
Copyright 2002 - 2005 © Control Technology Corporation

All Rights Reserved.

Model 5100 Communications
Guide

The information in this document is current as of the following Hardware and Firmware

revision levels. Some features may not be supported in earlier revisions. See www.ctc-

control.com for the availability of firmware updates or contact CTC Technical Support.

Model Number Hardware Revision Firmware Revision

5101/5102/5103/5104 B, C, and E >= 4.05.48

http://www.ctc-control.com/
http://www.ctc-control.com/

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

2

 WARNING: Use of CTC Controllers and software is to be done only by

experienced and qualified personnel who are responsible for the application and use

of control equipment like the CTC controllers. These individuals must satisfy

themselves that all necessary steps have been taken to assure that each application

and use meets all performance and safety requirements, including any applicable

laws, regulations, codes and/or standards. The information in this document is given

as a general guide and all examples are for illustrative purposes only and are not

intended for use in the actual application of CTC product. CTC products are not

designed, sold, or marketed for use in any particular application or installation; this

responsibility resides solely with the user. CTC does not assume any responsibility or

liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software

described in this document is provided under license agreement and may be used and

copied only in accordance with the terms of the license agreement. The information,

drawings, and illustrations contained herein are the property of Control Technology

Corporation. No part of this manual may be reproduced or distributed by any means,

electronic or mechanical, for any purpose other than the purchaser’s personal use, without

the express written consent of Control Technology Corporation.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

3

TABLE OF CONTENTS

1.0 Communications Summary ... 5

1.1 Serial Communications Overview .. 5

1.1.1 Port Settings ... 5

1.1.2 ASCII Protocol... 6

Initiate computer mode ... 7

Initiate terminal mode ... 7

Read a digital output ... 7

Write a digital output .. 7

Read a digital input ... 7

Read an analog output .. 7

Write an analog output ... 8

Read an analog input .. 8

Read a counter/register... 8

Write a counter/register .. 8

Read a flag .. 8

Write a flag ... 8

Read a data table location .. 8

Write a data table location ... 9

Issue Start Command to Controller .. 9

Issue Stop Command to Controller ... 9

Issue Reset Command to Controller ... 9

Returned Error Messages ... 9

1.2 Ethernet Communications ... 10

CTNet .. 10

UDP... 10

TCP ... 10

1.2.1 Configuring CTNet Node .. 10

1.2.2 Configuring IP Address Manually ... 11

1.2.3 Configuring the IP Address automatically with DHCP 12

1.2.4 Setting the Controller’s DNS Name .. 13

1.2.5 Communicating to the Controller Using CTNet .. 13

2.0 TCP/IP Raw Sockets ... 14

2.1 TCP Client .. 14

2.2 TCP Server .. 16

2.3 Lantronix CoBox/Xpress interface Example .. 17

3.0 Modbus ... 17

3.1 Modbus Slave RTU TCP & RTU/ASCII Serial ... 18

3.1.1 Modbus Slave Serial RTU/ASCII .. 28

3.2 Modbus Master TCP RTU & Serial RTU/ASCII ... 30

3.2.1 Registers 21000-21299 .. 31

3.2.2 Example Modbus TCP & RTU Serial Master Initialization 34

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

4

Modbus TCP Master Sample Program: .. 34

Modbus RTU Serial Master Sample Program: ... 36

3.2.3 Testing With Win-Tech’s ModSim32 ... 38

4.0 CTNet Binary Protocol (Server) ... 44

5.0 UDP Peer to Peer Protocol Overview ... 44

5.1 Peer-to-Peer Protocol Registers .. 44

5.1.1 Registers 21000-21299 .. 45

6.0 SNTP Simple Network Time Protocol (RFC-2030) ... 49

6.1 SNTP Implementation .. 49

7.0 Virtual I/O Mapping ... 50

7.1 Quickstep Configuration ... 52

7.2 Registers .. 53

7.3 Script Configuration.. 56

7.4 Sample VirtualIO Program: VIOCount.dsp ... 59

7.5 Important Considerations .. 62

7.5.1 Network Isolation... 62

7.5.2 Remote Write Operations .. 63

7.5.3 Performance and Determinism Guidelines .. 63

CTC Test Timings... 64

CTC Test Set-up ... 64

7.6 Fault Task Handler ... 65

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

5

1.0 Communications Summary

With the release of the 5100 firmware revision 4.05 and above, a number of new

features are available or have been enhanced. Many of these features are in the area

of communications, while a number of significant ones allow for greater

programming flexibility. This manual’s focus is on those features relevant to the area

of communications, some of which are listed below

 Communications

o (2) Serial ports capable of the CTNet Binary protocol, CTC ASCII

Protocol, raw mode, COM1 also supporting the Modbus RTU/ASCII

Master and Slave protocols.

o COM1 and COM2 configurable, stop bits, data bits, and parity (COM2

only on manufacturing builds after April 15, 2003).

o Telnet Server for remote administration interface

o FTP Server

o Modbus/TCP RTU Master and Slave

o UDP Peer to Peer

o TCP client/server raw socket interface, bidirectional

o CTNet Binary protocol

o Up to 7 serial ports, 2 local and 5 virtual TCP to terminal servers or

host applications

o Configurable connection throttling to enhance overall system

performance

o String formatted output messages with embedded register values from

within Quickstep (printf format).

o SNTP Time Server synchronization for real time clock.

o Virtual IO between controllers over Ethernet

o DHCP support

o DNS name registration via DHCP

o ‘C’ Programming for custom protocols

1.1 Serial Communications Overview

The controller contains two RS-232 serial ports. These ports support numerous

communications protocols, many of which are detailed elsewhere within this

document. This section is meant as a general overview.

1.1.1 Port Settings

The default communication settings for the two serial ports are:

 Baud Rate: 19200

 Data Bits: 8

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

6

 Parity: None

 Stop Bits: 1

All parameters may be changed using available registers. Use register 12000 to select

either port by storing a 1 or 2. Set the following registers based on the configuration

desired:

Register 12301 to select the baud rate as follows:

2 – 1,200

3 – 2,400

 4 – 4,800

 5 – 9,600

 6 – 19,200 (default)

 7 – 38,400

Register 12308 to select the parity as follows:

0 – None (default)

1 – Odd

2 – Even

Register 12309 to select the stop bits as follows:

1 – Stop bit on transmit (default)

2 – Stop bits on transmit

Register 12309 to select the data bits as follows:

7 – Data bits (default, not including parity)

8 – Data bits (not including parity)

For example the following Quickstep instructions will change the baud rate on port 1

to 9600 Baud:

 store 1 to Reg_12000

 store 5 to Reg 12301

Note: Only Manufacturing builds after April 15, 2003 are capable of supporting

parity, stop bit and data bit configuration on COM2. To verify the capability

reference U6 on the main board. The component AT90S8515 (older designs) can not

support port configuration, new designs, using the ATMega8115 do support

configuration.

1.1.2 ASCII Protocol

Each serial communications port supports a number of protocols. The default is the

ASCII and CTC Binary Protocol, controlled by register 12320. By setting register

12000 to the active port number, register 12320 will display the active protocol on

that port, with 0 being the default.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

7

The ASCII Protocol allows access to the various data points within the controller;

digital inputs and outputs, analog input and outputs, registers, counters data table and

flags. In addition commands may be issued to start/stop/reset the controller. There

are two modes to the ASCII Protocol, computer and terminal (default). The computer

mode simply terminates strings with a <CR> (carriage return, 0D Hex), while the

terminal mode uses a <CR> <LF> (carriage return, linefeed 0A Hex) combination

and sends a leading <LF>, prior to transmission.

In the following command descriptions <CR> equals 0D Hex and <LF> equals 0A

Hex. <??? number/value> includes the greater than and less than signs for clarity,

they are not in the data stream. Digital inputs and output values use the number 0 for

off and 1 for on, flags are 0 for clear and 1 for set.

Initiate computer mode

Send - PC<CR>

Response – PC0<CR>

Initiate terminal mode

Send – PT<CR>

Response - <LF>PT<CR><LF>

Read a digital output

Send – O<output number><CR>

Response:

Computer mode - <output number><CR>

Terminal mode - <LF><output value><CR><LF>

Write a digital output

Send – O<output number>=<new value> <CR>

Response:

Computer mode - <CR>

Terminal mode - <LF>

Read a digital input

Send - I<input number><CR>

Response:

Computer mode – <input value><CR>

Terminal mode - <LF><input value><CR><LF>

Read an analog output

Send - AO<output number><CR>

Response:

Computer mode – <output value><CR>

Terminal mode - <LF><output value><CR><LF>

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

8

Write an analog output

Send – AO<output number>=<new value> <CR>

Response:

Computer mode - <CR>

Terminal mode - <LF>

Read an analog input

Send - AI<input number><CR>

Response:

Computer mode – <input value><CR>

Terminal mode - <LF><input value><CR><LF>

Read a counter/register

Send - R<counter/register number><CR>

Response:

Computer mode – < counter/register number ><CR>

Terminal mode - <LF>< counter/register number ><CR><LF>

Note: Register read/write commands can be chained together using a ‘;’ as a

separator, each command will be responded to uniquely.

Example: R1000=5;R1005;R1006<CR>

Write a counter/register

Send - R<counter/register number>=<new value><CR>

Response:

Computer mode – <CR>

Terminal mode - <LF>

Note: Register read/write commands can be chained together using a ‘;’ as a

separator, each command will be responded to uniquely.

Example: R1000=5;R1005;R1006<CR>

Read a flag

Send - F<flag number><CR>

Response:

Computer mode – <flag value><CR>

Terminal mode - <LF><flag value><CR><LF>

Write a flag

Send - F<flag number>=<new value><CR>

Response:

Computer mode – <CR>

Terminal mode - <LF>

Read a data table location

Send - D<row number>,<column number><CR>

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

9

Response:

Computer mode – <table value><CR>

Terminal mode - <LF><table value><CR><LF>

Write a data table location

Send - D<row number>,<column number>=<new value><CR>

Response:

Computer mode – <CR>

Terminal mode - <LF>

Issue Start Command to Controller

Send - +<CR>

Response:

Computer mode – <CR>

Terminal mode - <LF>

Issue Stop Command to Controller

Send: -<CR>

Response:

Computer mode – <CR>

Terminal mode - <LF>

Issue Reset Command to Controller

Send - *<CR>

Response:

Computer mode – <CR>

Terminal mode - <LF>

Returned Error Messages

Number too small – If an input, output, register, or flag number is specified

as zero then the controller sends the following error message:

Computer mode - <less than sign,< > <bell, 07H><CR>

Terminal mode - <LF><less than sign,< ><bell, 07H><CR><LF>

Number too large – If an input, output, register, or flag number is specified

that is greater than the number supported, then the controller sends the

following error message:

Computer mode - <greater than sign,> > <bell, 07H><CR>

Terminal mode - <LF><greater than sign,> ><bell, 07H><CR><LF>

Protocol error – If a “P” command (protocol) is not in the correct format then

the controller will send the following error message:

Computer mode – P<bell, 07H><CR>

Terminal mode - <LF>P<bell, 07H><CR><LF>

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

10

Syntax error – If the controller can not make any sense of the command, then

it sends the following message:

Computer mode - ?<bell, 07H><CR>

Terminal mode - <LF>?<bell, 07H><CR>

1.2 Ethernet Communications

The 5100 series controllers can be configured to communicate over Ethernet using

one of several transport protocols: CTNet, UDP, and TCP.

CTNet

CTNet is a proprietary non-routable protocol typically used for legacy

communications to the 2700 products. It tends to be faster than UDP or TCP/IP due

to the lack of processing overhead but like UDP, lacks acknowledgement of each

packet.

UDP

User Datagram Protocol is used to send packets across an IP Network in an unreliable

manner, no packet acknowledgement. The protocol is fully routable across the

internet, unlike CTNet. It is the preferred interface for many products when

performance is required and the application can perform error recovery. The 5100

supports UDP packet transport for peer to peer communications, virtual IO,

CTCMon, and CTServer products.

TCP

Transmission Control Protocol is used to establish connection-oriented, sequenced,

and error free sessions over an IP Network. The protocol is fully routable across the

internet, unlike CTNet, and each data packet is acknowledged when received

correctly by the receiver. Retransmission of lost packets are built into the protocol.

Typical retry timers of 250 milliseconds limit the uses of TCP in a real-time

controller. The 5100 supports TCP packet transport for FTP, Telnet, Modbus TCP

Master/Slave, RAW client/server connections, CTCMon, and CTServer products.

When using any of these protocols it is important to note that whenever the 5100 is

placed on a network, it should be connected to a switch, not a hub. Refer to Section

7.5 for further details. The following section details the initialization required prior to

network operation.

1.2.1 Configuring CTNet Node

To use CTNet, a valid CTNet node number between 1 and 32767 must be set. To use

UDP protocol, the controller must be set up with a TCP/IP address, subnet mask, and

optional gateway.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

11

The CTNet node number, of the controller, is stored in register 20000. Simply write

the Node number to register 20000, and then write a 1 to register 20096, and cycle

power on the controller for the change to be accepted.

 Store 21 to Reg_20000

 Store 1 to Reg_20096

1.2.2 Configuring IP Address Manually

If you are not using DHCP to automatically obtain your IP Address then the TCP/IP

address is configured statically, as follows:

Example IP Address 168.254.132.34 (example)

Example Subnet Mask: 255.255.255.0 (typical)

Example Gateway 168.254.132.88 (example)

The actual values to use will depend on the network that the controller is connected

to. Contact your IT department to determine acceptable addresses for your network.

Registers 20048 to 20051 are the 4 parts of the IP Address:

store 168 to Reg_20048

store 254 to Reg_20049

store 132 to Reg_20050

store 34 to Reg_20051

Registers 20064 to 20067 are the 4 parts of the Subnet Mask:

store 255 to Reg_20064

store 255 to Reg_20065

store 255 to Reg_20066

store 0 to Reg_20067

Registers 20080 to 20083 are the 4 parts of the Gateway Address (optional). A

gateway is only required if the controller needs to communicate over a Wide-Area

Network (WAN). If not using a gateway then set these registers to 0 (default). The

controller can talk to devices on a Local Area Network without using a gateway, but

not over the Internet or outside its subnet.

store 168 to Reg_20080

store 254 to Reg_20081

store 132 to Reg_20082

store 88 to Reg_20083

To save the IP address and all other modified parameters to non-volatile memory:

 store 1 to Reg_20096

Finally, cycling power to the controller to activate the new IP information active.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

12

The IP address can be set up through a Quickstep program or with CTC Monitor.

Note that if you set the IP Address registers to 0, then write 1 to Reg_20096, cycle

power, the controller will use DHCP to obtain its network information, automatically.

You will be aware that the controller is attempting to connect to a DHCP server when

the FAULT LED is flashing repeatedly, at a high rate (100ms/second). The FAULT

LED will stop flashing once the 5100 has obtained an IP address from a DHCP

server. While searching for a valid DHCP address, serial port CTC Monitor access

will be available but Quickstep and Ethernet communications will be disabled. Once

an IP address is available the 5100 will continue to boot, initializing the network and

starting Quickstep application software.

1.2.3 Configuring the IP Address automatically with DHCP

The controller is capable of retrieving its IP information automatically, from a DHCP

server, RFC 2131. The Dynamic Host Configuration Protocol (DHCP) is a

communication protocol that lets network administrators automate assigning of IP

addresses within a network.

All devices (computers, controllers, etc.) which reside on a TCP/IP network must

have an IP address assigned. Without DHCP, the IP address must be entered

manually at each device, such as detailed in the previous section. If devices move to

another location in another part of the network, a new IP address must be entered.

DHCP allows a network administrator to supervise and distribute IP addresses from a

central point and automatically assigns a new IP address when a computer is plugged

into a different location on the network. DHCP also provides other services beyond

that of just an IP address. It provides Domain Name Service (DNS) server addresses,

gateway information, Simple Network Time Protocol (SNTP, section 6.0) servers,

etc., thus allowing for fully automatic configuration of the controller IP parameters.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be

valid for a computer. The lease time can vary depending upon how long a user is

likely to require the network connection at a particular location. DHCP also supports

static addresses for devices that need a permanent IP address.

DHCP is enabled by default in the controller. At power up, the controller will request

to use whatever IP address is set in the 20048 block (except 0.0.0.0 which enables

DHCP), the DHCP server will either allow it or supply a new IP address. This final

address will temporarily be written to the 20048 block, but not permanently.

Although not stored permanently it is still the active IP address for the system. Only

the user or Quickstep can make this IP address permanent, by storing a 1 to register

20096. If you do not care to use DHCP, it can only be disabled by setting an actual

IP address and subnet mask (Section 1.2.2).

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

13

1.2.4 Setting the Controller’s DNS Name

When the controller communicates with a DHCP server it also requires a unique

system name that is typically used for DNS resolution (assuming the server is using

dynamic DNS). Presently this name is derived from the controller’s serial number,

placing “CTC_BF_“, before the number. For example if the serial number was 100-

52801 then the DNS name entry for the controller would become

CTC_BF_10052801. User settable names are also possible and may be set using the

‘set systemname <name>’ command within the telnet administration screen, followed

by writing a 1 to register 20096 (to save change), and rebooting the controller.

Note that many software packages and other devices with CTC communications

drivers do not have the capability to identify controllers by name, only by IP Address.

Depending on how your network is configured, DHCP may change the IP address of

the controller without warning, causing devices and software to lose connection or

connect to the wrong controller. In this case, it is better to manually assign a static IP

address to the controller. The network administrator should be contacted prior to

assigning any IP address, to avoid conflicts.

1.2.5 Communicating to the Controller Using CTNet

CTNet is a lightweight non-routable Ethernet protocol used by legacy CTC

controllers. It is recommended that UDP be used, instead, whenever possible, since it

is routable.

In order to communicate with the Controller from a PC using CTNet protocol, the

WinPCap driver must be installed on the PC and an updated ctccom32v2.dll file must

be installed in the Windows system32 directory.

The latest version of the WinPCap driver may be downloaded from the customer care

section of CTC’s website www.ctc-control.com. Compatibility information will be

included with the download. Currently Windows 95, 98, ME, NT4, 2000, and XP are

supported.

To install the driver:

1. First, uninstall any previously installed CTNet drivers including CTC

Transport and CTC Packet Driver. If you have not previously installed these

drivers, this step can be skipped. DO NOT INSTALL WinPCap OVER AN

EXISTING CTNet DRIVER.

2. Double click the WinPCap.exe file and run through the installation program.

3. In your Windows system32 directory (typically Windows\system for

Windows 95, 98, and ME and WINNT\system32 for Windows NT/2000/XP)

replace the existing ctccom32v2.dll file with the file included with the

WinPCap download.

4. Restart the PC.

http://www.ctc-control.com/

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

14

Once the driver is installed, CTC Monitor 2.8 or later can be used to communicate to

the controller. Every controller on the network must have a unique node number, and

each PC based connection must use a unique Host node number.

2.0 TCP/IP Raw Sockets

Up to 5 TCP Client/Server RAW Socket sessions are supported by the controller.

These socket sessions provide a virtual pipe, with no formatting of data. To the

controller they merely appear as another serial port, even though the connected device

can reside virtually anywhere on a network connection. This interface is extremely

useful for connection to external programs, such as Visual Basic or Ethernet based

terminal servers such as the Lantronix or Newport devices described below.

2.1 TCP Client

A TCP Client RAW Socket session is when the host computer runs a TCP Server and

the controller connects to it. Typically a well-known IP address and public TCP port

number is available for this connection. Once the connection is made any data sent to

the actively selected serial port (12000 register) is sent to the host and anything sent

by the host to the controller is placed in its receive buffer, exactly like an actual serial

port. In order to initiate a connection a number of registers must be configured.

The RAW Socket session register blocks are based 22000 and extend to 22049, one

block for each serial port supported. The actual block used has nothing to do with the

serial port itself when referenced from Quickstep, it is configurable as a parameter

within the block. Blue Fusion Controllers, Models 5101, 5102, 5103, and 5104 have

2 physical serial ports (COM1=1, COM2=2, 0 not used) within the controller. They

can also access virtual serial ports 3 to 7 are virtual ports that may be assigned as

desired. Remember that Server connections will use the next available port when

allowing connections from a host client therefore it is important to reserve your port

first prior to enabling a Server register block.

Registers are defined based on their offset from their base, repeating after each 10.

Therefore beginning at register 22000:

REGISTER DESCRIPTION USE

22XX0 Controller Serial port ID

register

Enter 3 to 7 for virtual port

identifier.

22XX1 Client/Server register To initiate a connection set this

register to 0, if the controller is a

server, set to a 1. Therefore, in

the case of this section, we are a

client, this would be a 0, we

initiate the connection.

22XX2 IPA register Most significant octet of IP

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

15

Address to connect to.

22XX3 IPB register

22XX4 IPC register

22XX5 IPD register Least significant octet of IP

Address to connect to.

22XX6 TCP Port Connection register TCP Port to connect to (client) or

listen on (server).

22XX7 Connection Status register On read, -1 = not initialized, 0 =

offline, 1 = online, write a 1 to

initiate connection or start server

thread.

22XX8 Index register Provides access to special purpose

registers and general data access.

Recommend using serial port

buffer for data, not this interface

but available to mimic the peer to

peer interface.

22XX9 Data Array register R/W access to register selected by

the Index register.

An example for a script program to initialize a connection to a host at IP address

(Lantronix Cobox example is detailed in section 2.3) 12.40.53.185 and TCP port

3001 is shown below, note the controller Serial Port ID Register, 22000 must be

setup first:

22000 = 3 # setup this client connection as controller port 3

22001 = 0 # set that we are the client, initiating connection

22002 = 12 # most significant octet of ip address 12.40.53.185

22003 = 40

22004 = 53

22005 = 185 # least significant octet of ip address 12.40.53.185

22006 = 3001 # TCP port to attempt connection to

22007 = 1 # To initiate a connection write a 1 to the status register then read

 # it until it is a 1

 # which means connected, 0 is offline, -1 is not initialized.

Once register 22007 is read as a 1 then port 3 will appear as a standard serial port to a

Quickstep application. As with any serial port the port must be selected first, by

writing the port number to register 12000, prior to transferring data or initiating

commands. The port is available for reading and writing upon connection to the

host., register 22007 = 1. Should a connection ever be lost, 22007 will contain a 0

and a read of 12000 (Message status register) will return a 1, indicating transmitter

busy, or in this case, offline. With TCP the transmitter will never be busy unless

offline. The controller will periodically retry the client connection.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

16

2.2 TCP Server

A TCP Server RAW Socket session is when the host computer is the client,

connecting to the controller on a public TCP port number. Once the connection is

made any data sent to the actively selected serial port is sent to the host and anything

sent by the host is placed in the receive buffer, exactly like a controller serial port. In

order to allow a server to be active the same registers as detailed in Client, must be

configured except a 1 is placed in register 22XX1 and our port number to listen on is

stored in 22XX6:

Registers are defined based on their offset from their base, repeating after each 10.

Therefore beginning at register 22000:

REGISTER DESCRIPTION USE

22XX0 Controller Serial port ID

register

Enter 3 to 7 for virtual port

identifier.

22XX1 Client/Server register To initiate a connection set this

register to 0, if the controller is a

server, set to a 1. Therefore, in

the case of this section, we are a

server, this would be a 1, we

listen for the connection.

22XX2 IPA register Most significant octet of IP

Address to connect to.

22XX3 IPB register

22XX4 IPC register

22XX5 IPD register Least significant octet of IP

Address to connect to.

22XX6 TCP Port Connection register TCP Port to connect to (client) or

listen on (server).

22XX7 Connection Status register On read, -1 = not initialized, 0 =

offline, 1 = online, write a 1 to

initiate connection or start server

thread.

22XX8 Index register Provides access to special purpose

registers and general data access.

Recommend using serial port

buffer for data, not this interface

but available to mimic the peer to

peer interface.

22XX9 Data Array register R/W access to register selected by

the Index register.

A server thread will be launched as soon as a 1 is written to the status register. Note

that only one connection is allowed at a time since all information is directed to and

from a controller virtual serial port. If more than one connection attempt is made to

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

17

the same port number defined in the configuration block, it will be initially accepted

and then rejected.

2.3 Lantronix CoBox/Xpress interface Example

The Lantronix CoBox-DR1-IAP or Xpress-DR-IAP (Device Server

(www.lantronix.com) is one of several serial to Ethernet converter devices which will

work with the controller using the TCP RAW Client socket protocol. To the

controller this device is communicated to over TCP port 3001 and becomes a simple

virtual serial port to Quickstep. It operates exactly as a resident local port, supporting

the same communication protocols. Communications is tunneled over the network to

the device. Even a serial port version of CTMon or a CTC 4010 User Interface can

be connected and run over this interface, allowing for easy port expansion. Modbus

is also supported.

By encapsulating serial data and transporting it over Ethernet, devices such these,

allow virtual serial links to be established over Ethernet and distributed virtually

anywhere within a plant or global enterprise.

Figure 2.1: Lantronix CoBox Serial to Ethernet Converters

3.0 Modbus

The Modbus Protocol is a messaging structure developed by Modicon in 1979. It is

used for master-slave/client-server communications between intelligent devices and

has become an industry standard. Details of the protocol may be found at the web

site www.modbus.org. This protocol allows a master to periodically poll the

controller to collect the desired information. Modbus supports two major flavors of

http://www.lantronix.com/
http://www.modbus.org/

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

18

data representation, RTU and ASCII. RTU is a more compact protocol, consisting of

binary characters while ASCII represents each binary nibble as a separate character,

hence doubling the length of transmissions. RTU is also more secure in that it

includes a CRC-16 at the end of the message while ASCII only has a single LRC.

The CTC 5100 controllers support Modbus Master/Slave TCP RTU, Modbus

Master Serial RTU/ASCII, and Modbus Slave Serial RTU/ASCII.

Tools used to test the protocol are available from a number of sources. The 5100

controller was tested using those available from www.win-tech.com, namely their

ModScan32 for RTU/ASCII Slave testing and ModSim32 for Master.

3.1 Modbus Slave RTU TCP & RTU/ASCII Serial

A polling master can drive a slave controller using the Modbus protocol. The 5100

controller supports slave mode both over an Ethernet TCP connection and/or a serial

connection. Modbus allows for interfaces to such things as coils, analog, register, etc.

Since the 5100 controller is able to access all of its resources via its register interface,

typically only the Holding Register commands are used: Write Single Register

(function code 0x06), Write Multiple Registers (function code 0x10), and Read

Holding Registers (0x03). Alternatively, the “Read Input Discrete” (maps to digital

in modules), “Read coils”, and “Write Single Coil” (maps to digital output modules)

are supported.

 Function codes
 Code Sub code (hex)

Read input discrete 02 02

Read coils 01 01

Write single coil 05 05

Write multiple coils 15 0F

Read input register 04 04

Read multiple
registers

03 03

Write Single register 06 06

Write multiple
registers

16 10

Read/write multiple
registers

23 17

Mask write register 22 16

Read file record 20 6 14

Write file record 21 6 15

Read device
identification

43 14 2B

Figure 3.1: Modbus Function codes from Modbus.org (highlighted yellow are supported by 5100)

http://www.win-tech.com/

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

19

You should also note that Modbus registers are 16 bits in width and that of the 5100

controller are 32 bits, since Modbus is Big Endean, this means when reading register

1 in the 5100 controller, the high 16 bits equates to Modbus register 1 and the low 16

bits to Modbus register 2. Modbus register 3 would be the high 16 bits of register #2,

and so on. There are limitations to the number of registers that can be read by a

polling master at one time:

Modbus RTU TCP – 120 Modbus 16 bit registers (60 5100 registers).

Modbus RTU Serial - 120 Modbus 16 bit registers (60 5100 registers).

Modbus ASCII Serial - 56 Modbus 16 bit registers (28 5100 registers).

This maximum is a limitation imposed by the Modbus TCP specification, not the

controller since it limits receive buffers to 255 bytes.

Modbus TCP Slave is always enabled and available for requests on TCP port 502

(standard). Either a Quickstep program or other means must manually enable

Modbus RTU/ASCII Serial. This is done simply by writing a 3 to the “Serial

Active Protocol Selection” Register, 12320, for RTU, or a 4 for ASCII. Prior to

enabling it is recommended that the 5100 controller Modbus Unit/Device address also

be set, using register 12321. Should a non-volatile controller wide default Modbus

address be desired, set register 12322 with the address followed by a write to register

20096. Differences between TCP and serial implementations are detailed in section

3.1.1.

As a demonstration of the functionality of the Modbus RTU TCP/Slave interface this

section details the interface of Win-Tech’s ModScan32 software and how it applies

with regards to the 5100 controller. As mentioned before, CTC only supporta the

Holding Register interface. Upon installation of ModScan32 a screen such as Figure

3.3 will appear. Note that the ‘Address’ field is set to 1, but the display screen starts

at 40001. This is Modbus nomenclature. ‘Address’ of 1 is the same as the upper 16

bits of the controller register 1. Note ‘Length’ is set to 50 (120 max), Device ID is

ignored since TCP is point to point (Device ID is not ignored when the controller

operates as a Master or serial slave, only when in TCP slave mode).

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

20

Figure 3.3: ModScan32 Master Scanning Program (only Holding Register supported)

Figure 3.4 shows the setup for an interface to a controller with a TCP address of

12.40.53.199 and the Modbus Slave running a server on the standard port of 502:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

21

Figure 3.4: ModScan32 Master Scanning Program TCP Connection Setup

In order to do a single register write to a Modbus 16 bit register double click that

register. Below shows changing Modbus register 40002 (Address 2) to a value of 5,

this would translate to the lower 16 bits of Quickstep register 1. Remember Modbus

Address 1 is the upper 16 bits.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

22

Figure 3.5: Single register write, value 5 to 40002

Changing a number of register all at once is known as a Write Multiple Register

access. This can be done using the Extended Access option:

Figure 3.6: Write Multiple register (Preset Regs) selection

The Preset Multiple Registers will appear. Note that in TCP the 5100 controller

ignores any slave or node identifiers since it is a single device and not acting as a

gateway. Set the Modbus register you wish to start changes with and the number of

registers to change, up to a maximum of that you are viewing:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

23

Figure 3.7: Preset Multiple register dialog

In this case we will change Addresses 1 to 10 to sequential numbers 1 to 10:

Figure 3.8: Select number of multiple writes to do

As shown below the current register values are displayed in the dialog box.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

24

Figure 3.9: Preset Multiple register dialog viewing existing values

Note below that each register value has been changed, also we scrolled down so we

could get to register 10. Click Update and note the changed register values from the

previous display, 40002 is no longer 5 but now 2.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

25

Figure 3.10: Preset Multiple new values entered

Upon clicking the Update key, the new values are written to the controller registers

and new values read back using the Read Multiple Register command.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

26

Figure 3.11: New values written and read back, Quickstep registers 1 to 5, Modbus 1 to 10

Should any errors occur a Modbus exception will occur. One such common error is

attempting to read too many registers or illegal registers. Below is what is returned if

> 120 Modbus registers are attempted:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

27

Figure 3.12: Modbus Exception Example > 120 registers

Editing the 125 appropriately will update the error. Below is an example of

displaying registers in the 13002 block of the 5100 controller. 13002 is the system

millisecond tic counter, real time clock/date values can also be seen incrementing in

other register dynamically. Note that 26003 is the high 16 bits of 13002 and 26004

(13002 X 2) is the base lower 16 bits.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

28

Figure 3.13: Display of controller system tic, dynamically updating, 426003/4

3.1.1 Modbus Slave Serial RTU/ASCII

The Modbus Slave Serial RTU and ASCII protocol functions exactly like that of

Modbus TCP Slave with regards to how to access information and ModScan32

operation (see figure 3.14 for serial port setup versus TCP). There are some key

differences since an RS232 connection is used versus a network connection.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

29

Figure 3.14: ModScan32 Master Scanning Program Serial Connection Setup, select RTU or ASCII

Transmission Mode.

They are as follows:

o Only COM1 can be used for Modbus Serial RTU/ASCII protocol. COM2 uses an

intelligent controller chip which does not currently support the protocol.

o The virtual TCP communication ports may also be used except for point to point

operations with a single address present. In other words the communications

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

30

traffic of other Modbus nodes should not be present (can be on COM1). This is

necessary because Modbus specifies a 3.5 character quiet time between packets

and a maximum of 1.5 intercharacter delay during the continuous transmission of

a packet data stream in RTU mode (1 second for ASCII mode). The virtual ports

can not guarantee these timing constraints, although from a high level protocol

viewpoint, the ports do comply.

o By default the Modbus protocol is disabled on the serial and virtual ports. To

enable the port it must be the active port in the 12000 register and the proper

Modbus protocol written to register 12320. Note that by default the slave port

address is 2 and that any value written as the Modbus slave address will be that

used on all serial ports, system wide. Note that writing a value of 0 to register

12320 will disable Modbus and return the port to normal CTC protocol operation.

Note: When Modbus is enabled on a serial port using CTCMON no further

communications will be available on that port except with Modbus. In other words you

will loose your CTCMON link if talking on the same port that is selected as active in

register 12000.

3.2 Modbus Master TCP RTU & Serial RTU/ASCII

The Modbus Master protocol allows the controller to poll a Modbus TCP or Serial

slave device, periodically requesting the registers for a particular device ID. As

described in the Modus TCP Slave section, the protocol allows for interfaces to such

things as coils, analog, registers, etc. The 5100 controller is capable of only polling

and writing to the Holding Registers of a remote device. Write Single Register

(function code 0x06), Write Multiple Registers (function code 0x10), and Read

Holding Registers (0x03) commands are supported. Be advised, Modbus Master, as

implemented on the 5100 controller, only polls a single device ID. The active device

ID register must be changed in order to begin polling a different device. Those who

require slow scanning of multiple devices may change the device ID within the

Modbus Master Register Control Block (21000-21299, shared with the UDP Peer to

Peer register block) by the use of a Quickstep program or it may be remotely

modified. This will cause all subsequent polls to use that device ID and hence allow

the reading/writing of multiple devices.

A maximum of 256 sequential Modbus registers (16 bit) can be polled, each

optionally mapped to a corresponding controller register (32 bit, 21XX8, index 1007).

You may also adjust the active start register by changing register 21XX4, described in

3.2.1, dynamically. The controller will read a maximum of 120 RTU (56 ASCII)

registers per packet request. This means if the number of registers desired is 50 then

50 will be read with each poll. If the number of registers is greater than 120 then

multiple requests are made. If 256 in RTU mode, for example, the first 120 are read,

then the next 120, then the remaining 16, all transparent to the user/programmer.

When using the remapping register option, all registers will appear sequential within

the 23000-24999 register blocks. Simply read and write as desired.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

31

3.2.1 Registers 21000-21299

The 5100 controller can run numerous Modbus TCP Master connections and a single

RTU/ASCII Serial connection at the same time, to differing devices, limited only by

the performance desired. Each is configured using the Modbus Master Register

Control Block (MMRCB), this same block serves multiple purposes and is shared

with the UDP Peer to Peer Protocol register block detailed in section 5.1.1.

21XX0 - First Octet IP Address Register (Most Significant) - R/W

This is the first octet of the IP address (XXX.000.000.000) of the Modbus Slave to

connect to. If a serial port is used, set to anything other than 0.

21XX1 - Second Octet IP Address Register - R/W

This is the second octet of the IP address (000.XXX.000.000) of the Modbus Slave to

connect to. If a serial port is used, set to anything other than 0.

21XX2 - Third Octet IP Address Register - R/W

This is the third octet of the IP address (000.000.XXX.000) of the Modbus Slave to

connect to. If a serial port is used, set to anything other than 0.

21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W

This is the fourth octet of the IP address (000.000.000.XXX) of the Modbus Slave to

connect to.

Once a connection is attempted, you cannot change the IP octet register settings.

21XX4 - Start Register - R/W

This register stores the starting register address which is to be read from the remote

Modbus Slave device. It may be modified at any time to select a different register

block. Typically address 1 will represent Holding Register 40001 on the device.

21XX5 - Sequential Number Register - R/W

This register stores the number of sequential registers (starting with Register 21XX4)

you want to read during a polling session. The value 1 represents a single register and

the maximum number of registers allowed is 256. Configure this register before

setting up any other registers. Do not change this value during a transaction or all data

will be lost and new values will have to be entered. If you modify this register, it lets

you reset the connection. All register reads from remote devices will be the same

block size.

21XX6 - Poll Timer Register - R/W

Set this register to 0 for a single read request. Specify a value (in units of ms/count) if

this register is going to receive periodic updates from the server controller (the

controller sending information to the register). The minimum value allowed is 10 ms.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

32

For example; the value 500 would refresh the data registers with new remote data

every ½ second. You can access this register at any time once you have initialized

the Sequential Number Register (Register 21XX5).

Data registers are mentioned in numerous places throughout the listings below. These

registers are represented by Register 21XX9, which is a phantom register. For more

information, refer to the 21XX9 listing in this section.

21XX7 - Status Flag Register - Read-Only

This register reflects the current status of the data registers. Its value is based on any

requested operations. Typically, you initiate an operation and then wait for a status of

‘1’. Possible values are:

STATUS DESCRIPTION

0 Offline; no connection is

present.

1 Last request is successful and

completed. Data is available

in the data registers if

requested.

-1 Requested operation has

failed, typically a Modbus

Exception error.

-2 Busy; connecting to the

desired host.

-3 Busy; reading data.

-4 Busy; writing data.

-5 Timed out, retrying.

-10 Aborted operation; out of

local memory or resources.

21XX8 - Index Offset Register - R/W

This register lets you access each of the requested sequential data registers. It works

in conjunction with Register 21XX9 and acts as its pointer. You can store the number

of a general or special purpose register in 21XX8 and 21XX9 can then access the

resource contained in the pointer. By default 0, points to the very first data element

read from the remote device. This would be equivalent to what you set the Start

Register to begin with (21XX4). Incrementing this register allows you to access other

data elements, like an array. Register 21XX9 can then be read or written accordingly.

If access using an index register for accessing general data is not desired, the data

may also be mapped to sequential registers of your choosing, refer to index register

1007 discussed below. This is the preferred method. Although do not modify the

index register while a write is occurring otherwise strange results may occur.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

33

The index register also has a few special features when you set it to 1000 or above.

Modifications are made by writing to the data register and setting the index register

appropriately as described below (only registers used by Modbus appear):

1003 - Protocol Index Register - This register tells the data register what

protocol to use for setting the peer block registers. You must set this register

before setting the Start Register (21XX4). Default mode is 0 for UDP Peer-to-

Peer protocol. 2 is used for Modbus TCP Master mode, 3 is used for Modbus

Master RTU Serial, and 4 for Modbus Master ASCII Serial.

1004 – TCP/Serial Client Port Index Register - This register points the data

register to the destination TCP Port address for your connection, or serial port.

You must set this register after setting the Protocol Index Register, otherwise

default values will overwrite any new values. When Protocol Index Register is

set to ‘2’ (TCP) the default client port is 502, when ‘3’ (Serial), then the client

port is set to 1, referencing COM1. For Modbus TCP Master mode 502 is the

industry standard port to connect to. Any client port less than 10 is assumed

to be a serial port.

1005 - Modbus Master Unit ID Index Register - This register points the data

register to the Unit/Device ID field value used in the Modbus Master request

packet. The default ID is ‘1’ but you can set it to any desired value. This ID

affects all subsequent transmissions and allows multiplexed devices to be

addressed in a Modbus environment.

1006 - Modbus Master Exception Index Register - This register

allows you to interrogate the last Modbus Exception error code received from

the data register (21XX9). Referencing this register helps to interpret failure

types. Typically you would reference this register if a ‘-1’ appears as the

current status in register 21XX7.

1007 – Register Remapping Start Index Register – This option allows remote

registers to be mapped into the 23000 to 24999 consecutive memory space.

Previously an index register at 21XX8 needed to be set then data read from

21XX9. This can result in slow operation if a lot of data needs to be

transferred. Setting 21XX8 to 1007 and then writing the register value from

23000 to 24999 will allow all data to be remapped to that register block area,

consecutively, based upon the block size (21XX5). A write to the remapped

area will result in a remote write. By default re-mapping is not active.

1008 - Modbus Master MAX Retries Register – (R/W) This register allows you

to change the maximum number of retry attempts on a Unit ID before giving

up. Default is 2.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

34

1009 - Modbus Master Retry Counter Register – (R/W) This register allows

you to observe and change the current number of message retries to the

current Unit ID.

1010 - Modbus Master Timeout Register – (R/W) This register

allows you to change the default Unit ID timeout from 250 milliseconds to

that desired, in milliseconds. Note that TCP needs a value > 200 milliseconds

when talking to many applications, especially if PC based. If this is not used

there will be many timeouts and retries. For example response times of up to

200 milliseconds have been observed the ModSim32 PC programs. The

controller can handle smaller values without a problem, it is the PC side that is

slow to respond. For Modbus Master RTU Serial the value in 21XX5 is

added to the base timeout of 250 milliseconds. 1000 milliseconds is the base

timeout for Modbus Master ASCII Serial.

1011 - Modbus Master Block Size Register – (R/W) This register sets the

number of Holding Registers to be accessed. Must be the same or smaller

than the Sequential Number Register, defaults to the same. Used to access

Unit ID’s with varying block sizes when manually changing the Unit ID under

program control.

21XX9 - Data Registers - R/W

This phantom register contains peer data that is read or written in a peer transaction. It

is a “window” into a register array in the controller. The array size is set by Register

21XX5 and the offset is specified by Register 21XX8. Data integrity is indicated in

Register 21XX7. If remapping of registers is not used then set 21XX8 to the array

element desired, with 0 being the first.

3.2.2 Example Modbus TCP & RTU Serial Master Initialization

An example of Quickstep initialization code is shown below to setup a connection to

the following remote device:

Modbus TCP Master Sample Program:

IP Address – 12.40.53.168

Device ID – 1

Number of sequential registers to read – 160

Scan time – 100 ms. (set last to initiate)

Starting Register - 1

Re-map registers to consecutive block beginning at registers 23000.

This is the first setup so use 21000, next would be 21010… 21020, etc…

[1] Initialize_ModbusMaster

 ;;; This program is used to initialize the TCP port

 ;;; for Modbus TCP Master operation. A single

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

35

 ;;; device is polled using device ID 1 and 160 registers

 ;;; are read and mapped into the 23000 block. Therefore

 ;;; registers 23000 - 23159 are used, with 23000 referencing

 ;;; Modbus Register #1. Make sure your Modbus device has

 ;;; at least 160 consecutive registers starting at '1'

 ;;; otherwise Modbus Exceptions will occur.

 ;;; Begin by doing the following:

 ;;; 21005 = Maximum number of registers to read (160)

 ;;; 21000 - 21003 = Set this to be the IP address to

 ;;; connect to. In this example we

 ;;; will use 12.40.53.168

 ;;; 21004 = Modbus start register (1)

 ;;; 21008 = 1003 = Set index to point to protocol register

 ;;; 21009 = 2 = Set protocol to Modbus TCP Master

 ;;; 21008 = 1004 = Set TCP port to connect to, default is 502

 ;;; 21009 = 502 = For demo set port to 502 even though default

 ;;; 21008 = 1007 = Set index to point to where to view data

 ;;; 21009 = 23000 = Start remapped area at 23000 for 160 regs.

 ;;; 21008 = 0 = Always set the index back to 0 before begin

 ;;; 21006 = 100 = Set scan poll time to 100 ms./block read,

 ;;; min is 50ms. This also initiates polling.

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 160 to reg_21005

 store 12 to reg_21000

 store 40 to reg_21001

 store 53 to reg_21002

 store 168 to reg_21003

 store 1 to reg_21004

 store 1003 to reg_21008

 store 2 to reg_21009

 store 1004 to reg_21008

 store 502 to reg_21009

 store 1007 to reg_21008

 store 23000 to reg_21009

 store 0 to reg_21008

 store 100 to reg_21006

 goto Next

[2] Wait_For_Online

 ;;; Once Modbus Master starts to poll we must wait until

 ;;; it is online before proceeding.

 <NO CHANGE IN DIGITAL OUTPUTS>

 if reg_21007=1 goto Modbus_Online

 delay 500 ms goto Wait_For_Online

[3] Modbus_Online

 ;;; It is OK to read and process data now since Modbus

 ;;; is online to the device. If you wish to monitor another

 ;;; device other than Unit ID 1, then change the index register

 ;;; 21008 to 1005 and write the desired Unit ID to register

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

36

 ;;; 21009, then set 21008 back to 0 and monitor 21007 for

 ;;; a 1 for online state, once again. Results will appear

 ;;; in the 23000 block.

 <NO CHANGE IN DIGITAL OUTPUTS>

 delay 1000 ms goto Modbus_Online

When Reg_21007 is equal to a ‘1’ then the connection is active and you may interact

with the remote device. If a 3 had been written to 1003 then Modbus Master RTU

Serial on COM1 would be used.

Modbus RTU Serial Master Sample Program:

IP Address – 12.40.53.168 (can be set to any value other than –1)

Device ID – 1

Number of sequential registers to read – 160

Scan time – 100 ms. (set last to initiate)

Starting Register – 1

Serial Port – COM1

Remap registers to consecutive block beginning at registers 23000.

This is the first setup so use 21000, next would be 21010… 21020, etc…

[1] Initialize_ModbusMaster

 ;;; This program is used to initialize the COM1 port

 ;;; for Modbus RTU Serial Master operation. A single

 ;;; device is polled using device ID 1 and 160 registers

 ;;; are read and mapped into the 23000 block. Therefore

 ;;; registers 23000 - 23159 are used, with 23000 referencing

 ;;; Modbus Register #1. Make sure your Modbus device has

 ;;; at least 160 consecutive registers starting at '1'

 ;;; otherwise Modbus Exceptions will occur.

 ;;; Begin by doing the following:

 ;;; 21005 = Maximum number of registers to read (160)

 ;;; 21000 - 21003 = Any value, required to unlock register

 ;;; group, on Modbus TCP this is the IP

 ;;; address for a connection.

 ;;; 21004 = Modbus start register (1)

 ;;; 21008 = 1003 = Set index to point to protocol register

 ;;; 21009 = 3 = Set protocol to Modbus RTU Serial (4 for ASCII Serial)

 ;;; 21008 = 1004 = Set serial port to use, default is 1

 ;;; 21009 = 1 = For demo set port to 1 even though default

 ;;; 21008 = 1007 = Set index to point to where to view data

 ;;; 21009 = 23000 = Start remapped area at 23000 for 160 regs.

 ;;; 21008 = 0 = Always set the index back to 0 before begin

 ;;; 21006 = 100 = Set scan poll time to 100 ms./block read,

 ;;; min is 10ms. This also initiates polling.

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 160 to reg_21005

 store 10 to reg_21000

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

37

 store 10 to reg_21001

 store 10 to reg_21002

 store 10 to reg_21003

 store 1 to reg_21004

 store 1003 to reg_21008

 store 3 to reg_21009

 store 1004 to reg_21008

 store 1 to reg_21009

 store 1007 to reg_21008

 store 23000 to reg_21009

 store 0 to reg_21008

 store 100 to reg_21006

 goto Next

[2] Wait_For_Online

 ;;; Once Modbus Master starts to poll we must wait until

 ;;; it is online before proceeding.

 <NO CHANGE IN DIGITAL OUTPUTS>

 if reg_21007=1 goto Modbus_Online

 delay 500 ms goto Wait_For_Online

[3] Modbus_Online

 ;;; It is OK to read and process data now since Modbus

 ;;; is online to the device. If you wish to monitor another

 ;;; device other than Unit ID 1, then change the index register

 ;;; 21008 to 1005 and write the desired Unit ID to register

 ;;; 21009, then set 21008 back to 0 and monitor 21007 for

 ;;; a 1 for online state, once again. Results will appear

 ;;; in the 23000 block.

 <NO CHANGE IN DIGITAL OUTPUTS>

 delay 1000 ms goto Modbus_Online

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

38

3.2.3 Testing With Win-Tech’s ModSim32

As a demonstration of the functionality of the controller Modbus Master interface this

section details the interface of Win-Tech’s ModSim32 software and how it applies

with regard to our product. It is assumed that the controller Modbus TCP Master or

Serial is setup to point to the PC and attempting a connection. As mentioned before,

we only support the Holding Register interface. Upon invoking of ModSim32 the

below screen will appear.

In order to activate the Modbus slave, you must select the Connection menu item and

the method of the connection, Modbus/TCP Svr for network or the appropriate ‘Port

#’ for a serial port.

If Serial select RTU or ASCII and set the baud rate, stop bits, and parity

appropriately. Default for the 5100 is 19.2K baud, 1 stop bit, 8 data bits, no parity,

this is not the default for ModSim and must be changed as shown below:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

39

Next devices must be created to listen to the requests. This is done using menu

selection: File-> New

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

40

In order to access this device the controller must have its Device ID set to 1 (the

default) and the Starting Address set to 100. If not set correctly, an exception status

will be returned upon connection and 21XX7 register will contain a -1. If we wanted

to set the Device ID to a 3, as in our example, modify as below:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

41

Note that the ‘Address’ field is set to 100, but the display screen starts at 40100. This

is Modbus nomenclature. To modify a device Holding Register contents simply

double click on the address and enter the new value in the dialog that appears:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

42

Above shows the modification of address 100. Additional devices can also be created

by once again selecting File->New. This allows for the testing of multiple Modbus

Slave devices at the same time:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

43

Above shows multiple devices enabled. If there are further questions about the use of

ModSim32 simply select the ‘Help’ menu item and a manual will appear.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

44

4.0 CTNet Binary Protocol (Server)

The CTNet binary protocol is a high-speed, non-routable protocol that has checksum

and error reporting capabilities. It is used in cases where data integrity, response time,

and processing time are the major criteria. Data transmission is fast for the following

reasons:

o Both the commands and data are represented in binary form instead of ASCII.

o The information density is higher and fewer characters are transmitted during

large data transfers.

o The controller can use the data “as is” and does not have to perform binary to

ASCII conversion.

This results in shorter execution times. Note that the binary protocol is non-routable.

Non-routable protocols do not contain a networking layer (IP stack), so they cannot

cross a router and are limited to local subnets or intranets. However, lack of an IP

stack reduces overhead by at least 20 bytes/packet. A smaller packet size increases

the transmission rate, which is ideal for industrial

controllers. Routable protocols such as TCP/IP result in a larger packet and more

processor overhead to process.

CTNet uses a node number is used in place of an IP address. This node number is

defined by writing to Register 20000. You can also determine the node number by

reading the value in Register 20000. Set this value within the 5100.ini file by defining

the CTNET_DEVICENODE parameter.

For more information on the CTNet binary protocol, refer to the CTC Serial Data

Communications Guide.

5.0 UDP Peer to Peer Protocol Overview

5.1 Peer-to-Peer Protocol Registers

The controller can only perform peer-to-peer operations with other 5100 modules. It

is not compatible with the 2217 communications module but is with the 2717. The

5100’s peer-to-peer registers let it communicate directly with other 5100 modules

without requiring a dedicated server. It can also gather register information locally for

different network protocols.

Registers 21000-21299 are read/write registers that are reserved for peer-to-peer

networks. Each block of 10 sequential registers is assigned to a designated peer node

and defines the peer environment for that connection. You can retrieve data from and

automatically update up to 100 sequential registers with a single request. This register

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

45

block is used for many functions by different network protocols (Peer-to-Peer,

Modbus TCP Master, etc.) that all interface with the registers in the same manner.

5.1.1 Registers 21000-21299

21XX0 - First Octet IP Address Register (Most Significant) - R/W

This is the first octet of the IP address (XXX.000.000.000) that is used to make peer

requests.

21XX1 - Second Octet IP Address Register - R/W

This is the second octet of the IP address (000.XXX.000.000) that is used to make

peer requests.

21XX2 - Third Octet IP Address Register - R/W

This is the third octet of the IP address (000.000.XXX.000) that is used to make peer

requests.

21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W

This is the fourth octet of the IP address (000.000.000.XXX) that is used to make peer

requests. Once a peer connection is attempted, you cannot change the IP octet

register settings.

21XX4 - Start Register - R/W

This register stores the starting register address in the controller for peer-to-peer

communications. You can change this register number after a peer connection is

attempted, but the number of sequential registers must stay the same (see Register

21XX5 for more information).

21XX5 - Sequential Number Register - R/W

This register stores the number of sequential registers (starting with Register 21XX4)

you want to read during a peer-to-peer session. The value 1 represents a single

register and the maximum number of registers allowed is 100. Configure this register

before setting up any other registers. Do not change this value during a peer-to-peer

transaction or all data will be lost and new values will have to be entered. If you

modify this register, it lets you reset the peer connection.

21XX6 - Poll Timer Register - R/W

Set this register to 0 for a single read request. Specify a value (in units of ms/count) if

this register is going to receive periodic updates from the server controller (the

controller sending information to the register). The minimum value allowed is 50 ms.

For example, the value 500 would refresh the data registers with new peer data every

½ second.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

46

You can write to this register at any time. Writing a 0 to this register while actively

conducting a peer-to-peer session cancels the periodic update and causes a new single

read transaction to occur. A time-out (Status Flag Register 21XX7 = 0) occurs if the

server has not refreshed peer data in a time equal to 2-½ multiplied by the poll timer

value. You can access this register at any time once you have initialized the

Sequential Number Register (Register 21XX5).

Data registers are mentioned in numerous places throughout the listings below. These

registers are represented by Register 21XX9, which is a phantom register. For more

information, refer to the 21XX9 listing in this section.

21XX7 - Status Flag Register - Read-Only

This register reflects the current status of the data registers. Its value is based on any

requested operations. Typically, you initiate an operation and then wait for a status of

1. Possible values are:

STATUS DESCRIPTION

0 Offline; no connection is

present.

1 Last request is successful and

completed. Data is available

in the data registers if

requested.

-1 Requested operation has

failed.

-2 Busy; connecting to the

desired host.

-3 Busy; reading data.

-4 Busy; writing data.

-10 Aborted operation; out of

local memory or resources.

21XX8 - Index Offset Register - R/W

This register lets you access each of the requested sequential data registers. It works

in conjunction with Register 21XX9 and acts as its pointer. You can store the number

of a general or special purpose register in 21XX8 and 21XX9 can then access the

resource contained in the pointer. The first register (with an index of 0) is the Start

Register (Register 21XX4). 1 is the next register, and so forth. Once Register 21XX5

(the Sequential Number Register) is initialized, you can change this register’s value at

any time. For more information on how pointer registers function, refer to the

Register Reference Guide.

The index register also has a few special features when you set it to 1000 or above.

Modifications are made by writing to the data register and setting the index register

appropriately as described below:

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

47

1000 - Peer Request Time-Out Register - The timer starts when a peer node

request is initiated and stops (times out) if no response is received within the

time specified by this register. Retries only occur if automatic updates are

active (Register 21XX6 is set to a value other than 0). Defaults are 500 ms for

single register reads and time-out value*2.5 for automatically updated register

read transactions.

1001 - Peer Request Failed Index Register - This register indicates when a peer

transaction fails and an error occurs. The Status Flag Register (21XX7) is set

to a value other than 1. Any data that was read or written when the error

occurred has an offset value that is stored in 1001. If you read the data

register, it returns the offset failure value. Data written before this offset value

is valid. For example, if your process continuously updates 50 registers and

the register returns a value of 25, it means the process failed while trying to

write the 25
th

 element of data. All data written before this element was written

correctly.

1002 - Peer Request Retry Counter Index Register - This debugging register

points the data register to the retry counter. Quickstep can set this register to

any value. The register is incremented by 1 when a time-out occurs because of

waiting for data from a peer node.

1003 - Protocol Index Register - This register tells the data register what

protocol to use for setting the peer block registers. You must set this register

before setting the Start Register (21XX4). Default mode is 0 for UDP Peer-to-

Peer protocol. 2 is used for Modbus TCP Master mode, 3 for Modbus Serial

Master.

1004 - Peer Request TCP Client Port Index Register - This register points the

data register to the destination TCP Port address for your connection. You

must set this register before setting the Start Register (21XX4). 1004 is

currently used for Modbus TCP Master mode with a default port number of

502 (the industry standard).

1005 - Modbus Master Unit ID Index Register - This register points the data

register to the Unit ID field value used in the Modbus Master request packet.

The default ID is 00 but you can set it to any desired value. This ID affects all

subsequent transmissions and allows multiplexed nodes to be addressed in a

Modbus environment.

1006 - Modbus Master Exception Index Register - This register

tells the data register where the last Modbus Exception error code is stored

from a previously received message. Referencing this register helps to

interpret failure types.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

48

1007 – Register Remapping Start Index Register – This option allows remote

registers to be mapped into the 23000 to 24999 consecutive memory space.

Previously an index register at 21XX8 needed to be set then data read from

21XX9. This can result in slow operation if a lot of data needs to be

transferred. Setting 21XX8 to 1007 and then writing the register value from

23000 to 24999 will allow all data to be remapped to that register block area,

consecutively, based upon the block size (21XX5). A write to the remapped

area will result in a remote write. By default re-mapping is not active.

1998 - Write Enable Index Register - This register is used to control the

updating of writes to the peer. When enabled (default, 1), any write to a data

register (21XX9 or remapped area) will cause a single write to the remote

host. Setting this register to a 0 inhibits write operations. This allows the

programmer to update the register block, as required, then set the Write

Enable Register back to a ‘1’ to update the entire block, on the remote host, by

sending a single packet. The Write Enable Register will not return a ‘1’ on a

read operation of ‘1998’ until an acknowledge from the remote host has been

received, verifying the write took occurred. The transition of the Write

Enable Register from 0 to 1 causes the block write, writing a 1 when a 1

already exists has no effect.

21XX9 - Data Registers/Peer Request Time-Out Register - R/W

This phantom register contains peer data that is read or written in a peer transaction. It

is a “window” into a register array in the controller. The array size is set by Register

21XX5 and the offset is specified by Register 21XX8. Data integrity is indicated in

Register 21XX7. For more information on how phantom registers function, refer to

the 5100 Register Reference Guide.

Initiating a Peer to Peer Session

In general, the initializing of the peer-to-peer mechanism works as follows:

1. Write the desired number of registers to 21XX5 register.

2. Write the slaves IP address to 21XX0 – 21XX3 register

3. Write the register to begin reading from of the slave device to 21XX4

4. Write a 1007 to register 21XX8 to select the re-mapping area.

5. Write where in the 23000-24999 register area you want it to appear to register

21XX9.

6. Write a 0 to the index register 21XX8 to default it back to viewing the first

data item.

7. Write the scan time, typically 100ms to register 21XX6 to initiate the

connection and begin peer to peer.

8. Monitor status register 21XX7 for a ‘1’ prior to reading/writing to either

21XX9 data area or the re-mapped area in the 23000-24999 block.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

49

6.0 SNTP Simple Network Time Protocol (RFC-2030)

The 5100 controller supports the Simple Network Time Protocol (SNTP) as a client

connecting to a server. This protocol provides a means to synchronize a computer

system clock to that of the world clock, via the internet. Government agencies

provide this service for computers to query the current atomic clock time and adjust

their clocks appropriately. For more detailed information reference www.time.gov

and www.boulder.nist.gov/timefreq/service/its.htm.

The time returned is based on Coordinated Universal Time (UTC), which is

Greenwich Mean Time (GMT). As such, there is no adjustment for daylight savings

time or time zones, that must be done locally. To avoid daylight savings time

problems it is recommended that you base the controller time on GMT but provisions

have been provided to automatically set the clock based on the time zone you are in,

using an offset from GMT.

Use of SNTP is not a requirement but typically real time clocks can be expected to

drift up to 30 seconds per week. The 5100 controller will drift up to 12 seconds per

week, depending on the tolerance of crystals, components, etc. Synchronization

allows the real time clock to be automatically set with regards to date, year, day of

week, and time.

6.1 SNTP Implementation

By default the controller will use the IP address of 192.43.244.18, port 123. Updates

will be performed once/day and the clock is set to GMT. This may be changed by

modifying the following registers:

20025 - First Octet IP Address Register (Most Significant) for SNTP

Server - R/W

This is the first octet of the IP address (XXX.000.000.000) that is used to

connect to the SNTP server. Default is 192.

20026 - Second Octet IP Address Register) for SNTP Server - R/W

This is the second octet of the IP address (000.XXX.000.000) that is used to

connect to the SNTP server. Default is 43.

20027 - Third Octet IP Address Register) for SNTP Server - R/W

This is the third octet of the IP address (000.000.XXX.000) that is used to

connect to the SNTP server. Default is 244.

20028 - Fourth Octet IP Address Register for SNTP Server - R/W

http://www.time.gov/
http://www.boulder.nist.gov/timefreq/service/its.htm

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

50

This is the fourth octet of the IP address (000.000.000.XXX) that is used to

connect to the SNTP server. Default is 18.

The unit must be reset for a new IP address to take effect.

20041 – SNTP Server Port to connect to - R/W

This register contains the TCP port that should be used for SNTP connections.

The Default is 123. Default is 123.

20042 – SNTP Update Time - R/W

This register contains the number of seconds before the next synchronization

request with the SNTP server. For example 3600 would be an hour, 86400

would be 24 hours. Default is 86400. When a change in time is made to this

value it typically takes about 1 minute before the new value will take effect.

Power cycling of the controller is not required.

20043 – SNTP Offset from GMT - R/W

This register contains the number of seconds to add or subtract from GMT.

The default is 0, which means to set the clock to GMT. –14400 would be the

value used for Eastern Standard Time during daylight savings time. Note that

the value is both positive and negative.

Note that a ‘1’ must be written to register 20096 whenever the above changes are

made in order to store those changes to non-volatile storage. Also to disable SNTP

simply set the IP Address of the SNTP Host to 0.0.0.0.

7.0 Virtual I/O Mapping
Virtual IO allows a 5100 controller (client) to extend its module bus to that of another

unit, via Ethernet. In essence the 2
nd

 5100 controller (server) allows the client to use

its I/O as though it was local to the client, transparent to the application programmer.

Each remote module is added to the list of available modules. If there are 8 local

digital inputs and a client attaches to a virtual IO server that has 16 digital inputs, then

the client will report a total of 24 digital inputs available to Quickstep. The remote

IO is added to the end of the local IO. In the previous example inputs 1-8 are local

and 9-24, remote.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

51

Ethernet

Server (future)Client Server Server (future)

Virtual-IO Client controls

Server's IO

Ethernet Switch

for Network

Isolation

Note: Motion Modules are not supported on the second controller (server).

Some applications of Virtual I/O Mapping Include:

o Adding additional I/O resources beyond the capacity of a single controller

unit.

o Coordinating the actions of different controllers controlling interacting

machines or different operations on a single machine.

o Collecting Data from another 5100 controller.

The attachment to a remote controller is transparent to the local one, except that it

will cause some performance degradation. A server can allow up to (1) client

controller to use its local bus. In addition a client can connect up to (1) server. A

critical input or output should never be remote. For example, damage to equipment

could occur if you were to enable an output to heat an oven, or move an actuator, and

someone disconnected the Ethernet cable. With the cable disconnected the output

could not be turned off. A better way to perform critical functions is to use peer to

peer to request a remote Quickstep program to control the function with its local I/O.

Both peer-to-peer and Virtual IO can be used at the same time, between the same

units.

In addition to sharing its module bus, a Virtual IO server makes its first 96 volatile

and 96 non-volatile registers public. These registers can be accessed anywhere in the

23000 register block, as detailed later. Although this same function can be done

using peer to peer, Virtual IO, has an added feature, which can be extremely

important. In addition to being able to adjust the scan rate of IO and public registers,

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

52

independently, a high priority data mask exists on all virtual objects. By setting the

appropriate mask bit, any change of state with regards to that object will immediately

be reported back to the client. This is extremely useful so you can set a slow scan

rate (100 ms.) but still want to be notified immediately (a few milliseconds) if the

contents of a specific public register changes, or a digital input/output line changes

state.

7.1 Quickstep Configuration

Eight register blocks of 100 registers are reserved for configuration (only one

supported currently), starting at register 21600. Note the peer to peer register blocks

are 21000 to 21199. Although there are a large number of registers, most are used for

advanced high priority data masking and are not necessarily accessed during normal

operation, if at all. By default priority data masking is disabled, set to 0.

The following steps are needed to configure a Virtual I/O connection:

1. Make sure all units have properly configured IP addresses.

2. Set the Virtual I/O unit’s IP Address (Reg 21600 – 21603)

3. Set the Start Register for the Mapped registers (Reg 21604)

4. Write a 1 to the Command Register (Reg_21607) to Initialize the Setup

5. Check to see that the Status Register (Reg_21605) is -2.

6. Write a 2 to the Command Register to Initiate the Connection

7. The connection is made when the command register returns a 1.

The following Quickstep code shows how this is done:

[2] Setup_Virtual_IO_Blocks

 ;;; Set up and Initialize Peer Block 1

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 12 to Reg_21600

 store 40 to Reg_21601

 store 53 to Reg_21602

 store 246 to Reg_21603

 store 23000 to Reg_21604

 store 1 to Reg_21607

 if Reg_21605=1 goto Next ;;; If already Connected!

 if Reg_21605=-2 goto Next

[3] Initiate_Virtual_IO_Connection

 ;;; Create connection for Peer Block 1

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 2 to Reg_21607

 if Reg_21605=1 goto Next

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

53

7.2 Registers

The following are the Registers used for Virtual I/O Connections

21600 – 21699 – Virtual I/O Block 1

(Note that the following blocks are available, but not supported at this time)

21700 – 21799 – Virtual I/O Block 2

21800 – 21899 – Virtual I/O Block 3

21900 – 21999 – Virtual I/O Block 4

21X00 VIRTUALIO_IPA

First Octet of the IP dot address (XXX.000.000.000) to connect to.

21X01 VIRTUALIO_IPB

Second Octet of the IP dot address (000.XXX.000.000) to connect to.

21X02 VIRTUALIO_IPC

Third Octet of the IP dot address (000.000. XXX.000) to connect to.

21X03 VIRTUALIO_IPD

Fourth Octet of the IP dot address (000.000.000. XXX) to connect to.

21X04 VIRTUALIO_REMAP_STARTREG

This register defines where in the 23000 - 24999 block all the Virtual IO registers

are to be viewed. There are 192 registers, the first 96 volatile, and the second

block, 96 nonvolatile. This same block is also used for peer-to-peer register

mapping also so be careful not to overlap areas. This register must be set.

Typically the first connection would be set to 23000, the second to 23200, third to

23400, etc… Setting this value to 0, at initialization, will disable Virtual IO

register updates, thereby decreasing network traffic.

21X05 VIRTUALIO_STATUS

Read only register:

STATUS DESCRIPTION

-1 Not initialized or never

connected to a server

-2 Initialized only.

0 Offline; no connection is

present.

1 Connecting

2 Retrieving module bus

information.

3 Retrieving first complete set

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

54

of system data.

10 Aborted operation; out of

local memory or resources.

21X06 VIRTUALIO_WINDOWSIZE

This register may be used to reduce the number of registers that will appear in the

23000 block based upon the VIRTUALIO_REMAP_STARTREG setting. By

default this value is 192, but can be made smaller. Note that registers 1 to 96 are

the volatile registers, registers 97 to 192 are the non-volatile registers starting at

501 in the remote controller. Setting this value to 0 at anytime will disable all

register scanning updates.To notify the server of the change a

VIRTUALIO_REQUEST_SCANUPDATE command must be issued.

21X07 VIRTUALIO_COMMAND

1 - VIRTUALIO_COMMAND_CREATE_SERVER

First command initiated to create a server block prior to connection, once IP address and register

viewing blocks are defined.

2 - VIRTUALIO_COMMAND_INITIATE_CONNECTION

This is the second command, used to actually connect to a Virtual IO server and add its IO to your

controller. This command only needs to be initiated once, retries are automatic.

The following commands are used to send the current mask configuration to the server, changing

it’s high priority mask accordingly or setting new scan rates.

9 - VIRTUALIO_REQUEST_SCANUPDATE

Sets the scan rates of the server to that defined in the VIRTUALIO_SCANIO_RATE and

VIRTUALIO_SCANREGS_RATE registers. No change is made to the server until this command

is initiated.

10 - VIRTUALIO_REQUEST_MASK_DIGITALINPUT_UPDATE

This command sets the server to the high priority mask defined in the VIRTUALIO_DI_MASK

block, there are 32 registers, representing 1024 bits or input points.

11 - VIRTUALIO_REQUEST_MASK_DIGITALOUTPUT_UPDATE

This command sets the server to the high priority mask defined in the VIRTUALIO_DO_MASK

block, there are 32 registers, representing 1024 bits or input points.

12 - VIRTUALIO_REQUEST_MASK_REG_UPDATE

This command sets the server to the high priority mask defined in the

VIRTUALIO_VOLATILE_REG_MASK block, there are 3 registers, representing 96 bits or input

points.

13 - VIRTUALIO_REQUEST_MASK_NVREG_UPDATE

This command sets the server to the high priority mask defined in the

VIRTUALIO_NONVOLATILE_REG_MASK block, there are 3 registers, representing 96 bits or

input points.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

55

14 - VIRTUALIO_REQUEST_MASK_FULL_UPDATE

This command sets the server to the high priority mask and scan rates defined in all the masks, all

at once. Note that this is automatically done upon initial connection but is a fast way to make

massive changes, all at once, during operation.

21X08 VIRTUALIO_SCANIO_RATE

This register displays/sets the current rate at which all IO data points available in

the server are transferred to the client, by default 100 milliseconds. Note that all

Analog Inputs are transmitted at this rate and there is no high priority mask

available for them. The VIRTUALIO_REQUEST_SCANUPDATE command

must be initiated to activate any changes.

21X09 VIRTUALIO_SCANREGS_RATE

This register displays/sets the current rate at which all public data registers

available in the server are transferred to the client, by default 100 milliseconds.

The VIRTUALIO_REQUEST_SCANUPDATE command must be initiated to

activate any changes.

21X10 VIRTUALIO_WRITEREG_INDEX

This register can be set to point to any valid register in the server. The data

written to the VIRTUALIO_WRITEREG_VALUE register will be written to that

register. This register is not limited to the public registers. Note that you can

only write the register, not read it back. There are no limitations as to what this

register is.

21X11 VIRTUALIO_WRITEREG_VALUE

This value written to this register will be written to the server register whose

index is contained in the VIRTUALIO_WRITEREG_INDEX.

21X12 to 21X15 Reserved for future use

Note: The appropriate MASK command must be initiated for any of the

following MASK register changes to take effect. Changes may be made in

multiple registers and then a single command used to activate them all at once.

21X16 – 21X47 VIRTUALIO_DI_MASK

These 32 registers consist of the high priority digital input mask registers. To

activate set one of 1024 bits, representing an IO point in the remote controller.

Bit 0 in the first register represents IO point 1. When a bit is set, any change of

state will be sent immediately to the client. Note the more bits you set the higher

the load on the controller given the additional network and monitoring traffic. It

is advised that this be used for change of states that are important to know about

quickly but that do not change that often.

21X48 – 21X79 VIRTUALIO_DO_MASK

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

56

These 32 registers consist of the high priority digital output mask registers. To

activate set one of 1024 bits, representing an IO point in the remote controller.

Bit 0 in the first register represents IO point 1. When a bit is set, any change of

state will be sent immediately to the client. Note the more bits you set the higher

the load on the controller given the additional network and monitoring traffic. It

is advised that this be used for change of states that are important to know about

quickly but that do not change that often.

21X80 – 21X82 VIRTUALIO_VOLATILE_REG_MASK

These 3 registers consist of the high priority volatile register mask registers. To

activate set one of 96 bits, representing a volatile register point in the remote

controller (register 1 to 96). Bit 0 in the first register represents remote register 1.

When a bit is set, any change of state will be sent immediately to the client. Note

the more bits you set the higher the load on the controller given the additional

network and monitoring traffic. It is advised that this be used for change of states

that are important to know about quickly but that do not change that often.

21X83 – 21X85 VIRTUALIO_NONVOLATILE_REG_MASK

These 3 registers consist of the high priority non-volatile register mask registers.

To activate set one of 96 bits, representing a non-volatile register point in the

remote controller (register 501 to 596). Bit 0 in the first register represents

remote register 501. When a bit is set, any change of state will be sent

immediately to the client. Note the more bits you set the higher the load on the

controller given the additional network and monitoring traffic. It is advised that

this be used for change of states that are important to know about quickly but that

do not change that often.

7.3 Script Configuration

Virtual IO may be configured either from a script text file (.ini) and/or from within

Quickstep via registers. Either way, Quickstep can be used to redefine any initialized

values during operation. A number of script commands exist to initialize Virtual IO

for operation. The first, “set virtualio connections”, lists the IP addresses of other

controller’s to connect to, and is required, prior to any other commands.

set virtualio connections [IP address list]

where [IP address list] is up to 4 IP addresses separated by a comma

(this command can only be executed once per power-up, executing it again will

have no effect).

This initializes a list of connections that are to be made, once Virtual IO is enabled.

The modules present on these remote systems will appear as though they are local.

Once this list is initialized it cannot be changed without cycling power or executing a

‘telnet’ reset command.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

57

set virtualio state change [IP address] [resource type] [range list]

Where:

[IP address] = one of the IP addresses set in the connection list.

[resource type] = DI for digital input, DO for digital output, REG for volatile

register, and NVREG for non-volatile register.

[range list] = resource number as referenced in local system. For example

register 1 would be 1, digital outputs 10-20 would be 10-20. This sets the

high priority monitoring mask for immediate change of state notification.

This sets the high priority monitor bit mask. There are a possible 1024 digital inputs,

1024 digital outputs, 96 volatile registers and 96 non-volatile registers. The non-

volatile registers start with register 1, when setting the mask (references 501 in the

controller). Note that after setting the state change mask for a particular resource

type, the current settings are output the telnet screen, along with volatile and

nonvolatile register contents (assuming manual telnet mode versus a script file).

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

58

Note above that the Digital Input Mask is set to 0x000000FF, this equates to DI 1-8

shown in the ‘state change’ command line.

set virtualio scan IO rate [value in milliseconds]

Set the update scan rate to be used for the IO, default = 100 milliseconds.

set virtualio scan Reg rate [value in milliseconds]

Set the update scan rate to be used for the public registers, default = 100

milliseconds.

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

59

get virtualio server connections

List all present server connections defined, state, and initialization information.

get virtualio client connections

List all present client connections using this server’s IO

enable virtualio

This command will cause a connection to be made to all defined servers and their

IO attached to this client. Control is not returned until all servers are ready for

operation.

7.4 Sample VirtualIO Program: VIOCount.dsp

Below is a sample program allowing a client to share the I/O of a server at IP address

12.40.53.197. Note, that whenever Virtual IO is used it should be setup and online

prior to any other controller operations being done. Should a connection to the

server be lost the Quickstep program will fault with a code of ‘49’, Unknown Step

and the server will maintain outputs in the last known state. It is suggested that a

Fault Handler be used (Section 7.6), to trap the error and recover if needed. The

below code includes an example of such a handler.

Symbols:

 Registers Symbol Name

1 lastTime

2 avgTime

3 maxTime

4 sum

5 cyclecount

6 outputVal

10 FaultFlag

10101 Reg_10101

11101 reg11101

13002 time

13038 FaultStepRegister

13039 FaultTaskRegister

13040 FaultMaskRegister

13041 FaultClearRegister

21600 v_IPA

21601 v_IPB

21602 v_IPC

21603 v_IPD

21604 v_remapstart

21605 v_status

21607 v_command

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

60

21608 v_IOscanrate

21616 v_DI_MASK

[1] init

 ;;; This program is setup to interface with a single remote 5100

 ;;; via VirtualIO. Two Digital Input (5110) and two Digital Output

 ;;; (5120) modules exists in the remote controller. The Outputs of

 ;;; the 5120 module are looped back to the inputs of the 5110.

 ;;; .

 ;;; Upon power up we must see what state we were in. This

 ;;; may simply be a program restart and the connection could

 ;;; already be active.

 ;;; .

 ;;; Check the Virtual IO status

 ;;; 1 = ready

 ;;; -1 = requires full initialization

 ;;; -2 = already initialized, just need to initiate connection

 ;;; .

 ;;; Also note that a Fault Handler is installed in the first

 ;;; step to monitor for communications failure. The FaultMaskRegister

 ;;; must be set after the FaultStepRegister, otherwise the handler

 ;;; will be invoke for all faults (default).

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 0 to sum

 store 0 to cyclecount

 store 8 to FaultStepRegister

 store 32 to FaultMaskRegister

 if v_status=1 goto execute

 if v_status=-1 goto v_setup

 if v_status=-2 goto go_online

[2] v_setup

 ;;; Initialize Virtual IO for operation, remote IP address

 ;;; is 12.40.53.197. Also set high priority mask for

 ;;; Digital Inputs 1-8. Init the register remap capability

 ;;; to the 23000 block. 192 registers will be present.

 ;;; To disable this feature simply set the v_remapstart register

 ;;; to a 0. Finally create the server register block by writing

 ;;; a 1 to v_command.

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 12 to v_IPA

 store 40 to v_IPB

 store 53 to v_IPC

 store 197 to v_IPD

 store 23000 to v_remapstart

 store 1 to v_command

 store 50 to v_IOscanrate

 goto Next

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

61

[3] go_online

 ;;; Now initiate the actual connection to other 5100 now and add its

 ;;; sticks to our buss. Also note the high priority mask

 ;;; was set to the Digital Inputs. Do not use the high

 ;;; priority mask on fast acting, repetitive signals.

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 255 to v_DI_MASK

 store 2 to v_command

 goto Next

[4] wait_for_virtualIO

 ;;; Loop here until we finish connecting to other 5100

 <NO CHANGE IN DIGITAL OUTPUTS>

 if v_status=1 goto execute

 delay 100 ms goto wait_for_virtualIO

[5] execute

 ;;; Now begin main program execution.

 ;;; .

 ;;; This program sets a digital output, then looks for that

 ;;; output on its input, timing how many milliseconds it

 ;;; took (time). Begin by reading the current output value

 ;;; and incrementing it by one.

 <NO CHANGE IN DIGITAL OUTPUTS>

 store Reg_10101 + 1 to outputVal

 if outputVal <=65535 goto monitor_change

 store 0 to outputVal

 goto Next

[6] monitor_change

 ;;; Now wait for the set digital output to be read as an

 ;;; active input.

 <NO CHANGE IN DIGITAL OUTPUTS>

 store outputVal to Reg_10101

 store 0 to time

 if outputVal=reg11101 goto IO_changed

[7] IO_changed

 ;;; Save the number of milliseconds took for Quickstep to

 ;;; set and detect the input change to "lastTime". Also

 ;;; set the largest time it took so far in "maxTime" and

 ;;; maintain a running average in "avgTime"

 <NO CHANGE IN DIGITAL OUTPUTS>

 store time to lastTime

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

62

 store cyclecount + 1 to cyclecount

 store sum + time to sum

 store sum / cyclecount to avgTime

 if time <=maxTime goto execute

 store time to maxTime

 goto execute

[8] FaultHandler

 ;;; This step is invoked should a fault occur, such as a

 ;;; network disconnect. The FaultMaskRegister controls

 ;;; under what circumstances the handler is invoked. This

 ;;; example is very simple. It basically shuts all the

 ;;; local outputs off and sets a flag in FaultFlag that

 ;;; has no purpose. Note that no other tasks will be running

 ;;; in the system nor can this task fault when the handler

 ;;; is invoked.

 <TURN OFF ALL DIGITAL OUTPUTS>

 store 1 to FaultFlag

 delay 3 sec goto ClearFault

[9] ClearFault

 ;;; Now attempt to recover from the fault by issuing a RESTART

 ;;; command

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 2 to FaultFlag

 store 5 to FaultClearRegister

 goto FaultHandler

7.5 Important Considerations

7.5.1 Network Isolation

Always isolate the controller network from the main network. A switch, or a switch

integrated firewall, should be used in order to help restrict the amount of data packets

flowing on the controller network. Several inexpensive devices are available by

Asante, with a list price under $100. The FS5005 and FS5008 switches are

recommended, with the FS5008 costing around $65.

http://www.asante.com/products/routers/FR3004FLC/index.html

http://www.asante.com/products/routers/FR3004FLC/index.html

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

63

http://www.asante.com/products/switches/5000/index.html

The ideal situation is a crossover cable between the client and a controller server,

thereby total isolation, but this is only useful when connectivity to the outside world

can be over a serial port. Ethernet is like a garden hose, the more you have flowing

through it the harder it is to be deterministic with when your data will arrive at the

desired points. Typically it is fast, less than 5 milliseconds from a Quickstep output

command to it changing on the remote server, but if packets collide or get lost this

could be delayed up to 250 milliseconds. The majority of the time high priority

updates will arrive within 10 milliseconds of their detection but you need to design

your system to handle the one time that a packet could be delayed, a connection lost,

or someone disconnects an Ethernet cable. A good rule of thumb is if something will

break if the Ethernet cable was disconnected and you could not access your IO, then

don’t make it remote.

7.5.2 Remote Write Operations

All network write operations, register, analog, and digital, are write verified. This

means that the local copy of a value is not updated until the controller will receive

verification that the write completed successfully. This increases network traffic

since for every write to a remote server, that server will immediately turn around and

send back the exact same packet, thereby updating the local copy. The local copy

will also be updated upon every scan, default of 100ms. If an output is critical for a

particular application and you need to verify that it reached it proper state 100% of

the time and not just 99.9%, then it is suggested that after you do a write, read back

from the same location to confirm the value is what you wrote. This should be done

waiting with a timer since the value change will take several milliseconds. In most

cases 2 ms to send it and 2-3ms to get it back. Other network traffic can also add

several milliseconds should collisions occur.

7.5.3 Performance and Determinism Guidelines

Performance and determinism is not only controlled by traffic on the Ethernet but

also system load. High system load will affect the capabilities of the controller to

respond to incoming Ethernet traffic in a timely manner. Operations such as servo

profiling, thermocouple calculations, user loadable “C” program, ftp, telnet, displays,

peer-to-peer, CTCMON, etc, can all affect performance. Basically this just means

that you must perform system tests under real-world load conditions. There are too

http://www.asante.com/products/switches/5000/index.html

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

64

many variables to define absolute performance rules for determinism. However

testing at CTC labs has shown it to offer on average a very high speed results.

CTC Test Timings

Our testing was done on a system set-up with two virtual servers as described below.

The tests showed that it typically 2 – 9 ms to write to a remote IO module and receive

verification that the write has occurred. This is extremely fast compared to typical

PLC scan rates, but again, keep in mind your actual results will depend on what

applications are running on the client and server as well as your overall network

configuration and traffic.

CTC Test Set-up

For the test executed the test code enclosed within this document was used. No

applications were running on the servers and no collisions occurred. A sampling over

a period of 12 million write operations was collected. The configurations of the

controller’s were as follows:

Client: 5102-XXXJXX

Server: 5102-AABBJX

 (A and B modules on the server were looped back to each other)

Asante FS5008 switch (all devices, including PC plugged into switch)

CTCMON connected to Client from PC running UDP monitoring registers 1-16

Ethernet @ 10Mb

Scan Rate – 50ms for modules, 100ms for 192 byte virtual registers

Results were as follows:

 Minimum Single Write Acknowledge time – 1.4 ms.

 Maximum Single Write Acknowledge time – 6 ms (state change packet on

output written was sent first and ACK was queued, resulting in delay. In

actuality this packet would have resulted in the output state containing the

update in 3.5ms.).

 Average Program dual output write with Acknowledgement and detecting

change of state – 9 ms

 Maximum Program dual output write with Acknowledgement and detecting

change of state – 25ms

Note: The dual output write is due to the fact that the test program logic does a 16

bit write to the outputs. Each module update information is sent as a separate data

packet on the network, hence two writes for high/low bytes and two acknowledge

packets. Change of state is sent to the client 5100 as soon as the looped back input is

detected (sampled every millisecond).

Good uses for Virtual IO are:

1. Expansion of a client controller module bus with Analog inputs,

thermocouples, non-critical digital inputs/outputs, etc…

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

65

2. To share registers and utilize the high priority mask capability not available in

peer-to-peer.

3. A way to synchronize and trigger Quickstep operations based on events

happening in another controller.

Notes:

1. The COM1 Serial port should be run at only 9600 baud when using Virtual IO

with change of state enabled. Higher baud rates can be used but heavy

Ethernet traffic could result in overruns.

2. Issuing the Software Reset command will cause the controller to do a hard reset

and reboot when Virtual IO is active. When Virtual IO sessions are not active a

normal Software Reset will be done. This should have no effect on operation

except that if diagnostics detects a problem with a module the unit will enter a

fault state. Typically this fault would be caused by a module being detected by

failing to respond. This is not normal operation and means the unit requires

service.

7.6 Fault Task Handler

When Quickstep programs encounter problems they fault, removing control from the

programmer. A new feature is called the “Fault Task Handler”. The “Fault Task

Handler” is a regular Quickstep task that can be branched to and executed when a soft

fault occurs. The Handler is simply a standard Quickstep program. Either a separate

task that is looping on a ‘delay’ instruction awaiting the fault, or a main program

which sets the “Fault Task Handler” step and continues executing. Later, branching

to the step designated to handle the fault.

There can only be one “Fault Task Handler” active at a time. Any task can be

activated as a handler by writing a step number to branch to in register 13038, the

TASK_FAULT_STEP_REGISTER. A branch will occur to the designated step when

a Fault occurs. You can change which task is the handler or where to branch to at any

time, by setting 13038 to a different step, or to 0 to disable the handler. Register

13040, TASK_FAULT_MASK_REGISTER can be set to enable which faults will

cause the branch to occur. Each bit is OR’d as required to enable each type of Fault:

FAULT MASK FAULT TYPE

0x0001 (1) Fatal Errors

0x0002 (2) Program Errors

0x0004 (4) Motion Errors

0x0008 (8) Analog Errors

0x0010 (16) Digital Errors

0x0020 (32) Communications Errors

Model 5100 Communications Guide

Control Technology Corporation

Document 951-510002-0004 02/05

66

When a Handler is executing it will ignore further soft faults and continue

executing. The fault state must be cleared for normal operation to continue. This

is controlled by register 13041, the TASK_FAULT_CLEAR_REGISTER (Write

Only). This register controls the state of program execution:

PROGRAM STATE DESCRIPTION

1 RESET – Reset the controller only

and then stop..

5 RESTART – Reset the controller

and begin running again at step 1.

6 STOPPED – Stop the controller

but do not reset.

8 RUNNING – Ignore the fault and

continue running.

9 FAULT – Continue to fault as

usual.

10 SHUTDOWN – Reset the

controller and shutdown, requires

a power cycle to exit.

Important registers are as follows:

REGISTER DESCRIPTION

13032 Fault Code – (R) Contains the fault code for

what caused the fault.

13033 Fault Step – (R) Step in which fault occurred.

13034 Fault Task – (R) Task number, starting at 1,

which caused the fault..

13035 Fault Data – (R) Any relevant error data.

13038 Fault Step Register – (R/W) Step to branch to

when fault occurs. Write a 0 to disable.

13039 Fault Task Register – (R) Task number that is

the active Fault Handler, 0 means none.

13040 Fault Mask Register – (R/W) Bit OR of types

of fault that will invoke the handler, by

default all enabled (-1) when the Fault Step

Register is written

13041 Fault Clear Register – (W) Used to write the

recovery state when done processing the

Fault.

Refer to Section 7.5 for an example of a fault handler.

