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             I.  INTRODUCTION 
 
In the successful application of an industrial 
servo system there are two performance 
requirements. First the servomotor must 
accurately reproduce all the commanded control 
variables such as position, velocity, acceleration, 
jerk along with delivering the required 
force/torque. Second the servomotor-drive 
system must remain stable under all applicable 
operating conditions. To meet both the accuracy 
and stability requirement the servomotor and its 
drive electronics must be correctly sized and 
properly compensated.  
 
Correct motor sizing means the motor has 
sufficient force/torque output allowing both the 
motor and its load to accurately reproduce the 
commanded motion profile. While producing 
this profile it is also imperative that the motor's 
maximum continuous or rated operating 
temperature not be exceeded at any time. In 
combination with the motor correct drive sizing 
means that the drive has sufficient output voltage 
and current allowing the motor to produce the 
needed force/torque thereby allowing the motor-
load to attain its commanded jerk, acceleration, 
velocity, and position. 
 
Regarding system stability, a system is defined 
as becoming "unstable" if a disturbance applied 
to the system produces a response that grows 
uncontrollably even after this disturbance is 

removed. In practice servo system stability can 
be a difficult issue because an improperly 
compensated motor-drive system can become 
unstable even though both the motor and its 
drive are correctly sized [1,2,3]. In analyzing 
both the motors dynamic motion response and 
the system stability it is imperative that all the 
components be accurately identified [1,4]. This 
identification generally takes the form of a 
differential equation. As will be shown two key 
parameters in a motor’s dynamic motion 
equation are its electrical and mechanical time 
constants. However, contrary to their implied 
name, both time constants are not of "constant" 
value. Rather, both time constants are functions 
of the motor's temperature. Hence, the purpose 
of this paper is to discuss the affect temperature 
has on a motor's electrical and mechanical time 
constants. 
 
    II.   DYNAMIC MOTION EQUATION  
 
In dynamic response to an applied voltage 
command, a servomotor responds both 
electrically and mechanically. To derive this 
response the motor’s total voltage equation is 
combined with its total torque equation. For 
simplicity a brush type servomotor with 
cylindrical geometry is used as the model. 
However, the derived response applies to all 
servomotors including brushless dc, ac 
induction, and variable reluctance motors with 
both linear and cylindrical geometry. 



  

The total voltage equation a permanent magnet 
brush type dc servomotor with cylindrical 
geometry amounts to: 
 

V(t) = L
di(t)
dt

+ i(t)R(T ) + KE (T )ω (t).   (1) 

 
In equation (1) the parameters are defined as 
follows: 
   
V(t) = Applied Voltage command (volt) 
t = Time (sec). 
L = Motor's Inductance (henry) 
i(t) = Motor's Current (amp) 
d/dt = Time derivative (1/sec) 
T = Motor's operating Temperature (ºC) 
R(T) = Motor’s Resistance (ohm) @ T  
KE(T) = Back EMF (volt/rad/sec) @ T 
ω(t) =  Motor’s Velocity (rad/sec). 
 
Notice in equation (1) that both the motor’s 
electrical resistance and its back EMF function 
are shown to depend on temperature. This 
functional dependence will be described later. 
 
In conjunction with the motor’s total voltage 
equation, the total torque equation for the same 
motor amounts to*; 
 

KT ( T )i(t) = J
dω ( t)

dt
+ Dω (t) + F ;   (2) 

 
Where; 
 
KT(T) = Torque function (Nm/amp) @ T          
J = Moment of Inertia (Kg-m2) 
D = Damping coefficient (Nm/rad/sec) 
F = Friction torque (Nm). 
 
{*Note: In applications where a load is attached 
to the motor the load's inertia, damping, and 
friction are added to the motor's to obtain the 
total torque equation for the motor-load system. 
However, simply adding the load’s values to the 
motors assumes that the shaft or linkage 
connecting the load to the motor is infinitely 
stiff. Based on considerable experience this 

infinite stiffness approximation is not generally 
valid especially when investigating system 
stability [1,2,3].} 
 
Based on experience it is reasonable to ignore 
the motor's damping coefficient when calculating 
the motor's dynamic motion response. Hence, it 
is assumed D = 0. With this assumption, solving 
for the motor's dynamic Current in equation (2) 
and substituting this expression into equation (1) 
the equation describing the motor's dynamic 
motion response to an applied voltage command 
amounts to:      
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As defined by NEMA [5]; the motor's electrical 
time constant is the time required for the Current 
to reach 63.2% of its final value after a zero 
source impedance stepped input voltage is 
applied to a motor maintained in its locked rotor 
or stalled condition (i.e., ω = 0 ). 
Mathematically, the motor's electrical time 
constant is defined as: 
 
τe ≡

L
R(T )

 (sec).                                      (4) 

 
Correspondingly, NEMA defines the motor's 
mechanical time constant as the time required for 
an unloaded motor to reach 63.2% of its final 
velocity after a zero source impedance stepped 
input voltage is applied to the motor. 
Mathematically, the motor's mechanical time 
constant is defined as: 
 

τ m ≡
R(T)J

KE (T )KT(T )
 (sec).     (5) 

 
Using these definitions equation (3) can be 
rewritten as follows: 
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Notice in equation (6) there are four components 
in every servomotor's dynamic motion response 
to the applied voltage command. First there's the 
motor’s "jerk" multiplied by both the electrical 
and mechanical time constants. Second there's 
the motor’s "acceleration" multiplied by the 
mechanical time constant only. Third there's the 
motor’s "velocity" which attains a maximum 
value determined by the applied voltage and the 
motor’s back EMF function. Finally, there’s 
motor and applied friction that produces a “drag” 
on the motor thereby reducing its maximum 
attainable velocity for a given applied voltage.   
 
To accurately determine how each servomotor 
dynamically responds to a voltage command 
equation (6) must solved completely. Although 
solving equation (6) proves to be instructive [6], 
it is not the purpose of this paper. The purpose is 
to determine how the motor's operating 
temperature affects its electrical and mechanical 
time constants. In turn equation’s (4) and (5) 
show that both time constants correspondingly 
change with temperature. Furthermore, equation 
(6) shows that as the time constants change with 
temperature so does every component in the 
motor’s dynamic motion response. 
 
III.   TIME CONSTANTS vs. TEMPERATURE 
 
As shown in equations (4) and (5) any change in 
the motor's electrical resistance affects both its 
electrical and mechanical time constants. In 
every motor one component to its total electrical 
resistance is the resistance of its primary 
electrical winding. In all brushless dc, ac 
induction, and variable reluctance motors the 
motor’s primary winding is an integral part of its 
stator. Hence, in these types of motors the total 
electrical resistance is determined entirely by the 
stator's winding resistance. In all permanent 
magnet brush type dc servomotors the electrical 
winding is contained in the armature for motors 
with cylindrical geometry and in the actuator or 
platen in linear motors. In brush type motors, the 
motor's total electrical resistance is the sum of 
the actuators or armatures winding resistance 
plus the added resistance of the brushes, 

commutator, and the brush-commutator "film". 
Even though these additional resistive 
components are part of the motor's total 
electrical resistance, they typically amount to 
less than 10% of the total and their temperature 
dependence, especially for the brush-commutator 
film, is difficult to predict [7]. Hence, only the 
change in resistance with temperature of the 
motor’s primary winding is considered. 
 
The resistance of every electrical winding, at a 
specified temperature, is determined by the 
length, gauge, and composition (i.e. copper, 
aluminum, etc.) of the wire used to construct the 
winding. The primary winding in the vast 
majority of industrial servomotors is constructed 
using film coated copper magnet wire. However, 
one notable exception is a family of high 
performance motors known as moving coil 
motors. The armatures in moving coil motors are 
often made of aluminum wire and this type of 
motor is widely used in high acceleration 
applications such as integrated circuit wire 
bonding machines, high-speed tape decks, and 
specific machine tools. However, only copper 
wire is considered for this discussion. 
 
Based on the 1913 International Electrical 
Commission standard, the linear temperature 
coefficient of electrical resistance for annealed 
copper magnet wire is 0.00393/°C. Therefore, 
knowing a copper winding's resistance at a 
specified temperature, the winding’s resistance 
at temperatures above or below this specified 
temperature is given by: 
 
R(T ) = R(T0 )[1 + 0.00393(T − T0 )];              (7) 
 
Where: 
 
T = Winding's Temperature (°C) 
To = Specified Temperature (°C). 
 
Using equation (7) one learns that a 130°C rise 
in a copper windings temperature increases its 
electrical resistance by a factor of 1.5109. 
Correspondingly, the motor’s mechanical time 



  

constant increases by the same 1.5109 factor 
while its electrical time constant decreases by a 
factor of 1÷1.5109 = 0.662. In combination, the 
motor's mechanical to electrical time constant 
ratio increases by a factor of 2.28 and this 
change significantly affects how the servomotor 
dynamically responds to a voltage command [6].   
  
Consulting published motor data one finds that 
motor manufacturers often specify their motor’s 
parameter values, including resistance, using 
25ºC as the specified ambient temperature. 
NEMA, however, recommends 40°C as the 
ambient temperature when specifying motors for 
industrial applications. Therefore, pay close 
attention to the specified ambient temperature 
when consulting or comparing published motor 
data. Different manufacturers can and do, use 
different ambient temperatures when specifying 
what can be the identical motor. 
 
In this same published data one also finds that 
servomotors are generally rated to operate at a 
maximum continuous winding temperature of 
130ºC (Class B) or 155ºC (Class F). Although, 
motors rated Class H, 180ºC are available. 
Assuming the motor's electrical resistance, 
electrical and mechanical time constants are all 
specified at 25ºC, it was just demonstrated that 
all three parameter values change with 
increasing motor temperature. If the motor can 
operate at 180ºC then the change in resistance is 
even greater since equation (7) shows a 155ºC 
rise in winding temperature increases its 
resistance by a factor of 1.609. Hence, if the 
servomotor’s dynamic motion response is 
calculated using its 25ºC parameter values then 
this calculation overestimates the motor's 
response for all temperatures above 25ºC [6]. 
 
In all permanent magnet motors there is an 
additional affect that temperature has on the 
motor’s mechanical time constant only. As 
shown in equation (5), the motor's mechanical 
time constant changes inversely with the motor’s 
temperature dependent back EMF and torque 
functions, KE and KT. In reference [8] it is 

shown that both KE and KT have the same 
functional dependence on the magnetic flux 
density produced by the motor’s magnets. All 
permanent magnets are subject to both reversible 
and irreversible demagnetization [9,10]. 
Irreversible demagnetization can occur at any 
temperature and must be avoided by limiting the 
motor's peak current such that, even for an 
instant, it does not exceed the peak value 
specified by the motor manufacturer. Exceeding 
the motor’s peak current value can permanently 
reduce the motor's KE and KT thereby increasing 
the motor’s mechanical time constant at every 
temperature including the specified ambient 
temperature. 
 
Reversible thermal demagnetization depends on 
each specific magnet material. Presently, there 
are four different magnet materials being used in 
permanent magnet motors. These four magnet 
materials are: Aluminum-Nickel-Cobalt(Alnico), 
Samarium Cobalt(SmCo), Neodymium-Iron-
Boron(NdFeB), and Ferrite or Ceramic. Within 
the temperature range, -60ºC < T < 200ºC, all 
four magnet materials exhibit linear, reversible 
thermal demagnetization such that the amount of 
magnetic flux density produced by each magnet 
decreases linearly with increasing magnet 
temperature. Hence, similar to electrical 
resistance, the expression for the, reversible 
linear decrease in both KE(T) and KT(T) with 
increasing magnet temperature amounts to: 
 

[ ])(1)()( 00,, TTBTKTK TETE −−= .               (8) 
 
In equation (8), the B-coefficient for each 
magnet material amounts to: 
 
 B (Alnico) = 0.0001/ºC 
 B (SmCo)  = 0.00035/ºC 
 B (NdFeB) = 0.001/ºC 
 B (Ferrite) = 0.002/ºC. 
 
Using equation (8), one calculates that a 100ºC 
rise in magnet temperature causes a reversible 
decrease in the motor’s KE and KT that amounts 
to 1% for Alnico, 3.5% for SmCo, 10% for 



  

NdFeB, and 20% for Ferrite or Ceramic 
magnets. 
 
Like the motor's electrical resistance, most motor 
manufactures specify the motor's KE and KT 
using the same ambient temperature to specify 
resistance. However, this is not always true and 
it is again advised to pay close attention how the 
manufacturer is specifying their motor's 
parameter values. 
 
Combining the affect of reversible, thermal 
demagnetization with temperature dependant 
electrical resistance, the equation describing how 
a permanent magnet motor's mechanical time 
constant increases in value with increasing motor 
temperature amounts to: 
 

τ m(T ) = τm(T0 )
1 + 0.00393(T − T0 )

1− B(T − T0 )( )2

 

 
 

 

 
 .           (9) 

 
Notice in equation (9) that the magnet 
temperature is assumed equal to the winding 
temperature. Actual measurement shows this 
assumption is not always correct. The motor’s 
magnets often operate with a lower temperature 
compared to its winding temperature. However, 
this conservative approximation is 
recommended. 
 
Figure 1 shows four graphs of the mechanical 
time constant multiplier (i.e.,τ m(T ) / τm(T0 )) as 
a function of temperature for four different motor 
conditions. Notice the specified ambient 
temperature is 25ºC. The R-only graph is the 
mechanical time constant multiplier due to a 
change in electrical resistance only that occurs in 
every servomotor. The remaining three graphs 
show the combined affect of increasing electrical 
resistance with thermal demagnetization for 
three different magnet materials. As shown, the 
largest change occurs in Ferrite motors with the 
mechanical time constant increasing by a factor 
of 2.759 at 155ºC. The second largest change 
occurs in NdFeB motors as the multiplier is 1.99 
at 155ºC. Finally, SmCo motors show less 

change than either Ferrite or NdFeB motors. The 
Alnico graph is not shown because it is difficult 
to distinguish from the R-only graph. 
 

IV.   RECOMMENDATION 
 
This paper shows that a Servomotor's dynamic 
motion response is controlled by both its 
electrical and mechanical time constants. As 
shown, both time constants depend on 
temperature. As a minimum, the increase in 
every motor’s electrical resistance with 
increasing winding temperature causes the 
motor’s mechanical time constant to increase in 
value while its electrical time constant decreases 
in value. In all permanent magnet motors, 
including the widely used brushless dc, there’s 
the added affect of reversible thermal 
demagnetization that reduces the motor’s KE and 
KT thereby further increasing the mechanical 
time constant only. Ignoring these time constant 
changes can result in a significant error when 
calculating the motor's dynamic motion response 
[6]. In turn, this error can result in the wrong 
motor being selected for the application thereby 
leading to costly production delays and unhappy 
customers. To avoid making this mistake, it is 
recommended that the motor’s dynamic motion 
response be calculated using the motor’s 
electrical and mechanical time constant values 
adjusted to the motor’s maximum continuous or 
rated operating temperature.   
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                                    Figure 1.  Mechanical Time Constant Multiplier versus Temperature 



  

 
           


