Example of Diagnostic Trace:

BlueFusion/>test esmtp smtp.gmx.com bluefusion@gmx.com someone@gmail.com
bluefusion@gmx.com BlueFusion

220 mail.gmx.com GMX Mailservices ESMTP {mp-us002}
helo

250 mail.gmx.com GMX Mailservices {mp-us002}
AUTH LOGIN

334 VXNIcm5hbWUG6
Ymx1ZWZ1c2lvbkBnbXguY 29t

334 UGFzc3dvemQ6

Qmx1ZUZ1c2lvbg==

235 2.7.0 Go ahead {mp-us002}

mail from:<bluefusion@gmx.com>

250 2.1.0 ok {mp-us002}

rcpt to:<someone@gmail.com>

250 2.1.5 ok {mp-us002}

data

354 mail.gmx.com Go ahead {mp-us002}

Date: 10/14/2010 20:24:29

From: bluefusion@gmx.com

To: someone@gmail.com

CC:

((: Control Technology Corporation 78
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

BCC:

Subject: 5300 Email Test
This is the first line.

This is the second.

This is register 13002 = 0625

250 2.6.0 Message accepted {mp-us002}
quit

221 2.0.0 GMX Mailservices {mp-us002}
SUCCESS

((: Control Technology Corporation
Document 951-530002-0013 01/15

79

Model 5300 Communications & Logging Guide

CHAPTER

[10] POP3

Post Office Protocol, Version 3 is a set of standardized rules (protocol)
by which a client machine can retrieve electronic mail from a mail
server (POP server). The server holds the email until the user can
retrieve it. POP3 only provides for receiving email, not sending it.
SMTP is used for transmission.

For proper operation controllers should be assigned their own email account. You may
not share an email account with a controller since each controller will read and delete
each email, as it is read and processed.

Mail Inbox Server Configuration

The POP3 Email Server configuration can only be set up using WebMON via the
Ethernet Setup tab. It consists of a number of data entry fields, each with their own
special functionality:

POPS Mail Inbox Server Settings:

Pops Server | Port Pall Rate Host Timeouwt | User Account Pazswword POP3 Enabled
12405310 | 110 10000 2000 Test5200 vet123 | |

Update POP3

= POP3 Server
= Port

= Poll Rate

= Host Timeout
= User Account
= Password

= POP3 Enabled

((: Control Technology Corporation 80
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

POP3 Server

The POP3 Server IP address designates the host that will provide the POP3 mailbox
account for the controller. This must be the server's IP address, entered in “dot”
notation.

Port

The Port is the TCP/IP port that the POP3 Server will be listening on for mail
requests. Typically this is port 110, which is the factory default.

Poll Rate

The Poll Rate is the time, in milliseconds, that the controller will wait until it checks
for available email, within its mailbox. All available email will be read and deleted
as processed, in a sequential order. After processing this time delay will occur until
the next processing sequence. 10000 milliseconds (10 seconds) is the default interval.

Host Timeout

The Host Timeout is the time, in milliseconds, that the controller will try to contact
its POP3 server and wait for responses for mail requests. It is considered the error
timeout. After this period of time the controller will stop trying to contact the server
and wait the next poll rate interval before trying again. The default timeout period is
2000 milliseconds (2 seconds).

User Account

The User Account is the name needed to log into the mailbox. This is typically the
mailbox name but could be set differently by the POP3 server. It is limited to 30
characters.

Password

The Password is the password required, along with the User Account, to log into the
mailbox being supplied by the POP3 server. It is limited to 30 characters.

POP3 Enabled

A check box is available to enable the POP3 functionality. When checked POP3 is
active. Once all changes have been made to the above parameters select the Update
POP3 button to make the changes current in the controller.

A Hardware reset must be generated whenever the POP3 parameters are changed
for them to become active.

To verify that the controller is monitoring a POP3 account, the WebMON Setup System
tab can be viewed and the execution thread verified:

((: Control Technology Corporation 81
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

f¥Setup - ONLINE (12.40.53.158)

Swskenm
Etherret Zerial Summary Diskz
RTC Setup Etmail Matification Autherntication

Memory Heap Used:

1632

[Festore Factary Defaults] [Hardwware Reset]

Active Threads Surmmary:
06219d5c TCP Binary Serwer 3uspended -~
062laedc SNTP Client Waiting on Delay
0621lbflc CT3erver Broadcast BX Waiting on TCPAIP
0621de9d FTP Jerwer Suspended
0621e77d TELNET 3Zerwer 3uspended
Og2lffc0 Web Thread Suspended
0622560c Email Pop3 Thread Waiting on Delay

0622ab20 Telnet [%rver Session Beady to run
|Cn:-ntr-:n||er progran threads currently executing and their state., "

Email Formatting

Once the Model 5300 controller email server is configured, enabled, and system
restarted, the controller will continually poll the email server for mail. As each mail
message is found it will be downloaded, processed, and deleted from the inbox.
Processing consists of scanning the email whose messages contain special Section
Header character strings and script commands for execution.

Section Headers
The Section Headers that exist within the message body of an email are defined as
follows:

[CTC_EMAIL_START] - Script commands follow as defined within Document No.
951-530003: Model 5300 Script Language Guide. This section header may begin
and end as often as required as long as there is a matching [CTC_EMAIL END] for

each. Note that a # sign at the beginning of a line represents a comment.

[CTC_EMAIL_START _ATTACH ORIGINAL] - Exactly the same as
[CTC_EMAIL START] except that a copy of the original email is appended to the

end of the reply email.

((: Control Technology Corporation 82
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

[CTC_EMAIL_END] - Script commands end and any text following should be
ignored.

Example Email message text:

This line is ignored and can be any information desired in the
email.

The next line will signify the start of script processing.
[CTC_EMAIL START ATTACH ORIGINAL]

This is a comment.

Request a copy of this email be attached to the original, not
needed but useful to know what we sent. Regardless a copy of
each of these commands and the reply is always sent back as a
reply. [CTC_EMAIL START] will not cause original to be

attached.

Let's assume we received an alarm condition via pager or email
so lets clear it. Possibly register 1 is used as a flag by the
program. Also keep these lines less than 72 characters when

using Microsoft Exchange as it typically auto-line wraps and

you will end up with a bad command.

1 =0

Now lets get all the version information just to make sure

things are OK.

get versions

Restart the controller given to clear the alarm
set restart

We are all done now so return to normal email text
[CTC_EMAIL END]

This is just normal email text. We could issue another command
block if desired following this text.

E_—“ Emails must be sent as ASCII Plain Text messages, not HTML formatted. Also

only Quoted-Printable data encoding is supported within the message body, reference
RFC1341.

Mail Messages should be limited to 4096 bytes, a 9K buffer is available assuming
a reply with the original message attached.

E__ﬂ Ensure that the enter key is entered on the last item in the message, returning the
cursor to the far left hand side of the message.

ASCII| Text Emails

All emails sent to the controller MUST be sent as ASCII Plain Text messages, not
HTML formatted. Many email programs allow the selection of HTML, Rich Text, and
Plain Text. Plain Text is equivalent to ASCII text messages.

((: Control Technology Corporation 83
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

There are a number of ways to make this selection. Using Microsoft Outlook 2003 as an
example you may set this as the default to always use or select it on an individual email
basis.

Microsoft Outlook Plain Text, Individual Basis

On an individual email basis it may be selected after you open a window for composing a
New email:

Inbox - Microsoft Outlook

Wi Fle Edt Wew Go Tools Ackions Hel

i—ﬂﬂeﬁkﬂ 4 Y X | CaReply HReplyt

Mew Mail Message

Favarite Folders

L[] Inbox (9}

L Unraad Mad
L o Folow Lp
L[Sent Ttems

&l Mail Folders

A window will appear to compose the email, note the pull down box and ensure it is
selected to Plain Text.

E® Untitled Message

! File Edit Wew Insert Format Tools Table Window Help

fidgend |) - |G B 3 T B [¥ | (S| (] options... - [[HTML -

i Ta.. :iT:rleText

(Ll ...,

Subject:

™ = R EEREN] -fio LA B L U === ;s ==

Some email services, such as MSN Hotmail, always send messages in Plain Text format.

Note that there are a couple of things to be aware of, especially in Outlook 2002. First is
that text sent may automatically have line wrapping done. For example Outlook 2002
does it at 64 characters, Exchange sets it at 72 characters and Outlook 2003 has a user
settable option. The text will appear normal within your Outlook editor but is converted
prior to receipt by the controller. Also when receiving a reply, Outlook will remove
some of the line feeds making some of your lines appear as one. To remedy this for Plain
Text messages there are two option screens under Outlook->Tools->Options, then
Email Options button:

Preventing removal of extra line breaks:

@ Control Technology Corporation 84
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Options

E-mail Options

Message handling

Afker moving ar deleting an openikem: | return bo the Inbosx " |

[] lose original message on reply or forward :]
Save copies of messages in Sent Ikems Folder
Automatically save unsent messages

Remove extra line breaks in plain text messages
%ead all standard mail in plain bewxt :]

Read all digitally sianed mail in plain kexk £

[Advanced E-mail Options. .,] [Tracking Opkions. ..]

on replies and Farwards :]

2

wehen replving to a message

I
&

|Iru:|uu:|e original message bexk

When Forwarding a message

|Iru:|uu:|e original message bexk

Prefix each line with:

E | I

[Irark me comments with:

| kevin Halloran |

[0] 4] [Cancel

@ Control Technology Corporation
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Increase the line length before auto-wrapping text, referencing Outlook->Tools-
>0Options->Mail Format Tab, then Internet Format button:

Options ? EJ

| Preferences | Mail Setup | Mail Format |Spelling | Security | Other | Delegates |

Message Format

Choose a Format for outgoing mail and change advanced sektings,

Internet Format

HTML options
messages
When an HTML message contains pictures located on -
the Intermet, send a copy of the pictures instead of ptions. .. |
Skatid the reference bo their location

au
=
=R
[=]
=

fai

}{% Outlook Rich Text options

When sending Qutlook Rich Text messages to Inkernet
recipients, use this Format:

.

|Cn:-nvert ko HTML Farmak w | [ar
Signall
" I Plain text options
é =i W

= Aukomatically varap bext ak . ﬁharacters

[]Encode attachments in WJEMCODE Farmat when
sending & plain kext message

ijAn

o []

[(0] 4 H Cancel] Apply

Some Microsoft Knowledgebase Articles worth referencing are 287816 and 327573:

http://support.microsoft.com/default.aspx?scid=kb:EN-US:327573

http://support.microsoft.com/default.aspx?scid=kb%3BEN-US%3Bq287816

@ Control Technology Corporation 86
Document 951-530002-0013 01/15

http://support.microsoft.com/default.aspx?scid=kb;EN-US;327573
http://support.microsoft.com/default.aspx?scid=kb%3BEN-US%3Bq287816

Model 5300 Communications & Logging Guide

Microsoft Outlook Plain Text, Default for All

Configuring Microsoft Outlook to always default to Plain Text is done via the Tools
menu:

Engineering - Microsoft Outlook

! File Edit Wew Go | Tools | Actions Help
: Sitew v | =4 (A3 x Send/Receive 3
Mail a
Eaunrite Foldars [ih AddressBook,.. ChrHshift+g |
& .
[3 Inbox {11} G Organige
| Uread Mad Lﬁ Rules and Alerts. ..
L For Foliow Lo])
[Sent Items Ok of OFfice Assistant., ..
&l Mail Falders Mailbox Cleanup...
= @ Mailbos: - Kevin Hallar @ Empty "Deleted Ikems" Folder
[\Infected fall Recover Deleted Trems. .,
|1 Corporate
4 5] Deleted Items Farms 4
L# Drafts Macro 3
ENI| Engineeting
L2 Inbox (11} Speech
4 '—2 Infected E-mail Accounts...
L@ Junk E-mail
[Metwoarks Cuskomize. ..
LE Outt":lx thiljnsl . h
L= Sent Ttems 5
£ 5TG E-Mail Scan Properties. ..
[Welcro Scan For Yiruses. .,
3 Merkay Minknns T

Select the Mail Format tab and set the Compose in this message format pull down to
Plain Text.

Options

Preferences | Mail Setup | Mail Format | Speliing | Security | Other | Delegates

Message Format
_jj Choose a format For oukgoing mail and change advanced settings,

Compose in this message format: [HTML w
Use Microsoft OFfice Word 2ao[HTML
Rich Text

[Juse Microsoft Office Ward 200
Inkternet Format, .. Inkernational Options. .. [;s

When finished, click OK. The default for all messages is now Plain Text.

@ Control Technology Corporation 87
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Sample Email and Response

The email below was detailed previously and is now shown ready for sending within an
Outlook Message box:

! Fle Edit Wiew Insert Format Tools Table Window Help Type a question for help = =
iidzend |) | & 2 ¥ B | ¥ | 2] Options... - | Plain Text -
[Ta... TestS200@ckc-control,.com
[l e
Subiject: Testing email
1= R EEN:- Y 0 A B L U|E|= ===
—1
This line is ignored and can he any information desired in the email. b
The next line will signify the start of script processing.
[CTC_EMATIL START ATTACH ORIGINAL]
This i= a comwent.
FRequest a copy of this email he attached to the original, not needed
i but useful to know what we sent. Regardless a copy of each of
Lhese contands and the reply is always sent back as a reply.
[CTC_EMAIL START] will not cause original to be attached.
Let'!s assume we received an alarm condition via pager or email
g0 lets clear it. Possibly register 1 is used as a flag by the
progrem. Llso keep these lines less than 72 characters when
using Microsoft Exchange as it typically auto-line wraps and
Fou will end up with & bad commwmand.
1 =20
Mow lets get all the version information just to make sure things
are OK.
get versions
Reatart the controller given to clear the alarm
Ser restart
e are all done now S0 return to normal emall text
[CTC_EMAIL END] v
£
Thi=s iz just norwal emall text. We could issue another cormmand @
hlock if desired following this text. ¥

Upon clicking Send the email will be sent to mail server where the ‘Test5300° account
resides. Based on the poll rate the controller will then read the email, process the
commands and return a reply since the [CTC_EMAIL _ATTACH_ORIGINAL]
parameter is listed. The response received several seconds later is:

BlueFusion> 1 = 0
1 =0

BlueFusion> get versions

@ Control Technology Corporation 88
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

*Local 5300 Serial Number = 00063255
DNS Name: 5300Kev DHCP active: YES
Group Name: Sales.DemoUnits
IP Address = 12.40.53.158 MAC Address = 00COCBOOF717

Total: DIN = 4 DOUT = 16 AIN = 8 AQOUT = 4 MOTION = 0
Base Firmware Revisions:

Quickstep SH2 Application v05.00.11

Quickstep SH2 Monitor vV15.15 @
Slot Firmware Revisions:

01. M1-30A-Analog 2 I/O v01.07

Ainl: data-32596 offset-32631 spanpos-27218 spanneg-31715
Ain2: data-32615 offset-32621 spanpos-25649 spanneg-31771
Aoutl: data-00000 offset-32713 spanpos-31183 spanneg-31268
Aout2: data-00000 offset-32734 spanpos-31176 spanneg-31261

02. M1-31A-Analog 4 in v01l.01

Ainl: data-32809 offset-32708 spanpos-32747 spanneg-32707
Ain2: data-00000 offset-32707 spanpos-32743 spanneg-32704
Ain3: data-00000 offset-32706 spanpos-32753 spanneg-32705
Aind: data-65535 offset-32702 spanpos-32756 spanneg-32701

03. M1-30A-Analog 2 I/O v01.07

Ainl: data-32710 offset-32719 spanpos-31745 spanneg-31731
Ain2: data-32707 offset-32715 spanpos-31756 spanneg-31734
Aoutl: data-00000 offset-32700 spanpos-31216 spanneg-31203
Aout2: data-00000 offset-32709 spanpos-31157 spanneg-31140
04. Empty v00.00
05. M1-20A-Digital 8 Output v00.00
Dout: 0x99
06. M1-20A-Digital 8 Output v00.00
Dout: Ox9F
07. No Expansion Connected v00.00
08. No Expansion Connected v00.00
09. No Expansion Connected v00.00
10. No Expansion Connected v00.00
11. No Expansion Connected v00.00
12. No Expansion Connected v00.00
13. No Expansion Connected v00.00
14. No Expansion Connected v00.00
15. No Expansion Connected v00.00
16. No Expansion Connected v00.00
17. No Expansion Connected v00.00
18. No Expansion Connected v00.00
19. No Expansion Connected v00.00
20. No Expansion Connected v00.00
21. No Expansion Connected v00.00
22. No Expansion Connected v00.00
23. No Expansion Connected v00.00
24 . No Expansion Connected v00.00
No Thermocouples.tbl file found.
*
BlueFusion> set restart
SUCCESS: Restart Command completed.
@ Control Technology Corporation 89

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

This line is ignored and can be any information desired in the
email.

The next line will signify the start of script processing.
[CTC_EMAIL START ATTACH ORIGINAL]

This is a comment.

Request a copy of this email be attached to the original, not
needed but useful to know what we sent. Regardless a copy of
each of these commands and the reply is always sent back as a
reply.

[CTC_EMAIL START] will not cause original to be attached.

Let's assume we received an alarm condition via pager or email
so lets clear it. Possibly register 1 is used as a flag by the
program. Also keep these lines less than 72 characters when
using Microsoft Exchange as it typically auto-line wraps and
you will end up with a bad command.

=0

Now lets get all the version information just to make sure
things are OK.

get versions

Restart the controller given to clear the alarm

set restart

We are all done now so return to normal email text

[CTC_EMAIL END]

N

This is just normal email text. We could issue another command
block if desired following this text.

@ Control Technology Corporation 90
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Microsoft Exchange 2000 Setup

All email servers are different in the way they are configured. As an example the setup
of Microsoft Exchange 2000 is shown.

First invoke the Microsoft Exchange System Manager. For your server locate the POP3
protocol under the Administrative Groups, expand the folder and get the properties of the
POP3 Virtual Server that you will be using.

! ‘E Exchange System Manager

J% Console window Help
| acion view || & -p|||@ [> =

Tree | Default F

% Control Techrology Corporation (Exchange) Mame

E Global Settings € Cure
=[] Recipients
=1 Administrative Groups

=1 CTC - Hopkinkan
l_-—_lxﬁ:I Servers
=8 curLy
-l Directory Synchraonization
=11 Protocols
& HTTP
=0 Map4
=0 HNTR
=1 POP3
T) EERE
e Zurrent =
- sMTP Stop
. :15" %400 Pause
| [#-g3 First Storage Group View ~
' Bl G GOLDEN Mesw Window From Here
----- % System Policies
I EEI--~'?|3-‘L Conneckors Rename
! []]ﬁ Folders Refresh
-y Tools Export List, ..
_Poperes)y |
E”J e 4 H |J|%Eucha ;Hel.p

The Properties dialog will now appear:

((: Control Technology Corporation 91
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Default POP3 ¥irtual Server Properties E

General |.-’-'-.u:u:ess| Mezzage Fu:urmatl Ealendaringl

9 Drefault POP3 Yirtual Server

IF addres::

12405310 Bdvanced... |
[Limit number of connections to; I

Connection time-out [minutes): |-| i

] I Cancel Lpply Help

Select the Access tab:

Default POP3 ¥Yirtual Server Properties EHE3

General Access | M ezzage Fu:urmatl Ealendaringl

—&ccess control

Enable anorymaous access and edit the

authentication methods for thiz rezounze. AR |

—Secure communication

Wiew ar zet the SECUNE cqmmunlcatlnrjs Certificate... |

method uzed when this virtual zerver iz

accessed. -
Eommumication...

— Connection contral

[Grant ar deny access to thiz rezouce wzing |

; Connection... I
|F addreszes ar Intermet domain names.

Select the Authentication button and ensure Basic Authentication is selected.

((: Control Technology Corporation
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Authentication E2 |

Select the authentication method to uze For this resource.

¥ Basic authentication

The pazzword will be sent over the network in clear text uzing standard
Corrmands.

Drefault domain:

¥ Irntegrated Windows Suthentication

The chent and zerver negotiate the Windows Secunty Support Prowider
Interface.

| 2k, I Cancel Help

When done select OK, then click the Connection button. For security reasons you may
only want to allow access from within your domain. Below allows all connections but by

selecting the Only the list below radio button you can restrict access.

Connection

Select which computers may access thiz virtual server;
= Only the list below

% Al except the lizt below

Compuiters:
Arccess | IP Address [Mazk] / Domain Mame
Add... | Eemowve |

k. I Cancel Help

When complete select the OK button on all open dialogs.

((: Control Technology Corporation
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

[11] DNS Support

(DNS - Domain Name System) A system for converting host names and
domain names into IP addresses on the Internet or on local networks that
use the TCP/IP protocol. For example, when a Web site address is given
to the DNS either by typing a URL in a browser or behind the scenes
from one application to another, DNS servers return the IP address of
the server associated with that name.

From Computer Desktop Encyclopedia
E 2005 The Computer Language Co. Inc.

DINS resolver ISP's Servers
in client

Iwant
www.abc.com

If IP not in
ISP's local DNS
cache, send DNS

IP for request to
abc.com? Toot server.

Here is the

DNS

authority for
E’Oroégﬁlm' abc.com.
Domains
Send DNS
request to
IP Tor authoritative

www.abc.com? | garvar.

Authority) ;

for IPis

abc.com 192.23.64.01
%]

Send
address
192.23.64.01 to client.

I~

Get me
] 192.23.64.01

If Web page not in
alocal Web cache
maintained by the

¥ ISP, get page

DNS resolver from Internet,

in client
((: Control Technology Corporation 94

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

DNS and the Model 5300

The Model 5300 controller is capable of using DNS to resolve names used in place of IP
addresses. The actual DNS IP address used will be that returned by the DHCP server, or
when using static IP Addresses, 20128 to 20131 allow the setting of a static DNS server
reference.

DNS IP resolution is supported anywhere IP addresses are used within scripts. Both
names and IP ‘.’ nomenclature may be intermixed within commands.

Script commands that support DNS:

ftpconnect <host name or IP Address>
test esmtp <host> <from> <to> <username> <passwd>
dnslookup <host name>
dnsRlookup
dnsRlookup <Reg #> <host name>
dnsRlookup 5 www.ctc-control.com
Assuming this resolved to 12.40.53.10, this would
store the following:
Register 5 = 12
Register 6 = 40

Register 7 = 53
Register 8 = 10
((: Control Technology Corporation 95

Document 951-530002-0013 01/15

http://www.ctc-control.com/

Model 5300 Communications & Logging Guide

[12] Quickstep & QuickBuilder
Symbols

This section discusses the symbol file generated by Quickstep 2 and the
QuickBuilder tools. These symbols can be imported into HMI displays
and used to symbolically monitor assigned registers. Additionally the
recommended CTNet Binary Protocol commands for both legacy and
newer controllers are discussed.

Quickstep Symbol Table
Supported Controllers: Models 2700, 5100, 5200, 5300.

The symbol format used by Quickstep 2 consists of an ASCII text file with tab delimited
fields, each line representing a record entry. Each record is terminated by a 0x0d 0x0a
combination. There are four fields:

TYPE - This field determines the resource type. It consists of a single bit set as follows:

1 — Constant

2 — Analog Input

4 — Analog Output

8 — Counter

16 — Data table column
32 - Display

64 — Flag

128 — Digital Input

256 - Stepper

1024 — Register

2048 — Servo

8192 — Step Name
65536 — Unknown Step name
131072 — Digital Output
524288 — Thumb Wheel

@ Control Technology Corporation 96
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

RESOURCE - Assigned resource number for access.

STATE - State references the active state, normally open or closed, only used for digital
resources. If O then normally open and active state is a 1, if 1 then normally closed and
active state is a 0.

NAME - Symbolic name.

Example:
1024 38 0 bZeroBatchCount
1024 39 0 bEditJob
1024 9 0 bTest
128 1 0 reot
128 12 0 buckleSensors
128 13 0 sawVFDStatus
131072 13 0 servoReset
131072 14 0 servoEnable
131072 15 0 runSaw
4 1 0 sawSpeed
4 2 0 cnvyrSpeed

Referencing the symbol sawSpeed, its TYPE is a 4, meaning Analog Output.

The RESOURCE is 1, first analog output in the controller. STATE field is
ignored since that is only for digital.

For HMI access purposes only the following TYPE fields are typically supported (32 bit
integers); the rest can be ignored:

2 — Analog Input (resource 1 to N)

4 — Analog Output (resource 1 to N)

64 — Flag (resource 1 to N)

128 — Digital Input (resource 1 to N)
1024 — Register (resource 1 to N)

131072 — Digital Output (resource 1 to N)

Quickstep HMI Communications

Numerous commands are available within the CTNET Binary Protocol as described in
the previous chapter.

Note: 2700, 5100, and 5200 controllers do not support Variants.

((: Control Technology Corporation 97
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

To simplify access all resources can be accessed by using registers, adding the resource
number to the base value:

Refer to Document No. 951-530006: Model 5300 Quick Reference Register Guide.

Analog Input, base register 8500
Analog Output, base register 8000
Flag, base register 13200

Digital Input, base register 2000
Register, base register 0

Digital Output, base register 1000

For example, if the TYPE is a 2, designating an Analog Input, with a RESOURCE
number of 5, reading register 8505 (8500 + 5) will result in the Analog Input value.

Referencing Document No. 951-530001: Model 5300 Enhancements Overview, the
primary commands of interest are:

Command Description

9 Read a register

11 Change a register

75 Read a bank of 50 registers (limited from 1 to 1000)

77 Read a bank of 16 registers

87 Request random registers from list (not supported 2701E/2601)

QuickBuilder Symbol Table
Supported Controller: Model 5300

Two symbol table formats available, that described below as well as the Quickstep 2
table format for backward compatibility to tools like CTC MON. Note that the Quickstep
2 format has reduced symbolic information. The symbol file can be found in the project
sub-directory with a . sym file extension. Two are created upon translation that, with the

base name ending with QS2. sym, is in the Quickstep 2 format.

The symbol format used by QuickBuilder consists of an ASCII text file with fixed field
sizes, padded with spaces, each line representing a record entry. Each record is
terminated by a 0x0d Ox0a combination. There are eight fields:

SYMBOL - Symbolic name, starting in record position 1.

GROUP - Storage group, starting in record position 51. Available groups are:
double — 64 bit double in Microsoft format externally via CTC binary protocol,
gcc internally (32 bit words swapped). Quickbuilder will reference this as a float
(float in Quickbuilder world is actually 64 bits).
boolean — 32 bit integer with 0 or 1 value, false/true.

((: Control Technology Corporation 98
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

int — 32 bit integer.
string —array of characters.

TYPE - Resource type, starting in record position 61. Available types are:
axis — Servo or stepper axis.

var — Variable, volatile.

nvar — Variable, non-volatile

din - Digital Input

dout — Digital Output

ain — Analog Input

aout — Analog Output

pid — PID Algorithm, where RESOURCE is input of PID and REGISTER is
output of PID.

RESOURCE - Assigned resource number for access, starting in record position 71.

REGISTER - Assigned register number for access, starting in record position 81.
Typically used instead of RESOURCE.

STORAGE - Storage type, starting in record position 91. Available types are:
scalar — Single item.

vector — One dimensional array.
table — Two dimensional array.
Note: Arrays are allocated dynamically. Thus size can change during runtime.

MODULE - Controller module model number referenced, for informational purposes
only, starting in record position 101. All spaces if variable or pid.

SLOT - Controller slot module is expected in, for informational purposes only, starting
in record position 111. All spaces if variable or pid.

Example:

buckleSensors boolean din 12 2012 scalar M3-11 1
bZeroBatchCount boolean var 0 38 scalar

cnvyrSpeed int aout 2 8002 scalar M3-34 2
cnvyrSpeed int ain 1 8501 scalar M3-32 3
COFFEE_POT boolean dout 3 1003 scalar M3-10 4
conveyorVFDStatus boolean din 14 2014 scalar M3-11 1
cSaw int var 0 16 scalar

HEATER boolean dout 2 1002 scalar M3-10 4
nvarl double nvar 0 36701 scalar

PID_PWM int pid 8502 5903 scalar

PID1 int pid 8501 8001 scalar

PID2 int pid 8502 8017 scalar

PWM1 boolean dout 1 1001 scalar M3-10 4
varl double var 0 36101 scalar

((: Control Technology Corporation 99

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

QuickBuilder HMI Communications
Numerous commands are available within the CTNET Binary Protocol as described in

the previous chapter.

Note: QuickBuilder makes extensive use of Variants, which are only supported in the

Model 5300 controller..

To simplify access all resources can be accessed by referencing the assigned REGISTER.

Referencing Document No. 951-530001: 5300 Enhancements Overview, the primary

commands of interest are:

Legacy Register Commands (scalar integers)

Command
9

11

75

77

87

Description

Read a register (integer only, else converts if a Variant)
Change a register (integer only)

Read a bank of 50 registers (integer only, 1 to 1000)
Read a bank of 16 registers (integer only)

Request random registers from list (integer only, else
converts if a Variant)

Variant Commands (integers, floats, strings, scalar & arrays)

Command
91

93

95

109

113

Description

Get properties (only needed if dynamic array size needed)
Read a variant

Change a variant

Read a variant array block (consecutive)

Read a block of variants, randomly

E__“ For optimized performance integer access should use the Legacy Register
Commands. Variants can be of any type and have a greater overhead.

((: Control Technology Corporation 100
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

((: Control Technology Corporation 101
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

[13] Fault Task Handler

When Quickstep programs encounter problems they fault, removing
control from the programmer. A new feature available in Blue Fusion
controllers is the Fault Task Handler. The Fault Task Handler is a
regular Quickstep task that can be branched to and executed when a soft
fault occurs. The Handler is simply a standard Quickstep program. It
can be set up as either a separate task that is looping on a delay

instruction awaiting the fault, or a main program that sets the Fault Task Handler step and
continues executing. Later branching in the program can go to the step designated to
handle the fault.

There can only be one Fault Task Handler active at a time. Any task can be activated as a
handler by writing a step number to branch to in register 13038, the
TASK_FAULT_STEP_REGISTER. A branch will occur to the designated step when a
Fault occurs. You can change which task is the handler or where to branch to at any
time, by setting 13038 to a different step, or to 0 to disable the handler. Register 13040,
TASK_FAULT_MASK_REGISTER can be set to enable which faults will cause the
branch to occur. Each bit is OR’d as required to enable each type of Fault:

FAULT MASK FAULT TYPE

0x0001 (1) Fatal Errors

0x0002 (2) Program Errors

0x0004 (4) Motion Errors

0x0008 (8) Analog Errors

0x0010 (16) Digital Errors

0x0020 (32) Communications Errors

When a Handler is executing it will ignore further soft faults and continue executing.
The fault state must be cleared for normal operation to continue. This is controlled by
register 13041, the TASK _FAULT_CLEAR_REGISTER (Write Only). This register
controls the state of program execution:

@ Control Technology Corporation 102
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Program State Description

1 RESET — Reset the controller only
and then stop..

5 RESTART - Reset the controller
and begin running again at step 1.

6 STOPPED - Stop the controller
but do not reset.

8 RUNNING - Ignore the fault and
continue running.

9 FAULT — Continue to fault as
usual.

10 SHUTDOWN - Reset the

controller and shutdown, requires
a power cycle to exit.

Important registers are as follows:

Register Description

13032 Fault Code — (R) Contains the fault code for
what caused the fault.

13033 Fault Step — (R) Step in which fault occurred.

13034 Fault Task — (R) Task number, starting at 1,
which caused the fault..

13035 Fault Data — (R) Any relevant error data.

13038 Fault Step Register — (R/W) Step to branch to
when fault occurs. Write a 0 to disable.

13039 Fault Task Register — (R) Task number that is
the active Fault Handler, O means none.

13040 Fault Mask Register — (R/W) Bit OR of types

of fault that will invoke the handler, by
default all enabled (-1) when the Fault Step
Register is written

13041 Fault Clear Register — (W) Used to write the
recovery state when done processing the
Fault.
@ Control Technology Corporation 103

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Fault Codes

Below is a table of all possible fault codes in the Model 5300:

Fault Value __Fault Mask

1 1
2 1
3 2
4 Not Used
5 1
6 2
7 4
8 4
9 4
10 4
11 4
12 4
13 2
14 2
15 2
16 Not Used
17 Not Used
18 8
19 8
20 2
21 16
22 16
23 Not Used
24 1
25 32
26 1
27 1
28 1
29 32
30 Not Used
31 Not Used
32 Not Used
33 Not Used
34 Not Used
35 2
36 32
37 2
38 2
39 2

Illegal function
Bad/corrupt program data
Destination step is empty
Bad thumbwheel data
Step one is empty step
Too many tasks

No such stepping motor
Motor not ready

Motor not profiled

No such servo exists
Servo not ready

Servo Error

No such register exists

No such data table column
No such data table row

No such prototyping board
Illegal sample time

No such analog input

No such analog output

No such display exists

No such input exists

No such output exists

No such thumbwheel exists
Illegal data table value
Message transmitting busy
Divide by zero error

Data out of range
Watchdog/hardware fault
Network error fault
Network access timeout
Network access busy
Network request lost
Network bad response
Network bad return message
No such communications port
Error in request/reply

Bad flag number selected
Bad delay timer selected
Out of soft counters

((: Control Technology Corporation

Document 951-530002-0013

01/15

104

Model 5300 Communications & Logging Guide

40 8 Error in fetching or calculating
analog In scaling

41 8 Module not calibrated

42 1 Error re-flashing module

43 2 Error trying to open request file,
not exist?
44 1 Error trying to read file, fgets?
45 1 Malloc failed
46 8 Analog module not responding
47 8 Error in fetching or calculating
analog Out scaling
48 1 Illegal build of Atmel board
49 32 Lost connection with virtual
controller
50 1 Task error
51 1 Task status error
52 Not Used Time delay not accepted, shorter
delay already set (not an error)
53 2 Error accessing Hardware 1/0
54 1 Generic IODRIVER error
55 2 Invalid parameter
56 1 Invalid extend data descriptor
57 4 SP1 Overrun
58 4 SPI Timeout
Fault Task Handler Example
Symbols:
Registers Symbol Name
10 FaultFlag
13038 FaultStepRegister
13039 FaultTaskRegister
13040 FaultMaskRegister
13041 FaultClearRegister
[1] init
;; A Fault Handler is installed in the first
;; step to monitor for communications failure. The
;; FaultMaskRegister must be set after the
FaultStepRegister,
;; otherwise the handler will be invoke for all faults
(default) .

<NO CHANGE IN DIGITAL OUTPUTS>

((: Control Technology Corporation 105
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Store 0 to FaultFlag

store 8 to FaultStepRegister
store 32 to FaultMaskRegister
goto next

.... continue program

[8] FaultHandler

This step is invoked should a fault occur, such as a
network disconnect. The FaultMaskRegister controls

under what circumstances the handler is invoked. This
example is very simple. It basically shuts all the

local outputs off and sets a flag in FaultFlag that

has no purpose. Note that no other tasks will be running
in the system nor can this task fault when the handler

is invoked.

store 1 to FaultFlag
delay 3 sec goto ClearFault

[9] ClearFault

rro

RESTART

Now attempt to recover from the fault by issuing a

store 2 to FaultFlag
store 5 to FaultClearRegister
goto FaultHandler

@ Control Technology Corporation 106
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

((: Control Technology Corporation 107
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[14] Formatted Messaging

The Model 5300 can transmit string-formatted messages, similar to the
format supported by the ‘C’ function ‘sprintf’. Each message may
consist of just text and/or embedded references to any number of
registers, whose values will be substituted just prior to transmission.
Message format definitions are stored as records in a file called
message.ini which is located in the / system/Messages

subdirectory of the flash disk. Each line of message. ini is considered a record, from
1 to a maximum of 50 messages.

Messages are written to the default communications port set in register 12000, which is
the standard Serial port selection register in Quickstep. Writing to the Message String
Transfer Register (12316) selects which record to dynamically format and write out the
communications port. A read returns the status of the write, with 0 meaning success.
The Model 5300 supports up to 7 communication ports, two of which are dedicated to
RS232, while the remaining 5 are assigned by the program as bidirectional TCP
redirector ports. The redirector ports appear to Quickstep as RS232 ports, but actually
either connect to a remote terminal server or host based application program

Typically a message consists of text with a ‘sprintf” formatted specification, followed by
r###4#, where ##4#4# is the desired register. Therefore, to read register 8501 to be

exactly 5 characters with preceding 0’s, $05dr8501 would be inserted in the text string.
Note the %$05d is the same as a ‘printf’/’sprintf” and actually uses the exact same
function, only enhanced. This means $05Xr8501 would cause hexadecimal values to

be generated. Sample strings using the previous example could be entered in the
message.ini file as:

Analog Value = %05dr8500\r\n
Analog Value %$05dr8501\r\n

If the above are the only two entries in the message.ini file, then writing a 2 to the

Message String Transfer Register would cause the second line to be processed and the
following to be written out the RS232 port if a 583 were in register 8501:

((: Control Technology Corporation 108
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Analog Value = 00583<CR><LF>

Message.ini Extended Formats
As described previously, the message. ini file format is similar in structure to that of

the ‘C’ sprintf function, with additional enhancements. References to registers, data table
cells and time/date stamp formats are supported using this extended format:

Register (decimal) - $0#dr<register> or $dr<register>
Example: %05dr13002 (fix size with leading 0’s to at least 5 places, reg
13002)

Register (hexidecimal) - $0#xr<register> Or $Xr<register>
Example: %05xr13002 (fix size with leading 0’s to at least 5 places, reg
13002)

Register (ascii) - $cr<register>0r $cr<register>, <length> or
$cr<register>, r<register>
Example: %cr12001,r12302 (convert the serial port buffer to ASCII

characters)
Example: %cr12001,3 (convert the first 3 serial port buffer registers to

ASCII)

Data Table Cell - $0#dD<row>, <col> or $dD<row>, <col>
Example: %05dD1,2 (fix size with leading 0’s to at least 5 places, row 1,
column 2, from the data table).

Time/Date Stamp - T !<time/date format>

Example: $T!HH:mm:ss!
$T!MM/DD/YYYY!

Where each below are optional:

HH = hour (24 hour format)

mm = minute

ss = seconds

MM — month

DD - day

YY — year in 2 decimal format, no century.

YYYY —year in 4 decimal format, including century.

E — Day in week, text — Mon, Tue, Wed, Thu, Fri, Sat, or Sun

Z — Time zone information in 5 digit format - <sign>HH:mm from GMT

Note:
o All other characters are treated as filler text, except ending “!”.
o Maximum 48 character Time/Date Stamp string.

((: Control Technology Corporation 109
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

E__“ the 1og. ini file in Document No. 951-530015: Model 5300 Logging and FTP
Client Applications Guide uses the same formats detailed above.

((: Control Technology Corporation 110
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

[15] Network Performance
Adjustments

Within a Model 5300 environment many threads run in parallel, each

executing when there is work to do, and then sleeping until it is their

time to be serviced once again. At the highest general priority is your

Quickstep application program. It must yield in order to allow things

like the web server to transfer files, telnet to return key strokes, etc.

Quickstep instructions tend to poll I/O or registers, at high rates of
speed, until a change of condition occurs, at which point logical branching occurs. At
times the interval between each step can be critical, so registers are provided to control
the balancing of execution time amongst tasks.

As each Quickstep step is executed a background timer is run; upon timeout, a window is
opened allowing other threads to execute, such as the web server. Since there is only one
CPU when you service Quickstep you cannot be transferring files, when transferring files
you cannot service Quickstep, hence a decision must be made as to what is the worst case
acceptable time allowed between Quickstep steps. Register 13036, Performance
Adjustment Register (PAR), is the periodic number of milliseconds the Quickstep
execution loop will check to see if any network operations need to take place; if none
need to be done, Quickstep continues to execute, else it yields control for Register 13037
(Network Service Window, NSW) X 5 milliseconds. Thus PAR controls the network
response time for many operations while NSW controls the amount of time the network
may run prior to returning control to Quickstep. NSW is the maximum amount of time
that typically will occur between Quickstep instructions under heavy network traffic.

By default Quickstep checks to see if the network needs service every 30 milliseconds,
allowing the network window to remain open for 30 milliseconds (NSW = 6), which
becomes the worst case time between individual steps. This value may be changed at any
time. The minimum value for PAR is 10 milliseconds and NSW is 2 (2 X 5= 10
milliseconds).

Required settings:
= 10 <=PAR <= 250 (smaller PAR > Network Performance)

((: Control Technology Corporation 111
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

= 2 <=NSW <=14 (larger NSW > Network Performance)

((: Control Technology Corporation
Document 951-530002-0013 01/15

112

Model 5300 Communications & Logging Guide

((: Control Technology Corporation
Document 951-530002-0013 01/15

113

Model 5300 Communications & Logging Guide

[16] Data Logging

Data Logging on a Model 5300 controller consists of the process of
periodically recording collected information in a pre-determined file
format. Data may consist of any combination of register contents, a data
table cell, time/date information, and/or constant string text. Data is
logged in a record format derived from a definition file called
log.ini. This definition file lists all the logging record formats

required, each individually selectable at run-time.

Logging Controller Setup

Data Logging causes a file to be reopened during each write operation, at which time
records are appended to it. The flash drive does not support the appending of records to
an existing file therefore only the NVRAM is supported for logging. An NVRAM disk
resides at the /RAMDISK directory of the Model 5300. Both / (root) and / system
are FLASH. The NVRAM disk is referenced as a virtual sub-directory called data,

residing within the / system/Messages FLASH directory.

Virtual Directory Creation

Log files are expected to exist in a virtual directory linked to the
/ system/Messages FLASH directory, called data. This allows you to reference
the main flash disk file structure but in actuality be redirected to a NVRAM disk of your
choice and size. The mount command is used to create a virtual directory. Reference

Document No. 951-520001: Model 5200 Remote Administration Guide. In summary, the
following example is used:

((: Control Technology Corporation 114
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

BlueFusions»*mount "“"/_systemsMessages-sdata' "~RAMDISEK"
SUCCEES : mount completed.

BlueFuzions>dir

dru—ru—ru— B owner group BAAZ56 MAR 15 15:81 _suystem
dru—rw—rw— 1 owner group 1024256 JAN 81 @GB:88 RAMDISK

Jolume: Capacity — 3731920 Free — 2917680 Deleted - @584960.

BlueFuzion~*cd ~_systemsMezzages
SUCCESS : cd command successful.

BlueFuszions_system-Mezzages . >dir
dru—rw—rw— B Inked group BAAEEA JAN B1 A@:80 data
Jolume: Capacity — 3731920 Free — 2919680 Deleted - 0584960,

BlueFusion/_systemsMessages~ >

All log commands will operate on the data sub-directory, with the full path being
/ system/Messages/data. The following section will describe this process in
more detail.

E_—“ Virtual directories are volatile and must be re-created upon every power cycle,
typically by the use of a script file (_ startup.ini).

Logging Record Format and Operation

A predefined format file must reside within the / system/Messages directory called
log.ini. This file contains individual records defining the desired contents to be
written to a log file during a logging sequence.

The content of the 1og. ini file follows the same format as that of the message.ini

file. This string-formatted message is similar to the format supported by the ‘C’ function
sprintf. Each message may consist of either text and/or embedded references to any

number of registers, where the values will be substituted just prior to writing to the log
file. A maximum completed record size (each line in a log file) of 512 bytes is
supported. Message format definitions are stored as records in a file called 1og.ini

which is located in the / system/Messages subdirectory of the flash disk. Each
line of 1og.ini is considered a record, from 1 to a maximum of 50 pre-defined
formats.

The logging of data is controlled by two registers, the Log Selection Register (12325) and
the Log String Transfer Register (12326). The Log Selection Register determines the
name of the log file to be written, Log###.10g, where ### is the register contents at
the time of an operation. For example writing a 1 to the register defines the name of the
file accessed to be L.og001.1log, a 2 would be Log002. 1og, etc. Up to 999 different
sequences may be used.

Writing to the Log String Transfer Register (12326) causes the actual write operation to
occur, selecting which record in the 1og. ini file to dynamically format and write to the

((: Control Technology Corporation 115
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

NVRAM disk file. A read on the Log String Result Register (12327) returns the status of
the write, as defined below:

0 — Success
43 — File error, either 1og. ini is missing or Log### . ini created an error.

44 — No such record inthe 1og. ini file

53 — Write error, check available disk space
-1 — Default value after setting the Log Selection Register

Script and Flash Disk Registers

12311

12312

12314

12315
12324

12325

12326

12327
12328

12329

12330
12331

12340-12359

12360-12379

12380-12399

Script Execution: R/W; writing a numeric to this register will cause the corresponding script to be
executed. For example: writing a 4 to this register will cause Script004.ini to be executed.
Adding 1000 to the value will cause the script to execute as a background thread. For example 1004
will run Script004.1ini except as a background thread. Only scripts 000 to 019 may be run this
way, reference 12340/12360/12380 register blocks for result information.

Script Execution Result: Read only, 0 = busy, 1 = successfully executed, else error code (reference
951-520015).

Flash Disk Selection: (R/W), O = root, 1 - n = drive mounted in sequence. Determines volume in which
Flash Disk Space Register (12315) returns information.

Flash Disk Space: Read only, contains the approximate free space available on the flash disk.

Script Line Result: Read only, contains the last error code that caused a foreground script to stop
executing (Script #001 to 999).

Log File Name Selection: R/W, writing a numeric to this register will define the Log/Data table file
name to be used:

Value Description

0-999 Normal, Log###.log file written using log.ini

1000-1999 Variant array is written to log file, Log###.log,
log.ini not referenced

2000-2999 Reserved

3000-3999 Variant array is written to QS2 data table format
using name datatable###.tab, log.ini not
referenced.

4000-4999 Reserved

5000-5999 Varant array is loaded/read from QS2 data table
format using name datatable###.tab

Log String Transfer: R/W, write record number of ‘log.ini’ format file to reference and begin writing
formatted record to Log### . Log file. If using Variant then this becomes the variant register number.

Log String Result: R, result of logging operation, O = success, -1 = busy.

Log Deletion: R/W, write the numeric value of the Log###.1og file to delete.

Snap Execution: R/W, write the numeric value of the Log###.1og file to rename to
Snap###.1log.

Snap Result: Read only, result of logging operation, O = success, 53 = failed, or not exist.

Snap Deletion: R/W, write the numeric value of the Snap###.1og file to delete.

Script Thread Result: Read only, 0 = busy, 1 = successfully executed, else error code (reference 951-
520015).

Script Line Thread Result: Read only, contains the last error code that caused a foreground script to
stop executing.

Script Line Thread Result: Read only, contains the line specific error code returned upon abort of
script, (reference 951-520015).

@ Control Technology Corporation 116
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Log.ini Format

As described previously, the 1og. ini file format is similar in structure to that of the ‘C’
sprintf function, with additional enhancements. References to registers, data table
cells and time/date stamp formats are supported using this extended format:

Register (decimal) - $0#dr<register> or $dr<register>
Example: $05dr13002 (fix size with leading 0’s to at least 5 places, reg 13002)
Register (hexidecimal) - $0#xr<register> 0r $Xr<register>
Example: %05xr13002 (fix size with leading 0’s to at least 5 places, reg
13002)

Register (ascii) - $cr<register> 0r $cr<register>,<length> or
%$cr<register>, r<register>
Example: %cr12001,r12302 (convert the serial port buffer to ASCII
characters)
Example: %cr12001,3 (convert the first 3 serial port buffer registers to
ASCII)

Data Table Cell - $0#dD<row>, <col> or $dD<row>, <col>
Example: %05dD1,2 (fix size with leading 0’s to at least 5 places, row 1,
column 2, from the data table).

Time/Date Stamp - $T!<time/date format>

Example: $T!HH:mm:ss!
$T!MM/DD/YYYY!
Where each below are optional:
HH = hour (24 hour format)
mm = minute
ss = seconds
MM — month
DD —day
YY —year in 2 decimal format, no century.
YYYY —year in 4 decimal format, including century.
E — Day in week, text — Mon, Tue, Wed, Thu, Fri, Sat, or Sun
Z — Time zone information in 5 digit format - <sign>HH:mm from GMT
Note:
o All other characters are treated as filler text, except ending ‘!".
o Maximum 48 character Time/Date Stamp string.

Typically a log record consists of text with a sprintf formatted specification,

intermixed, as required, with the format detailed above. Therefore, to read register 8501
to be exactly 5 characters with preceding 0’s, $05dr8501 would be inserted in the text

string. Note the $05d is the same as a printf/sprintf and actually uses the exact

((: Control Technology Corporation 117
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

same function, only enhanced. This means $05Xr8501 would cause hexadecimal

values to be generated. Sample strings using the previous example could be entered in
the 1og. ini file as:

Analog Value %$05dr8500\r\n
Analog Value = %05dr8501\r\n

If the above are the only two entries in the 1og.ini file, then writing a 2 to the Log

String Transfer Register will cause the second line to be processed and the following to
be written to the disk if a 583 is in register 8501.:

Analog Value = 00583<CR><LF>

Log Format Example

Assume a record format of the following is desired:
= Comma delimited format
Field 1 - MM/DD/YYYY
Field 2 — HH:mm
Field 3 — Time tic register 13002
Field 4 — Analog Input 1
Field 5 — Analog Input 5
Field 6 — New line separator <CR> <LF>
The format for this in a 1og.ini file would be a record inserted with the following

format:

STIMM/DD/YYYY!, $T!HH:mm!, %dR13002, %dR8501, %dR8505\r\n

If desired, constant text could be added or merged around the above data, although in this
example it was not needed. Additional records could be added to the 1og.ini file to

represent other formats to be logged. In this example only one is required thus it will be
referenced as the first record in the 1og. ini file.

The sequence of events to write a record to a log file with the name Log001 . 1og would

be:
1. Set the Log Execution Register (12325) to a 1, which will set the Log String
Result Register toa-1: 12325=1
2. Write a 1, for the first record of the 1og.ini format file, to the Log String

Transfer Register (12326) to actually do the write operation: 12326 =1

3. Monitor Log String Result Register (12327) for a change from -1 to another value,
0 signifying success. Note that if background threads (Advanced Scripting,
chapter 18) are not used the result and write operation occurs immediately upon
writing to the Log String Transfer Register and control is returned to the task only
after the write is totally complete. This means status is immediately complete and
valid:

0 — Success

((: Control Technology Corporation 118
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

43 — Could not open the file, either log.ini is missing or
Log###.1ini created an error.
44 — No such record inthe 1og. ini file

53 — Write error, check available disk space
4. Loop Back to step 2 to write the next record if the file name desired has not
changed.

An example of three records of data would be:

07/06/2010, 13:41, 234567, 800, 1200
07/06/2010, 13:52, 246000, 801, 1198
07/06/2010, 13:58, 250007, 808, 1190

SNAPSHOT
Snapshot capability is available which renames a file while it is actively being appended
to, allowing for real time uploads. For example, if Log001. log is being created, and

records appended, a single write to the Snapshot Execution Register (12329) renames
Log001.log to Snap001.1log. The host may then upload Snap001.1og, which

contains all of the logged data to that instant, while in the background records are still
being written to a new Log001 . 1og file. This allows for automatic synchronization of

recorded data.
The Snapshot Result Register (12330) reflects the results of the operation:

SUCCESS =0
ERROR_IOACCESS = 53 (log file does not exist or there is an existing Snap file
of the desired name)

Log File Deletion

Both Log and Snap files may be deleted by writing the file number to a special deletion
register:

LOG_DELETION REGISTER - 12328
SNAP DELETION REGISTER - 12331

Upon deletion the respective status register will contain either a ‘0’ for success, or a 53
(ERROR_IOACCESS, no file existed).

LOG_STRING RESULT REGISTER (12327)
SNAP_ RESULT REGISTER (12330)

Log Disk Maintenance

The FLASHDISK_SELECTION_REGISTER (register 12314) is used to select the active
disk volume whose remaining space IS to appear in the
FLASHDISK_SPACEAVAIL_REGISTER (12315). By default it is 0, reflecting the root

((: Control Technology Corporation 119
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

volume. As each volume is mounted it becomes a new volume and is assigned a number,
incrementally. To determine a volume number, simply view a directory at the root level.
The second column is the volume number; you will see a0 in the systemrowandal

in the mounted ramdisk row. Reading register 12315 will retrieve the actual bytes
remaining.

Directory of the root drive gives the free space on that drive:

BlueFuzions>»dir
drw—rw—rw— B owner group BAB256 MAR 11 16:45% _system
drw—rw—rw— 1 owner group 1824256 JAN 81 BB:88 RAMDISK

Uolume:= Capacity — 3931928 Free — 3216768 Deleted — G000EEA .

BlueFusion~ > _

Changing to the ramdisk drive shows the free space on that drive:

BlueFusions»cd RAMDISK
SUCCESS : cd command successful.

BlueFus ionRBAMDISKA >dir

dru—ru—rw— @ owner group BEEZ56 FEB 22:31 Programs

dru—ru—ru— ouner group BAAEEA FEB 22:31 Datatahles

— U PP — owvner group 126688 MAR 12:52 CamWithZ2Axes—conl.g=
—PU—PuU—Pu— ouner group BA1464 MAR 12:52 CamWith2Axesz—conl.zuym
dru—ru—ru— owner group BABAEA FEB 22:13 _nvar

—PU— P PL— ovner group B6?37E MAR 17:29 G=2MSB_TS5-Test.g=
T L M ouner group BABZ244 MAR 17:279 Qs2MSB_TS5-Test.sym
—PuU— P PL— ovner group B59142 MAR 28:52 msbhhoot-Test.g=
—PLU—PL—PL— ovner group BEEZ244 MAR 280:52 mzbhbhoot-Test.zuym

T M owner group B569A8 MAR BA:48 Counttst_GC-Test.g=

— U PP — owvner group BEE36E MAR BB:48 Counttst_C-Test.sym
Uolume: Capacity — 1824256 Free — B687616 Deleted — HAOBEEEA .

BlueFusion/RAMDISH.. >

Below, using CTCMON, it is shown that volume 1 is being read, which is represented by
the value of ‘1’ in register 12314. Note the value in register 12315, which refers to the
size in bytes available in the NVRAM disk labeled ‘RAMDISK’. It is the same as what
was displayed in the Telnet session, above.

((: Control Technology Corporation 120
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

- Registers . = S |

Display

1 |
687616 12315
[

-1

q

rea 12319 N 12319

0 112320 -
2

2 12322

0

req 12324 W =

-1 12325

-1

-1

-1 12328

-1 A

L
o
3]

GoTo: 12314

@ Control Technology Corporation 121
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

((: Control Technology Corporation 122
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[17] FTP Client

The Model 5300 Controller supports simultaneous FTP Server and/or

Client sessions. FTP provides a standard means to transfer files to/from

the controller from a host computer. When using the built-in FTP

Server, the remote computer is the master, initiating file transfers. This

section details the use of the 5300 FTP Client mode, where the

controller is capable of initiating its own file transfers to a remote host
FTP Server. Simple files may be uploaded/downloaded, as well as firmware updates and
new Quickstep application programs. Additional information with regards to the FTP
Server capability may be found in Document No. 951-520001: Model 5200 Remote
Administration Guide.

E—_ﬂ When using FTP Client commands within a script it must be executed as a
background threaded operation. Background execution of a script would occur by
adding 1000 to the base file script number. For example, a 1001 written to the ‘Script
Execution Register ’ (12311) results in Script001.ini executing as a background

thread. Ftp Client operations should only be run from a command line within telnet or as
a background thread, not as part of a Quickstep task (file numbers, 001 — 999).

Setup

An FTP Server may reside on virtually any host or workstation computing environment.
Software is available for Windows 2000, XP Pro, 2003 Server, and Unix/Linux
environments. Unix/Linux, Windows 2000/2003 Servers, and XP Professional contain
the service as part of the installation CD. Windows 2000 must use a third party package
such as can be found at the following web links:

http://www.bpftppro.com (reference Appendix A)
http://www.serv-u.com/
http://www.candcl1.com/ftpservu/index.cfm
http://www.abraxis.com/ipswitch/wsftp-server.htm

Specifications of what to use, and how to configure the environment, is beyond the scope
of this document. A very good reference for installing the resident FTP Server, and its

((: Control Technology Corporation 123
Document 951-530002-0013 01/15

http://www.bpftppro.com/
http://www.serv-u.com/
http://www.candc1.com/ftpservu/index.cfm
http://www.abraxis.com/ipswitch/wsftp-server.htm

Model 5300 Communications & Logging Guide

use, on a Windows XP Professional computer is available online from PCSTATS. The
title of their article is called: “Beginner’s Guides: Setting up a FTP Server in WinXP”.
It is strongly suggest that you read this article if you are not familiar with FTP Servers.
The web link is:

http://www.pcstats.com/articleview.cfm?articlelD=1491

The article provides not only step by step procedures but also a very good background on
ftp itself, as well as security considerations.

A quick summary of the installation steps involved are as follows:

1. While logged in with administrative rights open a Control Panel Window.

[ﬂ Mokepad
E"' Conkral Panel k
ZTiZ Manitor ¥2.8 @, Set Program Access afid
Defaults
{’ Cadewright e__t_ Gerinzgs 1 g

}’":;‘.‘- Printers and Faxes
@ Symantec pcanywhers

@,/} Help and Support:
! E&.ﬂ adobe Reader 6.0 ‘,-.
‘I'_) Search
7= Run
all Programs D Dﬂ Dl Salution Cenker

E| Log Off @| e

4 s start + ' MSM Messenger Inbox - Microsaft

@ Control Technology Corporation 124
Document 951-530002-0013 01/15

http://www.pcstats.com/articleview.cfm?articleID=1491

Model 5300 Communications & Logging Guide

2. Double-click Add or Remove Programs.

B Control Panel
File

Edit Wiew Fawvorites Tools Help

;_;}Eiack -,_‘_;J LE pﬁearch [{_"' Folders v

address |3 Contral Panel

E’I Control Panel #

See Also

&8 Windows Update

3. At the left side of the window click Add/Remove Windows Components.

E} Switch bo Cakegory Yisw

Opkions

Folder Cptions Fonts

¥ Add or Remove Programs

Change ar

Remove
Prograrns

&

Add MNew
Prograrns

=

Add/Rem
Window
Camponents

Currently installed programs:

@ Adobe Acrobat - Read

Click here for support inf

To change this program o

E Adobe Atmosphere Plaver
5L Adobe Photoshop Alburm 2

[ir adobe Reader 6.0.1
[&r adobe Reader Japanese F
i Codewright 7.5

Bl T Her

d =

Accessibility Add Hardware

.

X
Add of
Remove
Programs

>

Game
Conkrallers

@ Control Technology Corporation

Document 951-530002-0013 01/15

125

Model 5300 Communications & Logging Guide

4. The Ftp Server option is listed under the 1IS component. Select it then the Details

button.

Windows Components Wizard

Windows Components
Y'ou can add or remove components of Windows =P

To add ar remove a component, click the checkbos, & shaded bos means that anly
part of the compaonent will be installed. To zee what's included in a component, chck

D etailz.

Components:

[E2 Indexing Service OOME
48 Intemet Explarer OOME

?'E Internet Information Se z [|15]
[EEJ M anagement and kManitaring T ools 20MB
[1 F? Meszane Nusing nnme >

Deszcrption: Includes Web and FTP support, along with support for FrontPage,
tranzactions, Active Server Pages, and database connections.

Total dizk space required: B4 3 ME ;
D etails...
Space available on disk: 9203 4 MEB sars X

[< Back ” et =][Caticel]

5. Make sure the check boxes are as below and then click OK.

Internet Information Services [I15) rz

To add ar remove a component, click the check box. A zhaded box means that anly part
of the component will be installed. To zee what's included in a component, chck Details.
Subcomponents of Inkernet [nformation Services (15

< Comman Files 1.0MB ~
@ D'ocumentation 35 HME
&l _- File Transfer Protocal [FTF] Service 0.1 ME
WHER FrontPage 2000 Server Extensions 4.3 MB

I Intemet Information Services Shap-n 1.3ME
A SMTP Service 11ME
o world \Wide Web Service 23MB ™

Dezcnption: Providesz support to create FTP sites uzed to upload and download files

Taotal disk space required: 54.5 MB
Space available on digk: 9203.2 MB

]] [Cancel

@ Control Technology Corporation
Document 951-530002-0013 01/15

126

Model 5300 Communications & Logging Guide

6. Click Next to proceed.

Windows Components Wizard

Windows Components
You can add or remove components of WWindows =P,

To add or remove a component, click the checkbox. A shaded box means that anly
part of the component will be installed. To zee what's included in a compaonent, click

D etailz.

Compaonents:

[E P Indexing Service 0.0ME »
i Intemet Explarer 0.0ME

?'5 Internet Information Services [115] 135ME N
| EEJ b anagement and kanitaring Toolz 20mB

[=2 Messane Husiing ke

Dezcrption: Includes \Web and FTP support, along with zupport for FrontPage,
tranzactions, Active Server Pages, and databasze connections.

Total digk space required: 54.5 MB _
32032 M

Space available on dizk;

[< Back “ Ne:-:t>%J[Cancel]

7. 11S components will begin to install.

Windows Components Wizard

Configuring Components
Setup iz making the configuration changes you requested.

et Pleaze wait while Setup configures the companents. This may take
several minutes, depending on the components selected.

Statuz: Configuring Intemet Infarmation Services [15]...

Cancel

@ Control Technology Corporation 127
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

8. The prompt below may appear, requiring the XP Professional install CD.

Files Meeded

— The file 'frpctrs b2 on 'windows #=F Profeszsional
CO-ROM iz needed.

ak.

Copy files from:

&

Type the path where the file iz located, and then click

| C:hWwindowshS ngterm 32\ Diverzhi3a6

V| [Browse. .

9. Insert the CD and set the directory as appropriate.

— The file 'ftpctre.h2' on Windows =P Professional
CD-ROM iz needed.

Ok.

Copy files from:

Type the path where the file iz located, and then click

D:4386

V| [Browsze. ..

@ Control Technology Corporation
Document 951-530002-0013 01/15

128

Model 5300 Communications & Logging Guide

10. Click OK when the path is correct and installation will begin.

Windows Components Wizard '_X-_

Configuning Components
Setup iz making the configuration changes pou requested.

,:" Fleaze wait while Setup configures the componentz. This may take
geveral minutes, depending on the components selected.

Status: Configunng Internet Information Services. ..

129

@ Control Technology Corporation
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

11. Once complete click Finish.

Windows Components Wizard |X|

Completing the Windows
Components Wizard

Y'ou have succeszsfully completed the Windows
Components ‘Wizard.

To cloge thiz wizard, click Finizh.

| Finizh [:

((: Control Technology Corporation 130
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

12. From Control Panel->Administrative Tools, select Computer Management and
expand the Internet Information Service folders until the Default FTP Site
appears. This verifies that ftp is installed.

I Computer Management E”E”E'
Q File Ackion Wiew Window Help — =] x|
- @@ @ .
Cornputer Management (Local) Marne | Fath
= ﬁﬁ Systemn Tools) o
ks Event Viewer There are noikems to show in this view,

+ Shared Folders
+ % Local Users and Groups
+ @ Performance Logs and Alerts
E;, Device Manager
- @ Skarage
+ Removable Skorage
Disk, Defragmenter
Disk, Managemenk
- Sﬁ Services and Applications
% Services
WL Control
+- B8 Indexing Service
- % Internet Information Service

+-[27] web sites
—-[_1 FTP Sikes
=l Defaulk FTP Site
+- iz Default SMTP Yirtual Ser
< REJE | >
@ Control Technology Corporation 131

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

13. Right click the Default FTP Site and select the Properties menu item to view the
Reference the PCSTATS web site, previously discussed, for
suggestions on how to adjust security, add user accounts for access, etc. Note that by
default only local computer user accounts with Administrative privileges may

current settings.

access files.

Default FTP Site Properties

FTF Site | Security Accounts | Meszages | Home Directory

[dentification
Drezcription: I:Zlefault FTF Site
IP &ddress: | [&l Unassigned] W
TCF Port:
Connection
%) Limited To: cornechions
Connection Timeout: geconds
Enable Logaging
Active log format:
|W3E Extended Log File Farmat b | [Properties...]

[Current Sezzionsz. .]

[Q. l[Cancel]

If both upload and download are to be done, Write must be enabled under the Home

Directory tab:

FTP Site | Security Accounts Messages| Home Directorny |

Local Path: | o hinetpubhftproot

YWwhen connecting to this resource, the content should come from:

{(®) a directory located on this computer

(") a share lozated on another computer
FTP Site Directom

| [Browse. ..

Fead

rite
o wisits

@ Control Technology Corporation
Document 951-530002-0013 01/15

132

Model 5300 Communications & Logging Guide

14. Windows XP has additional firewall security built into the product. The FTP Server
must be specifically enabled to allow incoming connections and bypass the firewall.
From the Control Panel select the Windows Firewall icon:

Windowvs
Fireswall

15. Select the Firewall Exceptions Tab:

= Windows Firewall

Gieneral |E:-:n:eptiu:ur‘[~t\ Advanced
Wb

Windows Firewall iz helping to protect pour PC

YWindows Firewall helpz protect vour computer by preventing unauthorized users
from gaining access to wour computer through the Intermet or a netwaork.

16. Select Add Port:

= Windows Firewall

General | Exceptions | Advanced

Windows Firewall iz blocking incoming network, connections, except for the
programs and services selected below. Adding exceptions allowes some programs
b waark, better buk might increase your security rigk.

Programs and Services:

M ame

berermote

File and Printer Sharing
File Transfer Program
FTP “owager, an FTP Client for Windows
Irternet Explarer
iTunes

e

e

MSM Meszenger B.2
QUTLOOK,

W Feds rnnathere Hest Sarire

[

|1

| 4ddProgram... | | AddPort.. %][Edt. || Delete

@ Control Technology Corporation 133
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

17. Fill out the dialog box as below and click OK:

Add a Port X

Ize theze zettingz to open a port through “wWindows Firewsall. To find the port
number and protocaol, consult the documentation for the program or service pou
want to uze.

Hame: |FTF' Server |

Part number: | 21 |

& TCP (O UDP

YWhat are the rizks of opening a port’?

o 1) [ooes

18. The FTP Server Name should appear in the list of checked Programs and
Services:
Frograms and Services:

Mame

berernate

File and Printer Sharing
File Transfer Program
FTF Server

FTP %ayager. an FTP Client far Windaws 1
Internet Explorer
iTunes

jar

jare aa

MSH Meszenger 5.2
W T NNE

| %

| tddProgiam.. | | addPot. || Edt. || Delete

@ Control Technology Corporation 134
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

19. Click OK at the bottom of the dialog to exit:

= Windows Firewall

General | Exceptions | Advanced

YWindows Firewall iz blocking incoming network, connections, except for the
programs and services selected below. Adding exceptions allows zome programs
to work, better but might increase wour zecurity risk,

Programs and Services:

Mame
beremate
File and Frinter Sharing

File Transfer Prograrm

FTP Server

FTP “apager, an FTF Client for Windows
Irternet Explorer

iTures

v a

v a

M5M Meszenger B.2

WANOLITEOOE

| 4ddProgram.. | | AddPot. || Edt. || Delete

Dizplay a notification when Windows Firewall Blacks a program

What are the rizkz of allowing exceptiong?

l ok QJ [Cancel

Commands

Once a server is available, the Model 5300 controller provides two means to access the
external server via its FTP client capabilities. The first is via the command line using
Telnet, the second by the use of advanced scripting detailed in Chapter 18: Advanced
Scripting. The following demonstrates the FTP commands when using Telnet to interact
with a Windows 2003 Server:

® Ftpconnect <ip address> <User Name> <Password>

Provides initial connection to the remote host computer running the FTP Server.

BlueFuszsion/*f tpconnect 12.48.5%3.94 support ControlTech
SUCCESS: Connection establizhed.

BlueFuzions >

= Ftpquit
Closes an FTP session after a successful Ftpconnect.

((: Control Technology Corporation 135
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

BElueFusions>f tpguit
SUCCESS: ‘quit’ Command Complete.

BlueFusion/~»

The following commands require the FTP connection to be active:

Ftpls <optional path>

Get the current directory, short format.

BlueFuzions*ftpls
4178PC3. 3.2
QF3 .7 <Aprd4ithze

SUCCESS: '1s* Command GComplete.

BlueFusion/s»

Ftpdir <optional path>

Get the current directory, long format.

BlueFuszion/>ftpdir
11-82-A4 18:85AH <DIR> 417APC3.3.2
-A4 108:85%A4H <DIR> QP3.7 <(AprBdillhze
1A:85AH <DIR> Support
B2 :55PH <DIR> Test

A3:56PM testfile.loyg
a?:52aM <DIR> Uploads
: 'dir’ Command Complete.

BlueFusions >

Ftpsend <source path> <optional destination path/name>

Send a file to the remote host. Paths enclosed in quotes (" ") allow the embedding
of register contents using the 1og. ini format.

Ftpappend <source path> <optional destination
path/name>

Send a file to the remote host, if it exists append to it else create a new file. Paths
enclosed in quotes (" ") allow the embedding of register contents using the
log.ini format.

Ftpget <source path> <optional destination path/name>
Get a file from the remote host. Firmware may be re-flashed or new programs
loaded, bypassing flash storage by directing it to the root directory. Only one ftp
server or client session can do this at a time since reserved SDRAM storage space
is used as a temporary buffer. Example:

ftpget BF5300V05009068.elf /BF5300V05009068elf

Paths enclosed in quotes (" ") allow the embedding of register contents using the
log.ini format. Example:

((: Control Technology Corporation 136
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

ftpget hostfile.fil "/mydir/Script%03dR1.ini"

where the contents of R1 will be substituted into the filename.

= Ftpced <path>

Change the current directory, on the host, to that specified. Paths enclosed in
quotes (" ") allow the embedding of register contents using the 1og.ini format.

BlueFuzions>*ftpdir
ii1-A2-A4 168:854H <DIR> 41°78PC3.3.2
11-82—-A4 168:85AM <DIR> QP3.7 <Aprd4illhze
18:85aHM <DIR> Support
-A4 @2:55PM <DIR> Test
A3:56FH testfile.loyg
@9 :52aM <DIR> Uploads
: 'dir’ Command Complete.

BlueFuzions*ftpcd Test
SUCCESS: ‘cd’ Command Complete.

BlueFusions>ftpdir

12-A8—-A3 B4:44PH 22476 5132Drur.c
12-A1-A4 B2:55PH 22476 foohar.c
SUCCESS: ‘dir' Command Complete.

BlueFusion/*

= Ftpmkdir <directory name>

Makes a directory on the host computer in the current directory. Paths enclosed
in quotes (" ") allow the embedding of register contents using the 1og.ini

format.

» Ftprename <source path/file> <new name>

Renames the specified source file to the new name. Paths enclosed in quotes
(" ") allow the embedding of register contents using the 1og. ini format.

= Ftprmdir <directory name>

Removes the specified directory on the host computer. Paths enclosed in quotes
(" ™) allow the embedding of register contents using the 1og. ini format.

* Ftpdelete <source path/file>

Deletes a file on the host computer. Paths enclosed in quotes (" ") allow the
embedding of register contents using the 1og. ini format.

Telnet Error Codes

When executing ftp commands from the telnet command line the returned message will
typically begin with SUCCESS: . At times, a failure will occur, causing an error

((: Control Technology Corporation 137
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

message to appear. The message will be displayed in the Telnet session on a new line
using the following format:

ERROR: <message> <code>
Where <message> is a description of the failure and <code> is detailed below:

FTP_ERROR - 0xD0
Internal ftp error.

FTP_TIMEOUT - 0xD1
Timeout occurred.

FTP_FAILED - 0xD2
General ftp failure.

FTP_NOT_CONNECTED - 0xD3
Attempted to execute a command but was not connected to the host.

FTP_NOT _DISCONNECTED - 0xD4
Host closed session during command execution.

FTP_NOT_OPEN - 0xD5
FTP failure on opening a file for transfer.

FTP_NOT_CLOSED - 0xD6
Attempted to open a file when a previous was not closed

FTP_LOGIN - 0xD9
Attempt to log onto the host failed, security violation

FTP_NOT_FOUND - 0xDA
Request was not executed (typically 550 FTP return code). Typically returned when a
file/directory does not exist, or there is a security access violation blocking access.

FTP_RETURN_CODE - 0xDB
Unknown return code from host ftp server.

((: Control Technology Corporation 138
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

[18] Advanced Scripting

Document #951-520003: Model 5200 Script Language Guide details
the operation of scripting within the Model 5200/5300 controller. This
section discusses features beyond that of the Model 5200, such as
automated file transfers, data table & file operations, and background
threaded script execution. A thorough knowledge of scripts is assumed.

Some advanced features available within scripts are:

Background Execution - Scripts may not only be run as part of a step, they may
also execute as separate background threads, in parallel to Quickstep execution.
Writing a 1 to 999 to the Script Execution Register (12311) causes a script to run,
within a Step, much like a Do statement. An advanced feature allows a

programmer to write a 1001 to 1020, executing Script001 to Script020 as a thread,
much like a future Begin Quickstep statement. These scripts fully execute as an
independent background thread.

Continuous Execution - Scripts may execute continuously until either a fatal
error or an end command is executed, terminating the script.

Script Nesting - Scripts may also invoke other Scripts (one call level supported).
Branching & Conditionals - Scripts support branching, program labels, and i f
conditionals.

Error Tracking - Major file and communication instructions set a status error
code, private to each script, which may be referenced from an if conditional or
onerror command. The variable is referenced as ERRORCODE and allows for
advanced retry and monitor operations.

Execution Time Control - The A1larm instruction allows the script to sleep until
a specific time, automatically waking at a defined time such as every Friday
afternoon at 3PM. Use theDelay instruction for pauses based on millisecond
values.

((: Control Technology Corporation 139
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Data Table

load datatable [Variant regnum] [filename]
The 1oad datatable script command can be used to load a variant array from a file.
This file is stored in the same format as the 9s2 . TAB file format except that floats have

a decimal point and strings are enclosed in quotes. A current QS2 file would be read in
as integers, given that that is a limitation of the QS2 data table. The enhanced table that
uses variants for storage is shown below:

data table[4][6] =
{

84 104 105 115 32 105

115 32 114 111 119 32

49 0 0 0 0 0
0 0 0 0 6.789 "string"

}

Note that tabs or spaces may be used as a separator, as all whitespace characters < ‘0’ are
ignored except LF, which designates the end of a line/row. There is no restriction on the
line/row length except as required by each Variant cell (string 223 bytes). The first 2
lines are ignored and the actual table size is set by the data found in the file. A CR LF
combination should follow the last ‘}’ to denote the end of the file.

The last two cells show examples of a float, 6.789, and a string format “string”.
Remember the string may reference other registers using the $d, message.ini,

format, but an extra % is needed (i.e., $%d). The first % will be stripped when the string
is parsed.

In the above example, 84 would be loaded into array location [0][0], and “string” would
be loaded into [3][5].

E——“ The load/save datatable commands list the array size as [row][column] for
compatibility with QS2.

save datatable [Variant regnum] [filename]
The save datatable script command operates exactly the same as the load
datatable command except that the Variant register contents are written to a file.

Any unknown cells will contain a “?”. Two separate formats are available, QS2
compatibility mode and CSV (comma delimited, similar to a log file).

In QS2 compatibility mode, seven spaces will be placed between cell data and a . tab

file extension must be used. Upon writing any existing file will be first deleted. The use
of any other file extension will cause the CSV format to be used, where each cell is
separated by a command and a single space. End of line is the same as the QS2 format,

((: Control Technology Corporation 140
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CR LF. There is no header information in CSV format thus the first array location will
be the first bytes of the file.

E__ﬂ The load/save datatable commands list the array size as [row][column]
for compatibility with QS2.

Diagnostics

disktest 1 [file size] [block size] [/path/file]
This command is used to perform a test of the file system. A file of the size [file
size] will be written using blocks of size [b1ock size]tothefile[/path/file].

An incrementing byte pattern is written and verified. The complete write is done first,
file closed and then read back and verified. For example, to test a 1MB file with a block
size of 512 bytes:

Example: disktest 1 1000000 512 /SDISK/testl.bin

disktest 2 [file size] [block size] [/path/file]
This command is used to perform a test of the file system. A file of the size [file
size] will be written using blocks of size [b1ock size]tothefile[/path/file].

An incrementing byte pattern is written and verified. The complete write is done first,
file closed and then read back and verified. For example, to test a 1MB file with a block
size of 512 bytes:

Example: disktest 2 1000000 512 /SDISK/testl.bin
Quickstep

enable quickstep2

This command enables QS2 operation at the next reboot, assuming a 1 is written to
register 20096. Quickstep may be enabled and disabled from normal operation in order
to conserve CPU cycles.

E_—ll System default is enabled.

disable quickstep2

This command disables QS2 operation at the next reboot, assuming a 1 is written to
register 20096. Quickstep may be enabled and disabled from normal operation in order
to conserve CPU cycles.

((: Control Technology Corporation 141
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

File System

set close nvariant [Variant #]"

Non-Volatile array variants are stored in files that may be transferred among controllers,
deleted, copied, etc. The contents of the non-volatile variant are independent of the
actual register number. The file name determines its assignment. Hence nv36702

will be used for register 36702.

File Edit Miew Fawarites Toaols Help

Q Back ~ (gJ ? /.-) Search Falders Elv

Address |8 ftp:f192.168.0,102/SDI5K)_rvar/

o o]

Other Places = s

@ N

B My Diocurnents
'I._g My Mebwork Places

<

Details

If that file was copied to file nv36703, then the data has now been duplicated and

register 36702 and 36703 now have the same data. When replacing a file it is important
to close it first. Not closing it means it cannot be deleted. You may copy a non-closed
file but make sure no task is writing to it or the data may be changing in the background.

Closing a file is also important if you are replacing non-volatile variants data, since upon
access if the file is closed it will re-attempt to open it and in this instance find the new
file. Open files cannot be replaced or deleted.

Example: set close nvariant 36702

This would close the file _nv36702 should it be open using the default path of
/SDISK/ nvar.

To close all open non-volatile specify a -1 as the [Variant #]. Should an error occur
the ERROR_OO RANGE flag is set.

set logpath [path]
Sets an alternate log file storage path. Power up defaultis / system/Messages.

((: Control Technology Corporation 142
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Example: set logpath /SDISK/myLogDir

set scriptspath [path]

Sets an alternate script file storage path. Power up defaultis / system/Scripts.

Example: set scriptspath /SDISK/myScriptsDir

set nvariantpath [path]

Sets an alternate nvariant file storage path. Power up default is /SDISK/ nvar which
will automatically be created at power up if it does not exist (one level only in directory

tree).
Example: set nvariantpath /SDISK/mynvariants

set emailspath [path]

Sets an alternate email file storage path. Power up defaultis / system/Emails.

Example: set emailspath /SDISK/myEmailsDir

set webpath [path]

Sets an alternate web file storage path. Power up defaultis / system/Web.

Example: set webpath /SDISK/myWebDir

set firmwarepath [path]

Sets an alternate firmware file storage path. Power
/ _system/Firmware.

Example: set firmwarepath /SDISK/myFirmwareDir

set programspath [path]

Sets an alternate program file storage path. Power
/ system/Programs.

Example: set programspath /SDISK/myProgramsDir

set datatablespath [path]

Sets an alternate data tables file storage path. Power up default is
/ system/Datatables.

Example: set datatablespath /SDISK/myDatatablesDir

up default

up default

((: Control Technology Corporation
Document 951-530002-0013 01/15

143

Model 5300 Communications & Logging Guide

copy [source path/file] [destination path/file]

This command is used to copy a file from one location to a new location, creating a new
file and overwriting any existing.

Example: copy /SDISK/ nvar/ nv36702 /SDISK/ nvar/ nv36750

A new non-volatile Variant, 36750 now exists with the same contents of register 36702.
SCRIPT ERRMASK FILE error bitis setif an error occurs.

Monitor

mon tfs init
Initialize and clear the controller monitor file system.

mon tfs rm
Remove a file from the controller monitor file system.

mon tfs Is

List all the files within the controller monitor file system, typically just one, which is the
application program to execute.

mon reboot

Exit the controller application and reboot into the monitor, re-loading the entire controller
program once again. Basically a full reset where VBIAS will be shut off and execution
of application programs immediately terminated without notification.

Miscellaneous

get vproperties [Variant #]

Since there are currently no utilities to view variant information, such as how big it is,
array size, floating point precision, etc, this command will display that information:

Example: get vproperties 36702

SUCCESS: Nonvolatile Variant 36702, Size: rows - 50 / columns -
200, precision: 6.

printf [format string...]
The printf command allows for a string format to be tested prior to inclusion in a
variant cell or message. ini file. The string will be parsed exactly as it would when

used in these applications. This command is typically used for testing only as it has no
effect other than visual final string presentation.

((: Control Technology Corporation 144
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Example: printf "The contents of register 100 = %dR100"

The " " are required.

clear startup project

This command will clear the current default project that is invoked at reset or power up,
thus none will be executed upon power up.

get project
This command will display the currently active project that is running.

get project info [project file]
This command is used to determine the contents of a QuickBuilder project file.

get startup project
This command will display the project set to run at power up or reset.

run project [opt. project file]
This command is used to load and run a QuickBuilder project file. The controller is
restarted. If no project is specified the last saved project will be run.

set startup project [opt. project file]

This command is used to save a specific project file name/location upon which to run at
power up and reset, as the default. If none is specified then the last executed path/name
will be saved.

Advanced Commands

Inc <Register>

Increment the contents of the reference register by 1. Typically used in counter
operations such as retrying communications.

Example: inc 200
If the contents of register 200 was 99, it would become 100 after execution.
Dec <Register>
Decrement the contents of the reference register by 1. Typically used in counter

operations such as retrying communications.

Example: dec 200

((: Control Technology Corporation 145
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

If the contents of register 200 was 99, it would become 98 after execution.

If <Resource> <Logic> <Resource> goto <Label>
<Resource> - Register reference (R####), decimal or hex constant (0x00000000), or
ERRORCODE.

<Logic> - >, >=, <, <=, 1= == and & resulting in a Boolean result of true or false.

<Label> - Single line within script file containing a preceding colon °:” followed by a
unique character string. Example — :myLabel

Example: if R200 >= 55 goto tooBig
if ERRORCODE & 0x00200000 goto fileFailure

:<Label>

A label consists of a single, independent line, within a script text file, to which a name is
assigned, typically as a destination for a branch operation (if or goto).

Example: :myLabel

Onerror <optional error mask> goto <Label>

Set where to automatically branch should an error occur. Execution of ‘Onerror’ with no
terms clears the branching option. Only file and communication instructions, along with
syntax errors specifically set error flags. The ‘optional error mask’ allows you to activate
individual errors. Upon return from and instruction a global ERRORCODE variable has
its individual flags set should a problem occur, else ERRORCODE = 0.

Example: onerror (clears any error branching)
onerror goto myLabel (if any error
occurs branch to myLabel)
onerror 0x00200000 goto myLabel (branch if
file error)

Goto <Label>
Immediately branch to the desired <Label>.

End
Exit the Script.

Delay <Register or constant — milliseconds>

Delay the designated number of milliseconds. Milliseconds may either be a decimal
constant, hexadecimal notation (0x00000000), or reference the contents of a register
(R200 for register 200).

((: Control Technology Corporation 146
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Example: delay 2000 (delay 2 seconds or 2000
milliseconds)
delay R1 (delay by the number of

milliseconds in register 1)

Alarm <TIME=HH:MM:SS> <optional day of week, DOW=Mon...>

Pause execution until the designated time occurs. A ‘TIME’ and optional day of week,
DOW, from 0 (Monday) to 6 (Sunday) is listed. Each parameter may be contained within
a register. For example the hour and/or minute could reference register 15 while the
minute is a constant: R15:00. When referencing a specific day of the week, enter the
following: Mon, Tue, Wed, Thu, Fri, Sat, or Sun, for the desired day, or a number from 0
to 6. Seconds may also be included, yielding a format of <HH:MM:SS>.

Example: alarm TIME=23:00 DOW=Mon (sleep until 11PM on Monday)
alarm TIME=23:00 (sleep until 11PM)
alarm TIME=R1:00 (sleep until hour contents in register 1)
alarm TIME=23:00:05 DOW=0 (where 0 = Monday)
alarm TIME=23:00:05 DOW=R10 (where contents R10 =0 - 6)

ERRORCODE

ERRORCODE is a universal variable, private to each script. Upon execution of script
commands status bits are set should problems occur. if conditional and onerror
commands can branch accordingly.

SCRIPT_ERRMASK_FATAL - 0x00800000
Fatal error, such as a memory allocation failure. Currently this can only be returned by
an ftpconnect command.

SCRIPT_ERRMASK_SYNTAX - 0x00400000
Syntax error, bad parameter passed as part of a command.

SCRIPT_ERRMASK_FILE - 0x00200000
General File failure. For example, rename of file or creation of a new directory

(mkdir) failed. Affected commands are:

mkdir
rename

cd

rmdir

format flash
delete

load symbols
get symbols

((: Control Technology Corporation 147
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

= mount
= umount

SCRIPT_ERRMASK_FTP_CONNECT - 0x00100000
Returned if an ftpconnect attempt fails or there is an attempt to use a command that

requires a previous connection and it does not exist.

SCRIPT_ERRMASK_FTP_LOSTCONNECT - 0x00080000
Lost connection while attempting an FTP command. Affected commands are:

Ftpls
Ftpdir
Ftpmkdir
Ftprmdir
Ftpcd
Ftpget
Ftpsend
Ftpappend
Ftpdelete

SCRIPT_ERRMASK_FTP_COMMAND - 0x00040000
Unknown FTP response code returned. Affected commands are:

Ftpls
Ftpdir
Ftpmkdir
Ftprmdir
Ftpcd
Ftpget
Ftpsend
Ftpappend
Ftpdelete

SCRIPT_ERRMASK_FTP_NOTFOUND - 0x00020000
Operation failed, file or directory does not exist on host. Affected commands are:

Ftpls
Ftpdir
Ftpmkdir
Ftprmdir
Ftpcd
Ftpget
Ftpsend
Ftpappend
Ftpdelete

((: Control Technology Corporation 148
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

SCRIPT_ERRMASK_FTP_SECURITY - 0x00010000
User name or Password failed. This only applies to ftpconnect.

Script Example

The following sample script, Script001, shows how to connect to an ftp server, send a file
called Log001.log and download a file called anyfile.log on the host to a file

called newfile.log on the controller. A maximum of 3 retries, with a 5 second

interval will be attempted before aborting. Register 2 is used as an arbitrary status
register, which can be monitored by Quickstep, and should be set to 0 prior to invoking
the script. Its status is as follows:

1 = Complete and successful

-1 = Busy running script

-2 = General failure

-3 = File did not exist on the Controller
-4 = File did not exist on the Host

The execution of the following script would occur by writing a 1001 to the Script
Execution Register (12311). Adding a 1000 to the script file number causes it to
execute as a background thread. Ftp Client operations should only be run from a
command line within telnet or as a background thread, not as part of a Quickstep
task (001 — 999).

Script001.ini:
This script tests the automated transfer of data from
the controller to a remote ftp server.
Register 1 is used as a retry counter
Register 2 is used to notify Quickstep program of completion
status
Writing to the Script Execution Register (12311) will cause
execution to occur. Script file name is currently

Script001.ini
thus writing 1001 will cause this file to run as a thread in

the
background, writing a 1 will cause it to run within a Quickstep
step.
Threaded execution (background) is the preferred method
#
:start
Clear the retry counter
1 =0
Clear our completion flag register
2 = -1
goto firstTime
tretry

Delay for 5 seconds and then try again

((: Control Technology Corporation 149
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

delay 5000

Bump the retry counter and see if done with retries...
inc R1
if R1 > 3 goto abort

:firstTime
First set up where to branch if an error should occur
onerror goto errorOccurred

Lets connect to the remote host
ftpconnect 12.40.53.94 support ControlTech

Now lets upload a file and then download a file
If an error occurs we will exit automatically due to the
'onerror' command
SEND to host from controller
ftpsend / system/Messages/data/Log001.log
RECEIVE from host and store to controller under different name
ftpget anyfile.log / system/Messages/data/newfile.log
All done so close host session gracefully
ftpquit
Set completion flag to 0 indicating we are done and successful
2 =1

H= o HE

If we get here we are all done
end

Process error if should occur
:errorOccurred

Lets see what type of error occurred
First check to see if initial connection failed

if ERRORCODE & 0x00100000 goto retry
Next see if we failed during a transfer

if ERRORCODE & 0x00080000 goto retry
Next see if we failed because the file did not exist on the
controller

if ERRORCODE & 0x00200000 goto nofileController
Next see if we failed because the file did not exist on the
host

if ERRORCODE & 0x00020000 goto nofileHost
Was a fatal failure so give up
rabort

2 = =2

end
File did not exist on the controller
:nofileController

2 = -3

end
File did not exist on the host
:nofileHost

2 = -4

end

@ Control Technology Corporation 150
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

CHAPTER

[19] CTNet Binary Protocol
(Server Interface)

This section discusses the CTNet Binary Protocol, at the packet level, as
is supported by the controller. The CTNet binary protocol is a high-
speed protocol that has checksum and error reporting capabilities. It is
used in cases where data integrity, response time, and processing time
are the major criteria. Data transmission is fast for the following
reasons:

o Both the commands and data are represented in binary form instead of ASCII.

o The information density is higher and fewer characters are transmitted during
large data transfers.

o The controller can use the data “as is” and does not have to perform binary to
ASCII conversion.

Consequently, use of CTNet results in very short execution times. Note that CTNet used
to be non-routable (2700 with 2217 Ethernet controllers). Non-routable protocols do not
contain a networking layer (IP stack), so they cannot cross a router and are limited to
local subnets or intranets.

Non-routable CTNet uses a node number in place of an IP address. This node number is
defined by writing to Register 20000. You can also determine the node number by
reading the value in Register 20000. Set this value within the startup.ini file by

defining the CTNET DEVICENODE parameter.

Provisions have been made to extend the CTNet protocol by encapsulating it in a
UDP/TCP packet. In this case the IP address becomes the destination and Register 20000
is ignored. Port 3000 is for UDP and port 6000 is for TCP connections. UDP/TCP is
fully routable. Refer to the last section of this chapter for how to encapsulate. In short
the discussion that follows fully applies to the encapsulated packet. Serial port
communications are also supported for all CTNet packets; again, Register 20000 does not
apply in that case either since only point to point communications are supported.

((: Control Technology Corporation 151
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

A maximum of 32 simultaneous TCP Binary protocol connections are allowed at
one time. ldle connections will timeout in about 1 minute.

Binary Protocol

The CTC Binary Protocol may be used to communicate with the Model 5300 controller
via serial ports or a network connection. Regardless of the mode used, the basic message
layer is the same. On a network the serial port data is simply encapsulated as required.
Most users will not require this section and should only refer to the DLL available for use
under Windows 2000/XP. This DLL is discussed in detail within Document No.
MANZ1080A: CTC 32-bit Communications Functions Reference Guide, available at
www.ctc-control.com for download. The CTC Binary Protocol is somewhat more
difficult to use than something like the ASCII Protocol, but it can significantly reduce the
time required to transfer large blocks of data between a computer and controller and is
useful in more demanding applications. The protocol is more efficient, because:

= Both the commands and data are represented in binary form instead of ASCII.
The information density is higher and, for large data transfers, fewer characters
need to be transmitted.

= The controller does not have to convert the data from ASCII to binary before
using it. This results in shorter execution times. Since the computer does not have
to convert the data to ASCII, there also may be a significant time savings in the
execution of the computer program (the time savings varies between different
computer languages).

Protocol Framing

To select the CTC Binary Protocol, the first character of the command must be a binary 1
(@1H). The controller interprets the rest of the command according to the binary
protocol. Use of an ASCII character, on the serial port, will result in the ASCII Protocol
being used.

The protocol uses the following format to send messages to and from the controller:

<(&1H)> Specifies CTC binary protocol.

<length (1 byte)> Specifies packet length to follow. Packet length is defined as n
data bytes + 2 (checksum and Oxff).

<data (n bytes)> Consists of function (command) code(s) plus relevant data. For
function code and data descriptions, see the section on Binary Protocol
Commands.

<checksum> Consists of the complement of the modulo-256 sum of data bytes.
This value, when added to the modulo-256 sum of the data packet bytes, equals
@FFH. You can calculate the checksum by adding the data packet bytes and
complementing the resulting sum.

((: Control Technology Corporation 152
Document 951-530002-0013 01/15

http://www.ctc-control.com/

Model 5300 Communications & Logging Guide

//
// Generate a checksum for a packet
// Parameters: p - pointer to start of data section
//len - length of data only section (not length, checksum
or
//0xff)
// Returns: <checksum>
unsigned char Packet Check(unsigned char * p, int len)
{

unsigned int c = 0;

int i;

=0; i<len; i++)
c = (c + *(p + 1)) & 255;
((char)~c);

for(i

return

}

<FFH> Required by binary protocol; last byte of packet must be @FFH. When
the controller receives a binary packet, it counts out the number of bytes specified
by the packet length. If the last byte is not @FFH, it returns an error message.

E——“ All communications are in Little Endian format.

Return communications from the controller to the computer use the same general format,
with one exception. The controller does not transmit a leading (d1H) byte, since the
original message was transmitted using the CTC binary protocol. If the command sent to
the controller does not require data from the controller in the return message, the
controller sends an acknowledge message like the one shown below:

<03H)> Specifies packet length to follow. Packet length is defined as n data bytes
+2.

<(64H)> Contains the acknowledge code; equal to decimal 100.

<9BH> Is the value of the checksum of the acknowledge code.

<FFH> Required by binary protocol; last byte of packet must be @FFH.

When the packet sent to the controller is not correct, it transmits a not acknowledged
code. This may happen when the checksum does not calculate correctly or when the last
byte of the packet is not @FFH. A message containing a not acknowledged code is
similar to the one shown below:

<03H)> Specifies packet length to follow. Packet length is defined as n data bytes
+2.

<(65H)> Contains the not acknowledged code; equal to decimal 101.

<9AH> Is the value of the checksum of the not acknowledged code.

<FFH> Required by binary protocol; last byte of packet must be @FFH.

When the format of the message is correct, but the controller cannot execute the
command, it sends other error codes. For error code descriptions, see the section on

((: Control Technology Corporation 153
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Binary Protocol Commands. The following example shows how to create a command in
correct format for the CTC binary protocol. It sets flag 4 in the controller.

1. Send the following command:

@1H,85H,13H,93H,FFH,EAH,FFH

Where:

@1H Is the first byte and identifies the packet as using the CTC binary protocol.
@5H Is the second byte and represents the length of the packet.

13H Is the third byte and contains the function code for a change flag command.
@3H Is the fourth byte and specifies flag 4. Flags 1 through 32 are represented as
@@H through 1FH, and @3H specifies flag 4.

FFH Is the fifth byte and specifies the new state of the flag. FFH represents SET
and @DH represents CLEAR.

EAH Is the sixth byte and contains the checksum value.

@FFH Is the seventh and last byte of the packet and signals the end of the
message.

2. To acknowledge the message, the controller sends the following response:

@3H,64H,9BH,FFH

Where:

@3H Is the first byte and specifies the packet length

64H Is the second byte and contains the acknowledge code (decimal 100)
9BH Is the third byte and contains the checksum value of third byte

FFH Is the fourth and last byte and signals the end of the message.

Binary Protocol Error Responses

When the controller cannot execute the data transmission from the computer, the
controller responds with an error code indicating the nature of the fault. The error code is
transmitted using the following format:

@3H Packet length.
Error code Error code, see list below.
Checksum The checksum is the complement of the previous byte.
FFH Last byte in packet; signals the end of the message.
Possible error codes are:
64H No error (acknowledgment of transmission
65H Checksum error, or end of packet <> FFH
66H Illegal register number specified
65H Value out of range, for example, input number not present in controller

Binary Protocol Commands

Each CTC binary protocol command has specific format. This section lists the commands
and describes their format. The command descriptions also list the following information:

((: Control Technology Corporation 154
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

= The type of command
= Format of command sent to the controller
= Format of the controller’s response

Not all Control Technology controllers support all of these commands. Contact Control
Tech customer support if you have any questions about which of these commands you
can use, or if you have any difficulty implementing a command. The following table lists
the commands and the controllers which support the command.

((: Control Technology Corporation 155
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Binary Protocol Commands
(controller response is command + 1)

Register and Flag Access Commands

9
11
17
19
75
77
87

Read a register

Change a register

Read a Flag

Change a Flag

Read a bank of 50 registers
Read a bank of 16 registers

Request random registers from list (CTServer)

Variant Commands

91
93
95
109
111
113

Get properties
Read a variant
Change a variant

Read a variant array block (consecutive)
Write a variant array block (consecutive)

Read a block of variants, randomly

Input/Output Access Commands

15
21
25
29
31
33
71
73
79
85
91

Read a bank of 8 inputs

Read a bank of 8 outputs
Selectively modify first 128 outputs
Read an analog input

Read an analog output

Change an analog output

Get 32 analog inputs

Get 32 analog outputs

Read a bank of 128 inputs
Change multiple analog outputs
Read a bank of 128 outputs

Servo Access Commands

23
27
47

Read a servo position
Read a servo’s dedicated inputs
Read a servo error

Data Table Access Commands

49
51
53
55
57
59

Read a data table’s dimensions
Change a data table’s dimensions
Read a data table value

Change a data table value

Read a row of data table values
Change a row of data table values

System and Controller Status Access Commands

13

List counts of inputs, outputs, stepping and servo

motors

@ Control Technology Corporation
Document 951-530002-0013 01/15

156

Model 5300 Communications & Logging Guide

35 Read controller step

61 Read controller status

63 Change controller status

65 Read system configuration

67 Change system configuration

69 List counts of miscellaneous 1/0
105 Shutdown system

107 Get Controller Task Status

The following commands allow you to read and write values to registers and flags. You
can read and write values for registers 1 through 65535. Some of the registers in this
range are special function registers and you may not be able to read or write to them.
Other registers do not exist on certain models and revision levels. Consult Document No.
951-530006: Model 5300 Quick Reference Register Guide for register specifics.

Variant Packets

A number of commands are available to interface with variant storage within the Model
5300. When communicating with the controller a packed data structure is used. Two
separate structures are used, that for individual read/writes, VARIANT_STORAGE, or
for block access VARIANT STORAGE BLOCK (VARIANT _STORAGE BLOCK SERIAL if
serial port). When using block transfers the total size (number of elements) is dependent
upon whether Ethernet or serial communications is being used. Ethernet allows for a
larger packet and when using UDP and TCP the packet itself provides a CRC. Thus the
checksum field is not really needed and not used on the larger block transfers.

When using variants the packet structure is identical except that the data portion is the
packed variant structure:

<(&1H)> Specifies CTC binary protocol.
<length (1 byte)> Specifies packet length to follow. Packet length is defined as n
data bytes + 2 (checksum and Oxff). Checksum is not used on packet type
109/110, 111/112, and 113/114 when using Ethernet communications (length set
to 5 on request, response length is 3), it is used on serial since a reduced packet
size is used.
<Command/Response Code>
<LSB Register #> Register of interest low byte unless random read, in which
case ignored.
<MSB Register #> Register of interest high byte unless random read, in which
case ignored.
<packed variant structure> Valid structures:
VARIANT_STORAGE
VARIANT_STORAGE_BLOCK
VARIANT_STORAGE_BLOCK_SERIAL.

((: Control Technology Corporation 157
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

<checksum> Consists of the complement of the modulo-256 sum of data bytes.
This value, when added to the modulo-256 sum of the data packet bytes, equals
@FFH. You can calculate the checksum by adding the data packet bytes and
complementing the resulting sum.

Register and Flag Access Command/Response definitions

// GET is request, GOT is controller response
// binary protocol message types

#define MSG LOAD PROGRAM PACKET ((BYTE) 0)
#define MSG ENTER PROGRAM MODE ((BYTE) 1)
#define MSG LEAVE PROGRAM MODE ((BYTE) 2)
#define MSG UNLOAD PROGRAM PACKET ((BYTE) 3)
#define MSG PROGRAM PACKET ((BYTE) 4)
#define MSG GET ID CODES ((BYTE) 5)
#define MSG GOT ID CODES ((BYTE) 6)
#define MSG OLD GET STATUS ((BYTE) 7)
#define MSG OLD GOT STATUS ((BYTE) 8)
#define MSG GET REGISTER ((BYTE) 9)
#define MSG GOT REGISTER ((BYTE) 10)
#define MSG SET REGISTER ((BYTE) 11)
#define MSG 12 ((BYTE) 12)
#define MSG _GET IO COUNTS ((BYTE) 13)
#define MSG_GOT IO COUNTS ((BYTE) 14)
#define MSG GET INPUTS ((BYTE) 15)
#define MSG _GOT_ INPUTS ((BYTE) 16)
#define MSG GET_ FLAG ((BYTE) 17)
#define MSG _GOT_ FLAG ((BYTE) 18)
#define MSG_SET FLAG ((BYTE) 19)
#define MSG 20 ((BYTE) 20)
#define MSG _GET OUTPUTS ((BYTE) 21)
#define MSG_GOT OUTPUTS ((BYTE) 22)
#define MSG GET SERVO POSITION ((BYTE) 23)
#define MSG GOT SERVO POSITION ((BYTE) 24)
#define MSG SET OUTPUTS ((BYTE) 25)
#define MSG 26 ((BYTE) 26)
#define MSG GET SERVO INPUT ((BYTE) 27)
#define MSG GOT SERVO INPUT ((BYTE) 28)
#define MSG GET ANALOG INPUT ((BYTE) 29)
#define MSG GOT ANALOG INPUT ((BYTE) 30)
#define MSG GET ANALOG OUTPUT ((BYTE) 31)
#define MSG GOT ANALOG OUTPUT ((BYTE) 32)
#define MSG SET ANALOG OUTPUT ((BYTE) 33)
#define MSG 34 ((BYTE) 34)
#define MSG GET STATUS ((BYTE) 35)
((: Control Technology Corporation 158

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MSG GOT STATUS lof4

MSG GOT STATUS 20f4

MSG GOT STATUS 30f4

MSG GOT STATUS 40f4

MSG SET EA OUTPUT

MSG LOAD EA PROGRAM PACKET
MSG 42

MSG UNLOAD EA PROGRAM PACKET

MSG_EA PROGRAM PACKET
MSG_DUMP USER_MEMORY
MSG_USER_MEMORY
MSG_GET_SERVO_ERROR
MSG_GOT_SERVO_ERROR
MSG_GET DATA TABLE SIZE
MSG_GOT DATA TABLE SIZE
MSG_SET DATA TABLE SIZE
MSG_52
MSG_GET DATA TABLE ELEMENT
MSG_GOT_ DATA TABLE ELEMENT
MSG_SET DATA TABLE ELEMENT
MSG 56
MSG_GET_DATA TABLE ROW
MSG_GOT_DATA TABLE ROW
MSG_SET_ DATA TABLE ROW
MSG_ 60

MSG_GET_ CONTROLLER STATE
MSG_GOT_ CONTROLLER STATE
MSG_SET CONTROLLER STATE
MSG_64
MSG_GET_SYSCONFIG BYTE
MSG_GOT_SYSCONFIG BYTE
MSG_SET_ SYSCONFIG BYTE
MSG 68
MSG_GET_OTHER_ IO COUNTS
MSG_GOT_ OTHER_ IO COUNTS
MSG_GET_ 32 ANALOG INS
MSG_GOT_ 32 ANALOG INS
MSG_GET_ 32 ANALOG OUTS
MSG_GOT_ 32 ANALOG OUTS
MSG_GET_ 50 REGISTERS
MSG_GOT_50 REGISTERS
MSG_GET_ 16 REGISTERS
MSG_GOT_16 REGISTERS
MSG_GET_ 128 INPUTS
MSG_GOT_ 128 INPUTS

((: Control Technology Corporation

Document 951-530002-0013

01/15

Model 5300 Communications & Logging Guide

#define MSG GET 128 OUTPUTS ((BYTE) 81)
#define MSG GOT 128 OUTPUTS ((BYTE) 82)
#define MSG SET 64 ANALOG OUTS ((BYTE) 85)
#define MSG GET N REGISTERS ((BYTE) 87)
#define MSG GOT N REGISTERS ((BYTE) 88)
// special message for 2217 v3.8 data structure

#define MSG GET 2217 DATA ((BYTE) 83)
#define MSG GOT 2217 DATA ((BYTE) 84)
// Variant data types

#define MSG GET VREGISTERROW ((BYTE) 89)
#define MSG GOT VREGISTERROW ((BYTE) 90)
#define MSG GET VPROPERTIES ((BYTE) 91)
#define MSG GOT VPROPERTIES ((BYTE) 92)
#define MSG_GET VREGISTER ((BYTE) 93)
#define MSG_GOT VREGISTER ((BYTE) 94)
#define MSG_SET VREGISTER ((BYTE) 95)
#define MSG_GET RUNCOMMAND ((BYTE) 97)
#define MSG_GOT RUNCOMMAND ((BYTE) 98)
#define MSG_GET VREGISTER BLOCK ((BYTE) 109)
#define MSG_GOT VREGISTER BLOCK ((BYTE) 110)
#define MSG_SET VREGISTER BLOCK ((BYTE) 111)
#define MSG_GET VREGISTER RANDOM BLOCK ((BYTE) 113)
#define MSG_GOT VREGISTER RANDOM BLOCK ((BYTE) 114)
// devicenet and/or distributed io messages

#define MSG_UNLOAD REMOTE DATA ((BYTE) 101)
#define MSG REMOTE_ DATA PACKET ((BYTE) 102)
#define MSG_LOAD REMOTE DATA ((BYTE) 103)
#define MSG 104 ((BYTE) 104)
#define MSG_GET REMOTE IO ((BYTE) 105)
#define MSG_GOT REMOTE IO ((BYTE) 106)

Variant Structures

The distribution file Ctccom32v2 . h is available from the Downloads page on Control
Technology's web site and contains the definitions for the structures used with the CTC
communications DLL. The DLL conforms to the packet structure discussed within this
document. In summary below are the definitions. Note the structures are packed, aligned
on a byte boundary:

((: Control Technology Corporation 160
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

#define BITO
#define BIT1
#define BIT2
#define BIT3
#define BIT4

0x0001
0x0002
0x0004
0x0008
0x0010

#define VARIANT MAX STRING 223
#define VARIANT INTEGER BITO
#define VARIANT UINTEGER BIT1
#define VARIANT STRING BIT2
#define VARIANT FLOAT BIT3
#define VARIANT DOUBLE BIT4

typedef struct

{

int numAccess; // number of items to access

int rowlInc; // row increment, if 0 just read columns based upon collInc.
int collInc; // col increment, if 0 just increment rows.
int arraysizeCols; // Used on write operation, -1 do not expand existing

// columns, else columns desired. Rows will automatically
// grow as needed

} BLOCKACCESS;

typedef struct

{
int type;

unsigned

unsigned

unsigned

unsigned
unsigned

unsigned

unsigned
unsigned
union

{

// type of storage being used or requested
// If -1 on read then return current, else set to type want.
// On write must set to type that is stored within this structure
char precision; // double to string conversion precision %$.6f default
// On read is what is presently set, write what want.
char flags;// special flags for processing so far only
// VARIANT INDIRECTION FLAG used, can be used to set property
// in ->settings on write operation, no effect on read. Written
// value becomes register to reference for further operations.
char cmd;// 00, no operation other than read/write specified, else do defined
// operation. Currently have write for properties access to 'settings'
// VARIANT CMD SET INDIRECTION and VARIANT CMD CLEAR INDIRECTION,
// write value ignored.
char pad;
short taskHandle; // task number (offset in task array + 1, where 0 is 1) or
/ handle thus usable from remote or ‘C’ API, 4096 to
// 65535, set to 0 for public reg.
short slength; // this is reserved for later use and possible string
// length if want unsigned char, 0 - 255 values,
// VARIANT BYTE, future type

int indexCol; // Column dimension index reference
int indexRow; // Row dimension index reference
// Data that was read or has been written of 'type'

int ivalue;

unsigned int uivalue;

float fValue;

double dValue;

unsigned int dSwap([2]; // used to swap doubles for PC access

char
} data;

sValue [VARIANT MAX STRING+1];

} VARIANT_ STORAGE;

#define MAX VARIANT BLOCK_32BITS 346 // 346 integers
#define MAX VARIANT BLOCK 64BITS 173 // 173 doubles
#define MAX VARIANT RANDOM BLOCK (MAX VARIANT BLOCK 32BITS/3) // 115 items

#define MAX VARIANT BLOCK 32BITS SERIAL 50

@ Control

Technology Corporation 161

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

#define MAX VARIANT BLOCK 64BITS SERIAL (MAX VARIANT BLOCK 32BITS SERIAL/2)// 25 doubles
#define MAX VARIANT RANDOM BLOCK SERIAL (MAX VARIANT BLOCK 32BITS SERIAL/3)// 16 items

typedef struct

{

int reg; // may at some point reserve the upper 16 bits of this
// integer for 'type' req.

int row;

int col;

} VARIANT ACCESS_REQUEST;

// Allow for block reads
typedef struct

{

int type; // type of storage being used or requested

// If -1 on read then return current, else set to type want.

// On write must set to type that is stored within this structure

// write not supported for block access

// If block access type field will be 0 if error else type of first cell.
// slength will be the number of elements returned within data.block.?[n]

unsigned char precision; // double to string conversion precision %.6f default

// On read is what is presently set, write what want.

unsigned char flags; // special flags for processing so far only

// VARIANT INDIRECTION FLAG used, can be used to set property
// in ->settings on write operation, no effect on read. Written
// value becomes register to reference for further operations.

unsigned char cmd;// 00, no operation other than read/write specified, else do defined

// operation. Currently have write for properties access to 'settings'
// VARIANT CMD SET INDIRECTION and VARIANT CMD CLEAR INDIRECTION,
// write value ignored.

unsigned char pad;
unsigned short taskHandle; // task number (offset in task array + 1, where 0 is 1) or

// handle thus usable from remote or ‘C’ API, 4096 to
// 65535, set to 0 for public reg.

unsigned short slength; // this is reserved for later use and possible string

// length if want unsigned char, 0 - 255 values,
// VARIANT BYTE, future type

unsigned int indexCol; // Column dimension index reference
unsigned int indexRow; // Row dimension index reference
union // Data that was read or has been written of 'type'

{

int ivalue;

unsigned int uiValue;

float fValue;

double dValue;

unsigned int dSwap([2]; // used to swap doubles for PC access
char *psValue;

char sValue[VARIANTiMAXisTRING+l];

//

will be stored in same VARIANT STORAGE upon return, thus

// data.blockread.numAccess * sizeof (variant type)
// 1f BLOCKACCESS then iValue[n], fValue[n], or dvValue[n] up to
// MAX VARIANT READBLOCK SIZE
struct
{
BLOCKACCESS blockaccess; // Defines block read of variant cells, data
// storage must be big enough since
union
{
int ibvValue[MAX VARIANT BLOCK 32BITS];
float fbValue[MAX VARIANT BLOCK 32BITS];
double dbValue[MAX VARIANT BLOCK 64BITS];
@ Control Technology Corporation 162

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

union

int ibvalue;
float fbVvalue;
double dbValue;
} random[MAX VARIANT RANDOM BLOCK];
VARIANT ACCESS REQUEST request[MAX7VARIANT7RANDOM78LOCK};
bi

} block;

} data;

} VARIANT STORAGE BLOCK;

typedef struct

{
int type;

unsigned

unsigned

unsigned

unsigned
unsigned

unsigned

unsigned
unsigned
union

{

// type of storage being used or requested

// If -1 on read then return current, else set to type want.

// On write must set to type that is stored within this structure

// write not supported for block access

// If block access type field will be 0 if error else type of first cell.
// slength will be the number of elements returned within data.block.?[n]

char precision; // double to string conversion precision %.6f default
// On read is what is presently set, write what want.
char flags; // special flags for processing so far only

// VARIANT INDIRECTION FLAG used, can be used to set property
// in ->settings on write operation, no effect on read. Written
// value becomes register to reference for further operations.
char cmd;// 00, no operation other than read/write specified, else do defined
// operation. Currently have write for properties access to 'settings'
// VARIANT CMD_SET INDIRECTION and VARIANT CMD CLEAR INDIRECTION,
// write value ignored.
char pad;
short taskHandle; // task number (offset in task array + 1, where 0 is 1) or
// handle thus usable from remote or ‘C’ API, 4096 to
// 65535, set to 0 for public reg.

short slength; // this is reserved for later use and possible string
// length if want unsigned char, 0 - 255 values,
// VARIANT BYTE, future type

int indexCol; // Column dimension index reference

int indexRow; // Row dimension index reference
// Data that was read or has been written of 'type'

int ivalue;

unsigned int uivalue;

float fVvalue;

double dvalue;

unsigned int dSwap([2]; // used to swap doubles for PC access

char
char

*psValue;
sValue [VARIANT MAX STRING+1];

// will be stored in same VARIANT STORAGE upon return, thus

// data.blockread.numAccess * sizeof (variant type)

// 1f BLOCKACCESS then ivValue[n], fValue[n], or dvalue[n] up to
// MAX VARIANT READBLOCK SIZE

struct
{
BLOCKACCESS blockaccess; // Defines block read of variant cells, data
// storage must be big enough since
union
{
int ibValue[MAX VARIANT BLOCK 32BITS_ SERIAL];
float fbValue[MAX VARIANT BLOCK 32BITS SERIAL];
double dealue[MAX7VARIANT7BLOCK764BIT57$ERIAL];
union
@ Control Technology Corporation 163

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

int ibvalue;
float fbvalue;
double dbvValue;

} random[MAX VARIANT RANDOM BLOCK SERIAL];

VARIANT ACCESS_ REQUEST request[MAX VARIANT RANDOM BLOCK SERIAL];

bi
} block;
} data;
} VARIANT STORAGE BLOCK SERIAL;

Variant Access Commands

Get Properties - Command 91

Command 91 reads the current properties of a variant which includes its number of rows
and columns as well as default floating point precision (typically 6).

Format of Message Sent to Controller
@1H ldentifies the packet as using the CTC binary protocol
05H Specifies the packet length
5BH Get Properties function code
LSB - MSB Specifies the variant register number whose properties are desired.
Specified with the least significant byte first.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field
FFH Signals the end of the message.

Format of Controller Response

@AH Specifies the packet length.

5CH Get Properties response code

LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.

LSB- MSB Number of columns.

LSB- MSB Number of rows.

<Precision Byte> - Floating point precision currently set.

Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field

FFH Signals the end of the message.

Read a Variant - Command 93

Command 93 reads a Variant cell. If the Variant is not an array simply set the row and
column to O in the structure.

Format of Message Sent to Controller
@1H ldentifies the packet as using the CTC binary protocol
<sizeof(VARIANT_STORAGE) + 5> Specifies the packet length
5DH Read a Variant function code

((: Control Technology Corporation 164
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.

<VARIANT_STORAGE structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field

FFH Signals the end of the message.

Format of Controller Response

<sizeof(VARIANT_STORAGE) + 3> Specifies the packet length

5EH Read a Variant response code

LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.

<VARIANT_STORAGE structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field

FFH Signals the end of the message.

Example Structure initialization:
Read 36201[2][5] as a double — (36201 is the LSB/MSB in the message sent)

VARIANT STORAGE v;

memset ((void *)&v,0,sizeof (VARIANT STORAGE)) ;
v.indexCol = 5;

v.indexRow = 2;

v.precision = 6;

v.type = VARIANT DOUBLE;

Depending upon which type you are accessing the returned Variant will be accessed as
follows where rp is a pointer to the receive buffer.

// Got the data
memcpy ((void *)&v,rp+4,sizeof (VARIANT STORAGE));
switch (v.type)
{
case VARIANT FLOAT:
variant->FloatVar = v.data.fValue;
break;
case VARIANT_DOUBLE:
variant->DoubleVar = v.data.dValue;
break;
case VARIANT_STRING:
variant->slength = v.slength;
if (variant->slength > VARIANT_MAX_STRING)
{
// too big
return FATILURE;
}
memcpy (variant->StringArray, v.data.sValue, variant-
>slength) ;

((: Control Technology Corporation 165
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

// null terminate
variant->StringArray([variant->slength] = 0x00;
break;
case VARIANT INTEGER:
variant->LongVar = v.data.iValue;
break;
default:
return FAILURE; // unknown type
}
return SUCCESS;

Change a Variant - Command 95

Command 95 writes a Variant cell. If the Variant is not an array simply set the row and
column to O in the structure.

Format of Message Sent to Controller
@1H ldentifies the packet as using the CTC binary protocol
<sizeof(VARIANT_STORAGE) + 5> Specifies the packet length
5FH Change a Variant function code
LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.
<VARIANT_STORAGE structure> Variant storage area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field
FFH Signals the end of the message.

Format of Controller Response

@3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)
Checksum Contains the complement of the previous byte
FFH Signals the end of the message

Example Structure initialization:
Write 36201[2][5]—- (36201 is the LSB/MSB in the message sent)

VARIANT_STORAGE v,

memset ((void *)&v,0,sizeof (VARIANT STORAGE)) ;
v.indexCol 5;

v.indexRow 2;

v.precision = 6;

For each type of data writing where variant is user structure (reference previous section):

switch (variant->type)
{
case VARIANT FLOAT:
v.data.fValue = variant->FloatVar;
break;

((: Control Technology Corporation 166
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

case VARIANT DOUBLE:
v.data.dValue = variant->DoubleVar;
break;
case VARIANT STRING:
if (variant->slength > VARIANT MAX STRING)
{
// too big
return FATILURE;
}

memcpy (v.data.sValue, variant->StringArray,variant-

>slength) ;

// null terminate
v.data.sValue[variant->slength] = 0x00;
break;

case VARIANT INTEGER:
v.data.ivalue = variant->LongVar;
break;

default:

return FAILURE;
}

... Send data packet and await ACK ...

Read a Variant Array Block - Command 109

Command 109 performs a read starting at a specific row/column position in a Variant
array and reads the requested number of cells sequentially or until there are no more cells.

Format of Message Sent to Controller

UDP/TCP
@1H Identifies the packet as using the CTC binary protocol
< 5> Specifies the packet length for the message, without the Variant area since
including it would make the message exceed byte storage size.
6DH Reads a Variant Block function code
LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.
<VARIANT_STORAGE_BLOCK structure> Variant block storage area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field, not used.
FFH Signals the end of the message.

Serial Port:
@1H Identifies the packet as using the CTC binary protocol
<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet
length.
6DH Reads a Variant Block function code
LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.
<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage
area.

((: Control Technology Corporation 167
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field
FFH Signals the end of the message.

Format of Controller Response
UDP/TCP

< 3> Specifies the packet length for the message, without the Variant area since
including it would make the message exceed byte storage size.

6EH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field, not used.

FFH Signals the end of the message.

Serial Port:
<sizeof(VARIANT_STORAGE_BLOCK_ SERIAL) + 3> Specifies the packet
length.
6EH Reads a Variant Block function code
LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.
<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage
area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field
FFH Signals the end of the message.

Example Structure initialization:
Read 36201[0][0] as an integer, 5 consecutive cells — (36201 is the LSB/MSB in the
message sent). There are 35 columns in each row.

VARIANT STORAGE BLOCK v;

if (ctc->connType == SERIAL)

{
sz = sizeof (VARIANT STORAGE BLOCK SERIAL) ;
length = sz+5; // packet length

sz = Sizeof(VARIANT_STORAGE_BLOCK);
length = 5;
}
// initialize the variant structure
memset ((void *)&v.type,0,s2);
v.indexCol = 0;
v.1lndexRow 0;

((: Control Technology Corporation 168
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

v.precision = 6;

v.type = VARIANT INTEGER; // String not supported
v.data.block.blockaccess.colInc = 1;
v.data.block.blockaccess.rowInc = 1;
v.data.block.blockaccess.numAccess = 5;
v.data.block.blockaccess.arraysizeCols = 35; // tells when to

// increment row number

Depending upon which type you are accessing the returned Variant will be accessed as
follows where rp is a pointer to the receive buffer. sz is the size of the structure used,

that of VARIANT_STORAGE_BLOCK or VARIANT_STORAGE_BLOCK_SERIAL.

// Got the data
memcpy ((void *)&v,rp+4,sz);
// move the data into the vb structure
variant->type = v.type; // type of data read
variant->slength = v.slength; // number read
switch (variant->type)
{
case VARIANT FLOAT:
memcpy (variant->block.fbValue, v.data.block.fbValue,
sizeof (float) * variant->slength);
break;
case VARIANT DOUBLE:
memcpy (variant->block.dbValue, v.data.block.dbValue,
sizeof (double) * wvariant->slength);
break;
case VARIANT INTEGER:
case VARIANT UINTEGER:
memcpy (variant->block.ibValue, v.data.block.ibValue,
sizeof (int) * variant->slength);
break;
default:
return FAILURE; // unknown type
}
return SUCCESS;

Write a Variant Array Block - Command 111

Command 111 performs a write starting at a specific row/column position in a Variant
array and writes the requested number of cells sequentially or until there are no more
cells.

Format of Message Sent to Controller
UDP/TCP
@1H Identifies the packet as using the CTC binary protocol
< 5> Specifies the packet length for the message, without the Variant area since
including it would make the message exceed byte storage size.
6FH Writes a Variant Block function code

((: Control Technology Corporation 169
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant block storage area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field, not used.

FFH Signals the end of the message.

Serial Port:
@1H Identifies the packet as using the CTC binary protocol
<sizeof(VARIANT_STORAGE_BLOCK_ SERIAL) + 5> Specifies the packet
length.
6DH Writes a Variant Block function code
LSB - MSB Specifies the variant register number. Specified with the least
significant byte first.
<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage
area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field
FFH Signals the end of the message.

Format of Controller Response

@3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)
Checksum Contains the complement of the previous byte
FFH Signals the end of the message

Example Structure initialization:
Write 36201[0][0] as a floats, 5 consecutive cells — (36201 is the LSB/MSB in the
message sent). There are 35 columns in each row.

VARIANT STORAGE BLOCK v;

if (ctc->connType == SERIAL)

{
sz = Sizeof(VARIANT_STORAGE_BLOCK_SERIAL);
length = sz+5; // packet length

sz = sizeof (VARIANT STORAGE BLOCK) ;
length = 5;
}
// initialize the variant structure
memset ((void *)&v.type,0,s2);
v.ilndexCol 0;
v.1lndexRow 0;
v.precision = 6;
v.type = VARIANT FLOAT; // String not supported

((: Control Technology Corporation 170
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

v.data.block.blockaccess.colInc = 1;
v.data.block.blockaccess.rowInc = 1;
v.data.block.blockaccess.numAccess =
>numAccess 1s 5
v.data.block.blockaccess.arraysizeCols = 35;
// move the data in now where ‘variant’ is a user structure of
choice
memcpy ((void *)&v.data.block.fbValue, variant->fbValue,
sizeof (float) * variant->numAccess);

5; // assume variant-

... Send data packet and await ACK ...

Read a Block of VVariants Randomly - Command 113

Command 113 reads variants in a user defined order, rather than sequentially, this
includes any cell (row/column) or different variant. All will be returned of the same type,
integer, float, or double. String is not supported.

Format of Message Sent to Controller

UDP/TCP
@1H Identifies the packet as using the CTC binary protocol
< 5> Specifies the packet length for the message, without the Variant area since
including it would make the message exceed byte storage size.
71H Reads a random Variant Block function code
LSB - MSB Specifies the variant register number, may be any value such as
0x0000. Specified with the least significant byte first.
<VARIANT_STORAGE_BLOCK structure> Variant block storage area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field, not used.
FFH Signals the end of the message.

Serial Port:
@1H Identifies the packet as using the CTC binary protocol
<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet
length.
71H Reads a random Variant Block function code
LSB - MSB Specifies the variant register number, may be any value such as
0x0000. Specified with the least significant byte first.
<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage
area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field.
FFH Signals the end of the message.

Format of Controller Response
UDP/TCP

< 3> Specifies the packet length for the message, without the Variant area since
including it would make the message exceed byte storage size.

((: Control Technology Corporation 171
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

72H Read a random Variant Block response code

LSB - MSB returns what was sent.

<VARIANT_STORAGE_BLOCK structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field, not used.

FFH Signals the end of the message.

Serial Port:
<sizeof(VARIANT_STORAGE_BLOCK_ SERIAL) + 3> Specifies the packet
length.
72H Reads a random Variant Block response code
LSB - MSB returns what was sent.
<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage
area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the
length field
FFH Signals the end of the message.

Example Structure initialization:
Read 36301[0][0], 36301[0][1], 36301[0][2], 36301[1][0], 36302[0][0] as doubles.

VARIANT_STORAGE_BLOCK A

// initialize the variant structure

if (ctc->connType == SERIAL)

{
sz = Sizeof(VARIANT_STORAGE_BLOCK_SERIAL);
length = sz+5; // packet length

sz = sizeof(VARIANT_STORAGE_BLOCK);
length = 5;
}
// initialize the variant structure
memset ((void *)&v.type,0,s2);
v.precision = 6;
v.type = VARIANT DOUBLE;
v.data.block.blockaccess.numAccess = 5;
// 36301[0][0]
v.data.block.request[0].reg = 36301;
v.data.block.request[0].row = 0;
v.data.block.request[0].col = 0;
// 36301[0][1]
v.data.block.request[1l].reg = 36301;
v.data.block.request[1l].row = 0;
v.data.block.request[l].col = 1;
// 36301[0][2]
v.data.block.request[2].reg = 36301;
v.data.block.request[2].row = 0;
v.data.block.request[2].col = 2;

((: Control Technology Corporation 172
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

// 36301[1]1[0]
v.data.block.request[3].reg = 36301;
v.data.block.request[3].row = 1;
v.data.block.request[3].col = 0;

// 36302[0]1[0]
v.data.block.request[4].reg = 36302;
v.data.block.request[4].row 0;
v.data.block.request[4].col = 0;

Depending upon which type you are accessing, the returned Variant will be accessed as
follows where rp is a pointer to the receive buffer. sz is the size of the structure used,

that of VARIANT_STORAGE_BLOCK or VARIANT_STORAGE_BLOCK_SERIAL.

// Got the data

memcpy ((void *)&v,rp+4,sz);

// move the data into the vb structure

variant->type = v.type; // type of data read

variant->slength = v.slength; // number read

memcpy (&variant->block.random[0], &v.data.block.random[O0],
sizeof (v.data.block.random) * variant->slength);

return SUCCESS;

Register and Flag Access Commands

Binary Protocol Conventions
The binary protocol uses specific conventions for specifying register and flag numbers
and values and for checksum error detection.

= When specifying a register number, it is expressed as @@@1H through GFFFFH,
corresponding to registers 1 through 65535. For example, register 10 is expressed
as OODAH.

= You must specify register numbers with the least significant byte first.

= When specifying a flag number, it is expressed as @@H through 7FH for flags,
corresponding to flags 1 through 128. For example, flag 5 is expressed as @4H.

= The checksum value is the complement of the previous byte(s). Some commands
use the complement of the modulo-256 sum of the previous bytes; see the
individual command descriptions earlier in this chapter for more information.

= When the controller responds with a register value, it is always a four-byte
representation of the register data expressed in 2’s (complement binary format),
with the least significant byte transmitted first.

Reading a Numeric Register - Command 9

Command 9 reads the value in any register that allows read access.
Format of Message Sent to Controller
@1H ldentifies the packet as using the CTC binary protocol
@5H Specifies the packet length
@9H Indicates the read register function code

((: Control Technology Corporation 173
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

LSB - MSB Specifies the register number, @@@1H - @FFFFH. Specified with
the least significant byte first.

Checksum Contains the complement of the modulo-256 sum of the previous 3
bytes

FFH Signals the end of the message

Format of Controller Response

@7H Specifies the packet length.

@AH Indicates the register contents function code

LSB, 3SB, Four-byte representation of register data, expressed in 2’s

2SB, MSB complement binary, with the least significant byte transmitted first.
Checksum Contains the complement of the modulo-256 sum of the previous 5
bytes

FFH Signals the end of the message

Reading a Bank of 16 Registers - Command 77

Command 77 reads the values in a bank of 16 consecutive registers.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@5H Specifies the packet length

4DH Indicates 16 register group read function code

LSB - MSB Specifies bank of registers to read, @@@@H - @3D9H

Checksum Contains the complement of the modulo-256 sum of the previous 3
bytes

FFH Signals the end of the message

Format of Controller Response

45H Specifies the packet length

4EH Indicates the register contents function code

LSB - MSB (2 bytes) Indicates bank of registers, @@DH - @3D9H

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a
description of register data, see the description for single register read.

LSB - MSB (4 bytes) Contains the value of the second register in the group.
Additional LSB - MSB lines follow for the remainder of the 16 registers in the
group.

Checksum Contains the complement of the modulo-256 sum of the previous 67
bytes

FFH Signals the end of the message

Reading a Bank of 50 Reqisters - Command 75

Command 75 reads the values in a bank of 50 consecutive registers, limited from 1 to
1000.

((: Control Technology Corporation 174
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

4BH Indicates 50 register group read function code

@DH - 13H Specifies the bank of 50 registers to be read, @JH - 13H
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

CCH Specifies the packet length

4CH Indicates the register contents function code

@DH - 13H Indicates the bank of 50 registers to follow, @JH - 13H

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a
description of register data, see the description for single register read.

LSB - MSB (4 bytes) Contains the value of the second register in the group.
Additional LSB - MSB lines follow for the remainder of the 50 registers in the
group.

Checksum Contains the complement of the modulo-256 sum of the previous 202
bytes

FFH Signals the end of the message

Request Random Registers from List - Command 87

Command 87 reads the values of up to 50 random registers from a list.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

??H Specifies the packet length, all following bytes, including checksum but not
ending FFH.

57H Indicates Random Register Read function code

NUMREGS - Single byte from 1 to 50 representing number of following random
registers to read. Registers are listed as 2 byte shorts (16 bits), Isb/msb, results are
returned as 32 bit integers.

LSB — MSB1 First register number to read, 16 bits

LSB — MSB2 Second register number to read, 16 bits

LSB — MSBN Last register number to read, 16 bits
Checksum Contains the complement of the modulo-256 sum of all the bytes after
the packet length bytes
FFH Signals the end of the message
Format of Controller Response

??H Specifies the packet length

((: Control Technology Corporation 175
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

58H Indicates the register contents function code

NUMREGS - Single byte from 1 to 50 representing number of following random
registers results which are being returned. Registers' results are returned as 32 bit
integers, Isb to msb.

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a
description of register data, see the description for single register read.

LSB - MSB (4 bytes) Contains the value of the second register in the group.
Additional LSB - MSB lines follow for the remainder of the NUMREGS registers
in the group.

Checksum Contains the complement of the modulo-256 sum of the previous
bytes, excluding packet length
FFH Signals the end of the message

Changing a Register Value - Command 11

Command 11 changes the value in any register that allows write access.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

@9H Specifies the packet length

@BH Indicates the Change Register Value function code

LSB - MSB (2 bytes) Specifies the register number, 33@1H - @FFFFH.
Specified with the least significant byte first.

LSB - MSB (4 bytes) Four-byte representation of register data, expressed in 2’s
complement binary, with the least significant byte transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 7
bytes

FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)
Checksum Contains the complement of the previous byte
FFH Signals the end of the message

Reading a Flag’s State - Command 17

Command 17 reads the state of any flag.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

11H Indicates the Read Flag State function code

Flag Number Specifies the flag number, @@H - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

((: Control Technology Corporation 176
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

FFH Signals the end of the message.
Format of Controller Response

@4H Specifies the packet length

12H Indicates the Flag State function code

@DH or FFH Indicates the flag’s status. @QH if flag is clear and FHH if set. Any
other value means that the results are indeterminate.

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Changing a Flag’s State - Command 19

Command 19 changes the state of any flag.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

@5H Specifies the packet length

13H Indicates the Change Flag State function code

Flag Number Specifies the flag to be changed, @@H - 7FH

@DH or FFH Specifies the new state of the flag. @@H represents CLEAR and
FFH represents SET.

Checksum Contains the complement of the previous 3 bytes

@FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)
Checksum Contains the complement of the previous byte
FFH Signals the end of the message

Digital Input/Output Access Commands

The following commands allow you to read digital input and output states and turn a
digital output on or off. Input and output states are read as a group of either 8 or 128.

Binary Protocol Conventions
The binary protocol uses specific conventions for specifying groups of inputs and
outputs, their states and for checksum error detection.

= When specifying a bank of inputs or outputs as a group of 8, the first bank of
inputs or outputs are specified as @JH, corresponding to 1 through 8. The second
bank is specified as 12H, corresponding to 9 through 16, and so on up to 7FH for
the 16th bank, corresponding to 121 through 128.

((: Control Technology Corporation 177
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

The checksum value is the complement of the previous byte(s). Some commands
use the complement of the modulo-256 sum of the previous bytes; see the

individual command descriptions earlier in this chapter for more information.

When the controller responds with the data for a group of 8 inputs or outputs, the
lowest input number is represented by the least significant bit, the next the 7th

least significant bit, and so on.
For input states, a 1 represents a grounded (on) input.
For output states, a 1 represents an output that is turned on.

Reading a Bank of 8 Inputs - Command 15

Command 15 reads the state of a group of eight digital inputs. The Read Inputs function
code (QFH) allows you to read a group of 8 inputs. Inputs are grouped so that the first
group of inputs is 1 to 8; the second is 9 to 16, up to 121 to 128 for the 16th and last

group.

Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

@FH Indicates the Read Inputs function code

Bank Specifies the bank of inputs, @@H - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

@4H Specifies the packet length

1H Indicates the Input Data function code

@DH - FFH Contains the data for the eight inputs. The lowest input number is
represented by the least significant bit. A 1 indicates a grounded (on) input.
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Reading a Bank of 128 Inputs - Command 79

Command 79 reads a bank of 128 inputs.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

4FH Indicates the Read 128 Inputs Request function code

Bank Specifies the input bank to read, @@H - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

((: Control Technology Corporation 178
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Format of Controller Response

@4H Specifies the packet length

50H Indicates the Input Values function code

Bank Input bank to follow, @@H - 7FH

Inps1-8 Contains the data for the eight inputs, where the lowest input number is
represented by the least significant bit. A value of 1 indicates a grounded (on)
input.

Inps9-16 Contains the data for the next eight inputs. This continues for a total of
128 inputs.

Checksum Contains the complement of the modulo-256 sum of the previous 18
bytes

FFH Signals the end of the message

NOTE: The controller returns a value of zero (0) for nonexistent inputs within a bank.

Reading a Bank of 8 Outputs - Command 21

Command 21 reads the state of a group of eight digital outputs. Outputs are grouped in
the same manner as inputs.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

@4H Specifies the packet length

15H Indicates the Read Output function code

Bank Specifies the bank of outputs, @@H - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

@4H Specifies the packet length

16H Indicates the Output Status function code

@DH - FFH Contains the data for the eight outputs with the lowest output
number represented by the least significant bit. A 1 indicates that an output is on.
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes.

FFH Signals the end of the message

Reading a Bank of 128 Outputs - Command 81

Command 91 reads a bank of 128 digital outputs. The outputs are grouped in the same
manner as inputs.

Format of Message Sent to Controller

((: Control Technology Corporation 179
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

51H Indicates the Read 128 Outputs request function code

Bank Specifies the bank of outputs, @@H - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

14H Specifies the packet length

52H Indicates the output values function code

Bank Specifies the bank of outputs, @@H - 7FH

Outs1-8 Contains the data for the eight outputs, where the lowest output number
is represented by the least significant bit. A value of 1 indicates an output is on.
Outs9-16 Contains the data for the next eight outputs. This continues for a total of
128 outputs.

Checksum Contains the complement of the modulo-256 sum of the previous 18
bytes

FFH Signals the end of the message

NOTE: The controller reports nonexistent outputs within a bank as off, value is 0.

Selectively Changing the First 128 Outputs - Command 25

Command 25 selectively changes the state of a group of 128 digital outputs. This
command uses separate on and off masks so you can change specific outputs. For
example, an off-mask-@ of @6H (BBDD @11 in binary) would turn off outputs one
along with four through eight and outputs two and three would remain in their previous
state. A subsequent on-mask-@ of C@H (1180 @@ in binary) turns on outputs seven
and eight.

Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

23H Specifies the packet length

19H Indicates the Modify Outputs function code

off-mask-@ to off-mask-15 Specifies a series of 16 eight-bit masks used to
selectively turn off any or all of the controller’s first 128 outputs. The masks are
applied to successive banks of 8 outputs, with the least significant bit of the mask
being applied to the lowest numbered output in the bank. A mask value of

@ turns the associated output off. A value of 1 does not change the output.
on-mask-@ to on-mask-15 Specifies a series of 16 eight-bit masks used to
selectively turn on any or all of the controller’s first 128 outputs. The masks are
applied to successive banks of 8 outputs, with the least significant bit of the mask
being applied to the lowest numbered output in the bank. A mask value of 1 turns
the associated output on. A value of @ does not change the output.

((: Control Technology Corporation 180
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Checksum Contains the complement of the modulo-256 sum of the previous 33
bytes
FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length

64H Contains the acknowledge function code (decimal 100)
Checksum Contains the complement of the previous byte
FFH Signals the end of the message

Analog Input and Output Access Commands

The following commands allow you to read analog input and output states and change the
value of an analog output. Input and output states are read individually.

Binary Protocol Conventions
The binary protocol uses specific conventions for specifying analog inputs and outputs,
their values and for checksum error detection.
= When specifying an input or output the first input or output is specified as @@JH.
The last input or output you can specify is 64. Its number is 3FH.
= The checksum value is the complement of the previous byte(s). Some commands
use the complement of the modulo-256 sum of the previous bytes; see the
individual command descriptions earlier in this chapter for more information.

Reading an Analog Input - Command 29

Command 29 reads the value of any of the analog inputs.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

1DH Indicates the Read Analog Input function code

Analog Input Specifies the input to be read, 3@H - FFH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

((: Control Technology Corporation 181
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Format of Controller Response

@5H Specifies the packet length

1EH Indicates the Analog Input Value function code

LSB - MSB Contains the two-byte representation of the analog value, expressed
as a number in the range of 0 - 10,000 decimal (3@@@H - 271@H), with the least
significant byte transmitted first

Checksum Contains the complement of the modulo-256 sum of the previous 3
bytes

FFH Signals the end of the message

Reading an Analog Output - Command 31

Command 31 reads the value of any of the analog outputs.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

1FH Indicates the Read Analog Output function code

Analog Output Specifies the output to be read, d@H - FFH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

@5H Specifies the packet length

1EH Indicates the Analog Output Value function code

LSB - MSB Contains the two-byte representation of the analog value, expressed
as a number in the range of 0 - 10,000 decimal (3@@@H - 271JH), with the least
significant byte transmitted first

Checksum Contains the complement of the modulo-256 sum of the previous 3
bytes

FFH Signals the end of the message

Changing an Analog Output - Command 33

Command 33 changes the value of any of the analog outputs.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@6H Specifies the packet length

21H Indicates the read analog output function code

Analog Output Specifies the output to be changed, @@H - FFH

LSB - MSB Contains the two-byte representation of the analog value, expressed
as a number in the range of 0 - 10,000 decimal (3@@JH - 271@H), with the least
significant byte transmitted first

((: Control Technology Corporation 182
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Checksum Contains the complement of the modulo-256 sum of the previous 4
bytes
FFH Signals the end of the message.

Format of Controller Response

@5H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)

9BH Checksum value. Contains the complement of the previous byte.
FFH Signals the end of the message

Change Multiple Analog Outputs - Command 85

Command 85 changes the value of up to 64 sequential analog outputs.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@6H Specifies the packet length

55H Indicates the Write Multiple Analog Output function code

Analog Output Start Specifies the first output to be changed, @1H - FFH
Length Specifies the number of sequential analog outputs to change 01H - 40H
LSB — MSB First Contains the two-byte representation of the analog value,
expressed as a number in the range of 0 - 10,000 decimal (d@D3H - 2710H),
with the least significant byte transmitted first

LSB-MSB Last

Checksum Contains the complement of the modulo-256 sum of the previous
bytes

FFH Signals the end of the message

Format of Controller Response

@5H Specifies the packet length

64H Contains the acknowledge function code (decimal 100)

9BH Checksum value. Contains the complement of the previous byte.
FFH Signals the end of the message

Servo Access Commands
The following commands allow you to read a servo’s position, error and auxiliary inputs.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying servo axes, their position
and error, the state of a servo’s auxiliary inputs, and for checksum error detection. You
can perform these operations for servos axes 1 - 16.

((: Control Technology Corporation 183
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

= When specifying a servo, the first servo axis is specified as @@H and the 16th
specified as @FH.

= The checksum value is the complement of the previous byte(s). Some commands
use the complement of the modulo-256 sum of the previous bytes; see the
command description.

Reading a Servo’s Position - Command 23

Command 23 reads the position of a servo.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

@4H Specifies the packet length

17H Indicates the Read Servo Position function code

Servo Number Specifies the servo axis to be read, 3@H - @FH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

@7H Specifies the packet length.

18H Indicates the servo position function code

LSB - MSB (4 bytes) Contains the four-byte representation of the servo's
position. The value is expressed in 2’s (complement binary format), with the least
significant bye transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 5
bytes

FFH Signals the end of the message

Reading a Servo’s Error - Command 47

Command 47 reads a servo’s error.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

2FH Indicates the Read Servo Error function code

Servo Number Specifies the servo axis to be read, 9JH - dFH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

@7H Specifies the packet length
30H Indicates the Servo Position Function code

((: Control Technology Corporation 184
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

LSB - MSB Contains the four-byte representation of the servo’s error. The value
is expressed in 2’s (complement binary format), with the least significant bye
transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 5
bytes

FFH Signals the end of the message

Reading a Servo’s Dedicated Inputs - Command 27

Command 27 reads the status of a servo’s dedicated inputs. The controller returns the
status of the dedicated input using a one-bit code.

* Bit @, indeterminate

* Bit 1, Home input

* Bit 2, Start input

* Bit 3, Local/remote input
* Bit 4, Reverse limit input
* Bit 5, Forward limit input
* Bit 6, indeterminate

* Bit 7, indeterminate

Bit @ is the least significant bit.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@4H Specifies the packet length

1BH Indicates the Read Dedicated Input Status function code

Servo Number Specifies the servo axis to be read, 3dH - OFH

Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

Format of Controller Response

@7H Specifies the packet length

1CH Indicates the servo dedicated input status function code

Status Contains a one byte code of the servo’s auxiliary input status
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes

FFH Signals the end of the message

((: Control Technology Corporation 185
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Data Table Access Commands

The following commands allow you to read and change a data table’s dimensions; read
and change the value of a data table element; read the values in a data table row; and
change the values in a data table row.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying rows and columns of a data
table. The manner in which the row or column is specified varies with the command. The
checksum value is the complement of the previous byte(s). Some commands use the
complement of the modulo-256 sum of the previous bytes; see the individual command
descriptions earlier in this chapter for more information. The controller may return an
error code under the following circumstances:

= The requested data table size is too large for the controller.

= The requested data table size does not fit in the memory available when stored
along with the Quickstep program.

= The command contains a data table column number greater than 32.

Reading a Data Table’s Dimensions - Command 49

Command 49 reads the dimensions of a data table. The number of data table columns is
ODH to 20H.

Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol
@3H Specifies the packet length

31H Indicates the Read Data Table Dimensions function code
CEH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

@6H Specifies the packet length

32H Indicates the Data Table Dimensions function code

LSB, MSB Contains the number of data table rows in the current program, with
the least significant byte transmitted first

columns Contains the number of data table columns

Checksum Contains the complement of the modulo-256 sum of the previous 4
bytes

FFH Signals the end of the message

((: Control Technology Corporation 186
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Changing a Data Table’s Dimensions - Command 51

Command 51 changes a data table’s dimensions.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@6H Specifies the packet length

33H Indicates the Change Data table Dimensions function code

LSB, MSB Contains the new number of data table rows, with the least significant
byte transmitted first.

columns Contains the new number of data table columns.

Checksum Contains the complement of the modulo-256 sum of the previous 4
bytes

FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)
9BH Contains the checksum, complement of the previous byte
FFH Signals the end of the message

Reading a Data Table Value - Command 53

Command 53 reads the value of a specific data table element by specifying its row and
column number.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

@6H Specifies the packet length

35H Indicates the Read Data Table Location function code

LSB, MSB Contains the row number of the data table element, with the least
significant byte transmitted first

columns Contains the column number of the data table element

Checksum Contains the complement of modulo-256 sum of the previous 4 bytes
FFH Signals the end of the message

Format of Controller Response

@5H Specifies the packet length

36H Indicates the data table data function code

LSB, MSB Contains the data from the data table, expressed as a positive integer.
The range is from 0 to 65,535 (decimal) with the least significant byte transmitted
first.

Checksum Contains the complement of the modulo-256 sum of the previous 3
bytes

FFH Signals the end of the message

((: Control Technology Corporation 187
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Changing a Data Table VValue - Command 55

Command 55 changes the value of a specific data table element by specifying its row and
column number.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

@8H Specifies the packet length

37H Indicates the Change Data Table Location function code

LSB, MSB Contains the row number of the data table element, with the least
significant byte transmitted first.

columns Contains the column number of the data table element.

LSB, MSB Contains the new value for the specified data table element. The new
value can range from 0 to 65,535 (decimal) with the least significant bye
transmitted first.

Checksum Contains the complement of modulo-256 sum of the previous 6 bytes
FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)
9BH Contains the checksum, complement of the previous byte
FFH Signals the end of the message

Reading a Data Table Row - Command 57

Command 57 reads the values in a specific data table row and columns by specifying
their row and beginning column number.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol

@7H Specifies the packet length

39H Indicates the Read Data Table Row function code

LSB, MSB Contains the row number, with the least significant byte transmitted
first

First col Indicates the first data table column to read

Quantity Specifies the number of data table columns to read (n); <= 27 columns
Checksum Contains the complement of modulo-256 sum of the previous 5 bytes
FFH Signals the end of the message

Format of Controller Response

Length Specifies the packet length, (n * 2) + 4, where n = number of columns
read

3AH Indicates the Data Table Row Data function code

Quant Specifies the number of data table columns read (n); <= 27 columns
For each of n locations

((: Control Technology Corporation 188
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

=)

LSB, MSB Contains the data from the data table, expressed as a positive integer.

The range is from 0 to 65,535 (decimal) with the least significant bye transmitted
first.

End of location data
Checksum Contains the complement of the modulo-256 sum of the previous (n *

2) + 2 bytes

FFH Signals the end of the message

If the number of data table columns specified extends beyond the actual number of

columns, the controller’s response only contains data for the existing columns and the
response will be shorter than expected.

Changing a Data Table Row - Command 59

Command 57 changes the values in a specific data table row and columns by specifying
their row and beginning column number.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

length Specifies the packet length, (n * 2) + 4, where n = number of columns to
be changed

3AH Indicates the change Data Table Row function code

LSB, MSB Contains the row number, with the least significant byte transmitted
first

First col Indicates the first data table column to change

Quantity Specifies the number of data table columns to change (n); <= 27
columns

For each of n locations

LSB, MSB Contains the data from the data table, expressed as a positive integer.
The range is from 0 to 65,535 (decimal) with the least significant bye transmitted
first.

End of location data

Checksum Contains the complement of modulo-256 sum of the previous (n * 2)
+ 5 bytes

FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length

64H Contains the acknowledge function code (decimal 100)
9BH Contains the checksum, complement of the previous byte
FFH Signals the end of the message

((: Control Technology Corporation 189
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

System and Controller Status Access Commands

The following commands allow you to read the status of a controller; start, stop or reset a
controller; read or change the configuration of the controller’s dedicated inputs; and
obtain information about the number and type of controller resources in a particular
controller.

Binary Protocol Conventions

The binary protocol uses specific bits for controller status and system configuration
information. See the command descriptions for information on how to send and read this
information. The checksum value is the complement of the previous byte(s). Some
commands use the complement of the modulo-256 sum of the previous bytes; see the
individual command descriptions earlier in this chapter for more information.

Reading a Controller’s Current Status - Command 61

Command 61 reads a controller’s status and reports if it is running, stopped, has a
software fault, or is in programming mode.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol
@3H Specifies the packet length

3DH Indicates the Read Status Byte function code

CEH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response
@4H Specifies the packet length
3EH Indicates the Status Byte function code
status Indicates the status of the controller, where:

Bit @ =@ if running and = 1 if stopped

Bit 1 = @ in normal mode and = 1 in programming mode

Bit 2 = @ if status OK and = 1 if there is a software fault

Bit 3 = @ if in mid-program and =1 if fresh reset.

Bit @ is the least significant bit and bits 4 through 7 are undefined.
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes
FFH Signals the end of the message

Changing a Controller’s Status - Command 63

Command 63 changes a controller’s status.
Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol
@4H Specifies the packet length
3FH Indicates the Change Controller Status byte function code
status Indicates the status of the controller, where:

Bit @ = @ to start the controller and = 1 to stop it

((: Control Technology Corporation 190
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Bit 3 = 1 to reset the controller and = @ to continue

Bit @ is the least significant bit and will always start or stop the

controller. All unspecified and undefined bits should be set to @.
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes
FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)
Checksum Contains the complement of the previous byte
FFH Signals the end of the message

Reading a Controller’s System Configuration - Command 65

Command 65 reads the configuration of the controller’s dedicated inputs.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol
@3H Specifies the packet length

41H Indicates the Read System Configuration function code
BEH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

@4H Specifies the packet length
42H Indicates the System Configuration function code
config Indicates the configuration of the controller, where:

Bit @ =1 if using input 1 for the start function

Bit 1 = 1 if using input 2 for the stop function

Bit 2 = 1 if using input 3 for the reset function

Bit 3 =1 if using input 4 for the step function

Bit @ is the least significant bit and bits 4 through 7 are undefined.
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes
FFH Signals the end of the message

Changing a Controller’s System Configuration - Command 67

Command 67 changes the configuration of the controller’s dedicated inputs.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol
@4H Specifies the packet length
43H Indicates the Change System Configuration function code

((: Control Technology Corporation 191
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

config Indicates the new configuration of the controller, where:

Bit @ =1 to use input 1 for the start function

Bit 1 =1 to use input 2 for the stop function

Bit 2 = 1 to use input 3 for the reset function

Bit 3 =1 to use input 4 for the step function.

Bit @ is the least significant bit and bits 4 through 7 are undefined.
Checksum Contains the complement of the modulo-256 sum of the previous 2
bytes
FFH Signals the end of the message

Format of Controller Response

@3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)
Checksum Contains the complement of the previous byte
FFH Signals the end of the message

Listing Counts of Inputs, Outputs, Motion - Command 13

Command 13 obtains information about the number and type of controller
resources and reports the information.
Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol
@3H Specifies the packet length

@DH Indicates the I/0O Count Request function code

F2H Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

@CH Specifies the packet length

@EH Indicates the 1/0 Count function code

flags Indicates the number of flags, typically 80H

inputs LSB Indicates the number of inputs, LSB: @@H to F8H

inputs MSB MSB: @@H to @4H

outputs LSB Indicates the number of outputs, LSB: @@H to F8H
outputs MSB MSB: @@H to @4H

stepping mtrs Indicates the number of stepping motor axes, @@H to 1ZH
servos Indicates the number of servo axes, @@H to 1@H

analog inputs Indicates the number of analog inputs, @@H to FFH
analog outputs Indicates the number of analog outputs, @@H to FFH
Checksum Contains the complement of the modulo-256 sum of the previous 10
bytes

FFH Signals the end of the message

((: Control Technology Corporation 192
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

Listing Counts of Miscellaneous 1/0 - Command 69

Command 69 obtains information about the number and type of various controller
resources, such as prototyping boards, high-speed counting boards, thumbwheel arrays,
and numeric displays and reports it.

Format of Message Sent to Controller

@1H ldentifies the packet as using the CTC binary protocol

@3H Specifies the packet length

45H Indicates the Miscellaneous I/0O Count Request function code
BAH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

@7H Specifies the packet length

46H Indicates the I/O Count function code

protos Indicates the number of flags, typically 8@H

h s counters Indicates the number of high-speed counters

twhls Indicates the number of 4-digits thumbwheel arrays

disps Indicates the number of 4-digit numeric displays

Checksum Contains the complement of the modulo-256 sum of the previous 5
bytes

FFH Signals the end of the message

Reading Controller Step Status - Command 35

Command 35 reads the status of tasks in the controller. By executing this command four
times, once for each group of eight tasks, you may obtain all the information necessary to
reconstruct the hierarchy and status of the controller’s tasks. In addition, if software fault
has halted execution of your program, the controller’s response indicates the type of the
fault, the step where it occurred, and any relevant parametric data. As it starts each new
task, your Quickstep program assigns a task number from 1 to 32. The main program is
always task number one. Each of the 32 tasks, whether it is currently being used or not,
reports back a step number along with a 32-bit mask word. If the program is currently
using a task number, the mask shows whether the task is currently suspended or waiting
for one or more sub-tasks to finish. This is shown by a 1 bit in the bit position of the
mask word corresponding to the task for which the current task is waiting. For example,
if the main program, task one, called up three sub-tasks, tasks two, three and four, the
mask word for task one would be as follows:

BODDDDDD DDDDDDDD DDDDDBDD BDBD1110 MSB LSB

To extract the hierarchy of tasks being executed:
1. Start with task one and read its mask word to determine its sub-tasks.
2. Read the mask word of each sub-task, which indicate if any tasks are being
executed at the next level down the hierarchy.

((: Control Technology Corporation 193
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

9

3. As you follow the hierarchy of tasks under execution, you may determine the

current step being executed by each via the step number data provided. Step
numbers are offset by -1.

Do not assume that Quickstep allocates task numbers in the order of task

hierarchy. The starting and stopping of task numbers in a complex program may result in
a scattering of active tasks throughout the 32 possible task numbers. The only way to
determine the active tasks is to follow the task hierarchy as outlined above. When a
controller is stopped because of a software fault the message returned by the controller
will contain a software fault code. A list of all fault codes can be found in the Fault Task
Handler chapter.

Format of Message Sent to Controller

@1H Identifies the packet as using the CTC binary protocol
@4H Specifies the packet length
23H Indicates the Status Request function code
task range Bank of 8 tasks to be read, @@H to @3H, where:
@@H = tasks 1 through 8
@1H = tasks 9 through 16
@2H = tasks 17 through 24
@3H = tasks 25 through 32
Checksum Contains the complement of the modulo-256 sum of the
previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

39H Specifies the packet length

24H - 27H Indicates the Controller Status function code

Status - If the controller is stopped, it returns a value of @FFH, indicating true. If
the controller is running, it returns a value of @@H.

Fault type - Contains the type code for a software fault, if any are present. If the
value is @@H, then no software fault is present.

E_—“ . For additional information on fault codes, see Chapter 13: Fault Task
Handler

Fault step — LSB, MSB, 16 bit, where where @@@@H = step 1, JD1H = step 2
LSB MSB (4 bytes) Data relating to software fault if any; otherwise unspecified.
48 bytes follow and provide the following data for each of the eight tasks:

LSB, MSB Step number currently being executed by this task, where @@G3JH =
step 1, @BD1H = step 2, and so forth.

LSB - MSB (4 bytes) 32 bit mask, indicating with a 1 or @ for each of the 32
possible tasks whether this task is waiting for the completion of each task or not.
Lowest order bit of LSB represents task 1, etc.

Checksum Contains the complement of the modulo-256 sum of the previous 55
bytes

FFH Signals the end of the message

((: Control Technology Corporation 194
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

IP Encapsulation

An option exists that allows the CTC Binary Protocol to be sent over UDP and/or TCP,
allowing it to be routed. All Blue Fusion controllers support the raw, low level, non-
routable binary protocol, and additionally run background servers listening for UDP and
TCP connections that support “IP Encapsulation”. Simply put, a header is added on to
the current serial protocol. The controller listens for UDP requests on IP port 3000 and
TCP on port 6000.

#define MAXPKTDATALEN 216
#pragma pack (1)

typedef struct ctcIPPacket s
{

// Used to validate proper CTC packet versions.
//
BYTE version major;
BYTE version minor;

// Identifier for each packet sent. Used to validate
// incoming packets.

//

UINT1l6 transaction id;

// Required within packet. Only the sender knows for
// sure the type of the request. The spare aligns data
// along word boundaries.

//
BYTE type;
BYTE spare;

// Number of octets in the CTC binary.
//
UINT16 data size;

// Up to 216 (maximum in octets) of data. Note
current
// maximum packet size is 216 octets + 8 octets or 224
// octets or bytes.
//
BYTE data [MAXPKTDATALEN] ;
} CTCPACKET;
#pragma pack/()

E——“ The above structure is aligned on a 1 byte boundary. (#pragma pack(1)).

version_major/version_minor

These two byte fields represent the major and minor software revision of the
initiator. The controller side simply returns whatever was received by the host

((: Control Technology Corporation 195
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

making the request. Typically version major =0x04 and
version minor = 0x00.

((: Control Technology Corporation 196
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

transaction_id

Type

spare

The transaction id isatwo-byte, little endian format (Isb/msb) field which

contains an incrementing number, starting at 0x0001, to track the transaction
request by. The controller will return the packet setting the transaction ID to that
received, including the response information in the data field. Do not use a

transaction id of 0x0000.

0x14 — Request
0x15 — Reply

Not used. Alignment purposes only. Set to 0x00.

data_size

data

This contains the length of the data field stored in a two-byte, little endian
format (Isb/msb). The maximum size of the data field is 216 bytes.

This is the binary protocol transaction which has been encapsulated. Refer to
Chapter 19: CTNet Binary Protocol for additonal information on the standard
CTC Binary Protocol. Messages from the host begin with 0x01, that from the
controller are the length of the message in bytes. Both messages end with a
checksum and Oxff byte. Only the number of bytes defined within data size

are contained within data, not the full maximum of 216 bytes.

Example: register read request of register 0x0002 with transaction 1D 0x0001:

' Header | Binary Protocol Msg ----------- |
0x04 0x00 0x01 0X00 Ox14 0X00 0x07 0x00 OxO1 0x05 0x09 0x02 0X00 Oxf4 OxFf

checksum = ~(0x09 + 0x02 + 0x00) = 0xf4

Reply from controller:

' Header | Binary Protocol Msg --------------- |
0x04 0x00 0x01 0x00 0x15 0x00 0x08 0x00 0x07 Ox0a 0x00 0x00 Ox00 0x00 Oxf5 Oxff

Register contained 0x00000000. Note that little endian storage is used (Isb first).

((: Control Technology Corporation 197
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

APPENDIX

[A] BulletProof FTP Server

Installation

BulletProof Software has available a low cost FTP Server ($34.95, 15
day free trial) which can be installed on Windows systems for
communications with the Model 5300. This appendix is provided as an
initial quick start guide detailing its installation and initial setup.
Detailed information and additional support is provided within their
manual. The program may be downloaded from their web site at:

http://www.bpftpserver.com/download.php.

1. From their web site click the download Icon and save the file to a desired
directory:

Try

fou C
downl

BPFTP Server for FREE Now!

an try a fully functional version FREE for 15 days, it takes just minutes to
oad and setup, You'll have access to free e-mail support and our anline

and in-program help should you need it, but BulletProof also means user
friendly!

Requirements:

wiindows 9598/ MNT/ 2000/ MESHP/ 2003

An internet connection - any speed.

Less than 2 megabytes of hard disk space, and very little mermaory,
BPFTP Servetis not bloatware.,

Click here far free download. (1.5 Meg.] Extra Downloads - Addons and
Mon-English Manuals.

((: Control Tec

hnology Corporation 198

Document 951-530002-0013 01/15

http://www.bpftpserver.com/download.php

Model 5300 Communications & Logging Guide

2. Once downloaded execute their “ftpsetup.exe” file. At the welcome screen click
the Next button:

' Setup - BulletProof FTP Server E|§|@

Welcome to the BulletProof FTP
Server Setup Wizard
Thiz will install BulletProof FTP Server on your compliker.

It iz recommended that vou cloze all ather applications befare
continLing.

Click Mest to continue, or Cancel to exit Setup.

Ne:-:t>[¥ [Cancel

3. Accept their agreement and click Next:

((: Control Technology Corporation 199
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

I Setup - BulletProof FTP Server

License Agreement
Pleaze read the following important information befare continuing.

Fleaze read the following Licenze Agreement. v'ou must accept the terms of this
agreement befare continuing with the inztallation.

BulletProof FTP Server [c] DigitalCandle, Inc.
Development, Marketing and Retailing: DigitalCandle, [ne.
[wwwy. digitalcandle, com)

WA b - httpe A vwese boftpeeryver. com

Email : zupporti@bpftpeerer. com

EMD-USER LICEMSE AGREEMEMT FOR THIS SOFTWARE
IMPORTAMNT - READ CAREFULLY:

(%) | accept the agreement

{3 | do nat accept the agreement

< Back “ Next>[§J[Cancel]

4. Click Next at the Information screen:

e Setup - BulletProof FTP Server

Information
Pleaze read the following important infarmation before continuing.

YWhen pou are ready to continue with Setup, click Nest.

| YERSION DETAILS

w Fied, + Added, * Improved/Changed. i Information

Werzion 2.3.1.26 BulletProof FTP Server - 23-Aug-2004

. Last downloader name not updated in hitometer list.
s Errar with quata editing. [ctr+cdctiley]

- PASY problem when connecting to 127.0.0.7.

: Quata : renarming a file with an already existing filename [ovensiting] wald
Lpdate quata.

v Owenanting with a 0 bytes file would not replace the remote file.

¥ PASY command could take too much time when a random local port iz chosen.
w: Multiple reload meszages when reloading with file method.

X M I

I

W

[< Back “ NEHD%J[Cancel

5. Change the installation directory if required and click Next:

@ Control Technology Corporation
Document 951-530002-0013 01/15

200

Model 5300 Communications & Logging Guide

I Setup - BulletProof FTP Server ZII@[‘S__(I

Select Destination Location
“Where should BulletProaf FTP Server be installed?

’J Setup will ingtall BulletProof FTF Server into the following folder.

To continue, chck Mest. If you would like to select a different folder, click Browse.

IZZ:"-.F'n:quarn Files\BPFTF Server | [Browse...

At leazt 0.2 MB of free dizk zpace iz required.

[< Back][Mext » [%[Cancel

6. Accept the defaults of the next few screens and continue as shown:

I Setup - BulletProof FTP Server,

Select Components J
YW'hich components should be inztalled’? =y /

Select the components wou want taingtall; clear the components you da not want to
inztall. Click Mest when you are ready to continue.

| Full inztallation

BulletProof FTP Sermer g3a KB
BulletProof IP W atch 347 KB
Service ingtaller for Windows NT /2000520035 F only 23KRB
Help files 791 KB

Current zelection requires at least 2.1 ME of digk space.

¢ Back][Ne:-:t>[%_l[Cancel

@ Control Technology Corporation 201
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

15 Setup - BulletProof FTP Server

Select Start Menu Folder ﬁ
Where should Setup place the program's shortcuts? P

Setup will create the program's shortcuts in the following Start Menu folder.

To continue, click Mest. If pou would like to select a different folder, click Browsze.

EII.JIIEetF'n:n:nf FTP Server | [Browse...

¢ Back ” Ne:-:t>[}J[Cancel]

s Setup - BulletProof FTP Server

Select Additional Tasks ﬁ
W'hich additional tazks should be performed? P

Select the additional tazks you would like Setup to perfarm while inzstaling BulletProof
FTP Server, then click Mest,

Additional icons:
Create a Desklop icon
Create a Quick Launch ican

Create Start menu iconz

¢ Back

[Ne:-:t>[%J[Cancel

@ Control Technology Corporation 202
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

I Setup - BulletProof FTP Serwver

Ready to Install

Setup iz now ready to begin installing BulletProof FTP Server on your cormputker.

Click Inztall to continue with the installation, or click Back if you want o review or
change any settings.

Destination location:
C:AProgram Filesh\BPFTP Server

Setup bype:
Full inztallation

Selected components;
BulletProof FTP Server
BulletProcf 1P Y atch

Service ingtaller for Windows N T/2000,/20035=F anly
Help files

Start Menu folder:

| <Back | Install%J[Cancel |

7. Upon completion the final screen will appear, click Finish and the program will
automatically be invoked:

@ Control Technology Corporation

203
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

o' Setup - BulletProof FTP Server g|ﬁ|@

Completing the BulletProof FTP
Server Setup Wizard

Setup haz finizhed instaling BulletProof FTP Server an your
computer. The application may be launched by selecting the
inztalled icons.

Click. Finizh o exit Setup.

Launch BulletProof FTP Server

| Firizh :'\5

Operation

Upon initial install and execution the following will appear:

£ BulletProof FTP Server v2.3.1 (Build 26) ::UNREGISTERED:: 15 day(s) left for evalua... [= |[B]X]

Server Setup Windows Wiew Help

; WX CESE RS EG w0

BulletProaf FTP Server v2.3.1 [Build 26] - Copyright [2] 1998-2004 DigtalCandle
Inc, All Rights Reserved.

Uzing "WinSock 2.0 - Max Sock. 32767

Running on 2xintel[R] Pentium(R) 4 CPU 3. 20GHz 3192 Mhz with 1047532 KB
[B0979E KB free] under Windows MT 5.1 Service Pack 2

- Fiwed Digk Drive - Free Space : 9369 MB

- CORom Diigk. Drive

- Fiwed Digk Drive - Free Space : 25024 MB

- Fimed Digk Dnve - Free Space : GAA56 kA

-- Metworl, Digk Drive - Free Space : 13133 MB
- Metwork Disk Drive - Free Space : 5469 MB
- Metwork, Digk Drive - Free Space : 13133 MB
- Wetwork. Disk Drive - Free Space ; 5469 MB

MmTomon

1 viear zmcmomb TAarmnm aeemn F M kraz Rlal= 1A il =1

Ma Client FTF Server Off-ine 0 bytes/s

An initial user account must be added. This is the user name and password, along with
access rights you will grant this person and/or controller. Click the Setup->User
Accounts menu item:

((: Control Technology Corporation 204
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

2 BulletProof FTP Server v2.3.1 (Build 26) ::UNREGISTERED:: 15 day(s) left for evalua... [= [B][X]

Server BECENN Windows Yiew Help

7 1Bk main b B £ e 2

BulletPrg ‘:‘B Events Manager CtrHE aperight [2) 1998-2004 DigitalCandle &
Inc. AR B L 3 T
I zitg W] B -

Rurnning [— R 20GHz 2192 Mhz with 1047532 KB
(509796 p Euser Accounts . i [t

ﬁ Group Accounks T Chrl4+G

- Fiwed Chzk Onive - Free Space : 9365 MB

- CDRom Dizk Drive

-- Fixed Dizk Drive - Free Space : 26024 MEB

-- Fined Dizk Drive - Free Space : GBE56 MB

-- Metwork Digk Drive - Free Space: 13133 ME

-- Metwork, Digk Drive - Free Space : B469 ME B
- Metwork Digk Drive - Free Space : 13133 MB

- Metwork, Digk Drive - Free Space : B469 ME

MLmTomor

[£

1 vear accrimt 0 araon accmomb 1 fraa Blale1A il =1

Mo Client FTP Serser OFf-line 0 bytes/s

The following Setup User Accounts screen will appear:

8 Setup User Accounis E]

] &9 Setup | Uszer Accounts
[?5' Accesz Rightz
@ Directories Attributes Files
[JRead
[Trwdrite
[Delete
[] &ppend
Directories
[IMake
[List
[Delete
[+5ubdiis
|lze group home directony 1 Al e
Setup
[Login | |
[] Pazsword | |
Horme [P | -= AP Homes = » |
[] Growp name
[Ok I [Cancel]
Right Click. to add/modify accounts

To add an account, position the mouse over the User Accounts window and right click
the mouse. A menu will appear; select Add:

@ Control Technology Corporation 205
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

8 Setup User Accounts

0 0 Setup | Uzer Accounts
[?;l. Accesz Rights |
. . : - +
@ Directories Abtributes Fileg
[JRead
[Trwite
[Delete
A d
I:.l |:u|:uer_1 Copy accounts lisk koo
Directoriez
[IMake
[List
[]Delete
[+5ubdirs
Iz group home directony 1 Al e
Setup
[Login | |
[] Password | |
Home IP | -= Al P Homes =- “ |
[Group name
[Ok] [Canicel]

Enter the new account name, 5222Controller is shown in the example, click OK:

X

Enter Account Name

Account Mame
\B222Cerholer |

[OF. H Cancel]

@ Control Technology Corporation 206

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

2 Setup User Accounts

0 Setup 0 Setup |
% Mizcellaneous]
ED Linkz & Mezzages Access Rights
@ Ratio, Quota, Bps Directories Attributes Files
IP & Banned Files []Read
Mates [Trwrite
Statuz [] Delete
[] &ppend
Directories
[IMake
[List
[Delete
[] +5ubdirs
(I[P A Poeesy
Setup
Login |5222E|:untru:uller |
Password |F'3'-""ET PJy | é
Horme [P | =all P Homes =- w |
] Group name
’ (]S] [Cancel]

The account has now been created. A default password of FcweTPJY is shown. This
should be changed to anything desired. By default no directory or file access is granted,
only the account created. In order to grant access a directory must be referenced and
access privileges granted. To add a directory, right click the mouse in the Access
Rights area of the screen and select Add:

G Setup |
Access Rights
Directories Aftributes Files
[1FRead
] hfrite
+| N o ..
[Mew | &ppend
rectornies
IEE
| Lzt
| Delete
] 1 +5ubdirs

A window will appear allowing you to select the desired directory and access
permissions:

@ Control Technology Corporation 207
Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

2 Select Directory

(E} Desktop Files

B My D ocuments Fead

¢ My Computer [w/irite

\3 My Netwu:ur.k Places []Delete

2 Recycle Bin [&ppend

Directories
[Itdake
Ligt
[Delete
[+Subdirs
[l alMone

Select

Caricel

C\Documents and Settingsikevin, CTCDeskiop

If subdirectories are to be allowed be sure to select the +Subdirs check box. Below
shows a directory on the C: drive being added called FTPServerHome. File access

will allow upload and download as well as access to subdirectories.

8/ Select Directory

[52000 serC || Files

[Autologis) Fead

[backcte [wiite

Backup Exec A0F0 Store Dlelste

[changed 1 #ppend

) com Directories
[CTauth [Make

[Cugwin List

[T Cwgwinz 95 F1Delete

g DELL +Subdirs

DemoBox T

[Documents and 5 ettings [4l MNone

(=3 DRIVERS
= FTPServerHome

) 1386 Cancel

= Inetpub

=3 JavaCamm

MSOCache

[MetObjects Fusion 7.5 3

CFTPServerHome
@ Control Technology Corporation 208

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

8 Setup User Accounts [zl
0 Setup 0 Setup | Uszer Accounts
% Mizcellaneous]

[31 Links & Messages SerEss RIS
@ Ratio, Quata, Bps Directories Attributes Files
IP & Banned Files CAFTPServerHome!, RwD-LS- Read
Mates wirite
Status Delete
] &ppend
Directories
[IMake
Ligt
] Delete
+Subdirs
1 Al A
Setup
Lt |5222Contoller |
Password | FoweTRUY N=
Home IP | -= AllP Homes = L |
[] Gioup name
’ Ok] ’ Cancel]

To activate the server you must select OK, then Server->Go On-line at the main menu:

BulletProof FTP Server v2.3.1 (Build 26) ::UNREGISTERED:: 15 day(s) left for evalua... [= |[B]X]
3 ' Setup Windows Wiew Help

E ine

Chrl+5 ;IEl @' ‘:‘13 ,& ﬁ ke ® © |E§ﬁ)

M Close Server CrHP 6] - Copyright [c) 19958-2004 DigitalCandle &

i
PU 3.20GHz 3192 Mhz with 1047532 KB
Minirmize ko Tray F3 8.1 Service Pack 2

M, Exit TG

-~ CORom Digk. Drive

- Fiwed Digk Drive - Free Space : 25024 MB

- Fimed Digk Dnve - Free Space : GAA56 kA

- Metwork, Digk Drive - Free Space : 13133 MEB

- Metwark Disk Drive - Free Space : 5469 MB B
- Metwork, Digk Orive - Free Space : 13133 MB

- Metwark. Disk Drive - Free Space : 5469 MB

9363 ME

MLmTomo

b d

1 vear arcmnmb T arann arcmwab 1 ras Rlala il =1

Ma Clignt FTF Server Off-ine [0 byteziz

There are numerous other features available within the BulletProof software package. It

is left to the user to read their documentation available on their web site.
http://www.bpftpserver.com/help/bpftpserver.com/manual_en/

Example: Access via the telnet or script command line to this account would be:

ftpconnect 12.40.53.52 5222Controller FcweTPJY

@ Control Technology Corporation 209
Document 951-530002-0013 01/15

http://www.bpftpserver.com/help/bpftpserver.com/manual_en/

Model 5300 Communications & Logging Guide

[B] Network Port Usage

The Model 5300 uses a number of TCP and UDP data ports for
communications. This section documents their usage.

Port Numbers

An IT professional can use the following port number list for configuration of corporate
firewalls, VPN or NAT. Below are the common ports used. In many circumstances,
especially when the Model 5300 is the client, ports are determined by the user.

Port Function Direction
21 FTP Server Inbound, TCP
23 Telnet Administrative Interface Inbound, TCP
501 Modbus TCP Inbound, TCP
3000 CTC Binary Protocol Inbound, UDP
6000 CTC Binary Protocol Inbound, TCP
21896 Controller Discovery Inbound and Outbound , UDP

40000 Ports used for random binding, both Inbound and Outbound
to UDP and TCP.

40640
BELOW FOR iPANEL, REF ONLY

21891 Multicast [239.11.90.201] Outbound from the Control
Used to discover iPanel devicesand utility.
computers running CT HMI Inbound to iPanel devices and
Workstation. computers running CT HMI

Workstation.
@ Control Technology Corporation 210

Document 951-530002-0013 01/15

Model 5300 Communications & Logging Guide

21892

21893

9190

9191

8194

8195

8192

41001
through
41099

Multicast [239.11.90.201]

Used to discover iPanel devices and
computers running CT HMI
Workstation.

Multicast [239.11.90.201]

Used to communicate between
iPanels, all CT HMI products
(including Builder and Workstation)
and CTServer.

Used primarily for service discovery.
Used to communicate between the
Control utility and an iPanel device
or a computer running CT HMI
Workstation.

Used to communicate between the
Remote Workstation program and
an iPanel device or a computer
running CT HMI Workstation.
Web server (HTTP) port for viewing
logged historical data.

This port is only used when
developing a project using CT HMI
Builder.

Web server (HTTP) port for viewing
logged historical data.

This port is used by run-time
instances of CT HMI SA (stand-
alone, running on an iPanel) or CT
HMI WS (workstation).

Virtual services class-server, registry
and local-services port used by CT
HMI applications to communicate to
CTServer instances.

Used to communicate between
iPanels, all CT HMI products
(including Builder and Workstation)
and CTServer.

Outbound from iPanel devices
and computers running CT HMI
Workstation.

Inbound to the Control utility.
Inbound and Outbound.

Outbound from the Control
utility.

Inbound to iPanel devices and
computers running CT HMI
Workstation.

Outbound from the Remote
Workstation program.

Inbound to CT HMI Builder
from client browsers.

Inbound to run-time instances of
CT HMI.

Inbound to virtual services.

Inbound to remote object servers
in the listed products.

((: Control Technology Corporation

Document 951-530002-0013

01/15

211

